drm/i915/bdw: Print context state in debugfs
[deliverable/linux.git] / drivers / iommu / intel_irq_remapping.c
1 #include <linux/interrupt.h>
2 #include <linux/dmar.h>
3 #include <linux/spinlock.h>
4 #include <linux/slab.h>
5 #include <linux/jiffies.h>
6 #include <linux/hpet.h>
7 #include <linux/pci.h>
8 #include <linux/irq.h>
9 #include <linux/intel-iommu.h>
10 #include <linux/acpi.h>
11 #include <asm/io_apic.h>
12 #include <asm/smp.h>
13 #include <asm/cpu.h>
14 #include <asm/irq_remapping.h>
15 #include <asm/pci-direct.h>
16 #include <asm/msidef.h>
17
18 #include "irq_remapping.h"
19
20 struct ioapic_scope {
21 struct intel_iommu *iommu;
22 unsigned int id;
23 unsigned int bus; /* PCI bus number */
24 unsigned int devfn; /* PCI devfn number */
25 };
26
27 struct hpet_scope {
28 struct intel_iommu *iommu;
29 u8 id;
30 unsigned int bus;
31 unsigned int devfn;
32 };
33
34 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
35 #define IRTE_DEST(dest) ((x2apic_mode) ? dest : dest << 8)
36
37 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
38 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
39 static int ir_ioapic_num, ir_hpet_num;
40
41 /*
42 * Lock ordering:
43 * ->dmar_global_lock
44 * ->irq_2_ir_lock
45 * ->qi->q_lock
46 * ->iommu->register_lock
47 * Note:
48 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
49 * in single-threaded environment with interrupt disabled, so no need to tabke
50 * the dmar_global_lock.
51 */
52 static DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
53
54 static int __init parse_ioapics_under_ir(void);
55
56 static struct irq_2_iommu *irq_2_iommu(unsigned int irq)
57 {
58 struct irq_cfg *cfg = irq_get_chip_data(irq);
59 return cfg ? &cfg->irq_2_iommu : NULL;
60 }
61
62 static int get_irte(int irq, struct irte *entry)
63 {
64 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
65 unsigned long flags;
66 int index;
67
68 if (!entry || !irq_iommu)
69 return -1;
70
71 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
72
73 index = irq_iommu->irte_index + irq_iommu->sub_handle;
74 *entry = *(irq_iommu->iommu->ir_table->base + index);
75
76 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
77 return 0;
78 }
79
80 static int alloc_irte(struct intel_iommu *iommu, int irq, u16 count)
81 {
82 struct ir_table *table = iommu->ir_table;
83 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
84 struct irq_cfg *cfg = irq_get_chip_data(irq);
85 unsigned int mask = 0;
86 unsigned long flags;
87 int index;
88
89 if (!count || !irq_iommu)
90 return -1;
91
92 if (count > 1) {
93 count = __roundup_pow_of_two(count);
94 mask = ilog2(count);
95 }
96
97 if (mask > ecap_max_handle_mask(iommu->ecap)) {
98 printk(KERN_ERR
99 "Requested mask %x exceeds the max invalidation handle"
100 " mask value %Lx\n", mask,
101 ecap_max_handle_mask(iommu->ecap));
102 return -1;
103 }
104
105 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
106 index = bitmap_find_free_region(table->bitmap,
107 INTR_REMAP_TABLE_ENTRIES, mask);
108 if (index < 0) {
109 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
110 } else {
111 cfg->remapped = 1;
112 irq_iommu->iommu = iommu;
113 irq_iommu->irte_index = index;
114 irq_iommu->sub_handle = 0;
115 irq_iommu->irte_mask = mask;
116 }
117 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
118
119 return index;
120 }
121
122 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
123 {
124 struct qi_desc desc;
125
126 desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
127 | QI_IEC_SELECTIVE;
128 desc.high = 0;
129
130 return qi_submit_sync(&desc, iommu);
131 }
132
133 static int map_irq_to_irte_handle(int irq, u16 *sub_handle)
134 {
135 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
136 unsigned long flags;
137 int index;
138
139 if (!irq_iommu)
140 return -1;
141
142 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
143 *sub_handle = irq_iommu->sub_handle;
144 index = irq_iommu->irte_index;
145 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
146 return index;
147 }
148
149 static int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle)
150 {
151 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
152 struct irq_cfg *cfg = irq_get_chip_data(irq);
153 unsigned long flags;
154
155 if (!irq_iommu)
156 return -1;
157
158 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
159
160 cfg->remapped = 1;
161 irq_iommu->iommu = iommu;
162 irq_iommu->irte_index = index;
163 irq_iommu->sub_handle = subhandle;
164 irq_iommu->irte_mask = 0;
165
166 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
167
168 return 0;
169 }
170
171 static int modify_irte(int irq, struct irte *irte_modified)
172 {
173 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
174 struct intel_iommu *iommu;
175 unsigned long flags;
176 struct irte *irte;
177 int rc, index;
178
179 if (!irq_iommu)
180 return -1;
181
182 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
183
184 iommu = irq_iommu->iommu;
185
186 index = irq_iommu->irte_index + irq_iommu->sub_handle;
187 irte = &iommu->ir_table->base[index];
188
189 set_64bit(&irte->low, irte_modified->low);
190 set_64bit(&irte->high, irte_modified->high);
191 __iommu_flush_cache(iommu, irte, sizeof(*irte));
192
193 rc = qi_flush_iec(iommu, index, 0);
194 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
195
196 return rc;
197 }
198
199 static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
200 {
201 int i;
202
203 for (i = 0; i < MAX_HPET_TBS; i++)
204 if (ir_hpet[i].id == hpet_id)
205 return ir_hpet[i].iommu;
206 return NULL;
207 }
208
209 static struct intel_iommu *map_ioapic_to_ir(int apic)
210 {
211 int i;
212
213 for (i = 0; i < MAX_IO_APICS; i++)
214 if (ir_ioapic[i].id == apic)
215 return ir_ioapic[i].iommu;
216 return NULL;
217 }
218
219 static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
220 {
221 struct dmar_drhd_unit *drhd;
222
223 drhd = dmar_find_matched_drhd_unit(dev);
224 if (!drhd)
225 return NULL;
226
227 return drhd->iommu;
228 }
229
230 static int clear_entries(struct irq_2_iommu *irq_iommu)
231 {
232 struct irte *start, *entry, *end;
233 struct intel_iommu *iommu;
234 int index;
235
236 if (irq_iommu->sub_handle)
237 return 0;
238
239 iommu = irq_iommu->iommu;
240 index = irq_iommu->irte_index + irq_iommu->sub_handle;
241
242 start = iommu->ir_table->base + index;
243 end = start + (1 << irq_iommu->irte_mask);
244
245 for (entry = start; entry < end; entry++) {
246 set_64bit(&entry->low, 0);
247 set_64bit(&entry->high, 0);
248 }
249 bitmap_release_region(iommu->ir_table->bitmap, index,
250 irq_iommu->irte_mask);
251
252 return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
253 }
254
255 static int free_irte(int irq)
256 {
257 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
258 unsigned long flags;
259 int rc;
260
261 if (!irq_iommu)
262 return -1;
263
264 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
265
266 rc = clear_entries(irq_iommu);
267
268 irq_iommu->iommu = NULL;
269 irq_iommu->irte_index = 0;
270 irq_iommu->sub_handle = 0;
271 irq_iommu->irte_mask = 0;
272
273 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
274
275 return rc;
276 }
277
278 /*
279 * source validation type
280 */
281 #define SVT_NO_VERIFY 0x0 /* no verification is required */
282 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
283 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
284
285 /*
286 * source-id qualifier
287 */
288 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
289 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
290 * the third least significant bit
291 */
292 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
293 * the second and third least significant bits
294 */
295 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
296 * the least three significant bits
297 */
298
299 /*
300 * set SVT, SQ and SID fields of irte to verify
301 * source ids of interrupt requests
302 */
303 static void set_irte_sid(struct irte *irte, unsigned int svt,
304 unsigned int sq, unsigned int sid)
305 {
306 if (disable_sourceid_checking)
307 svt = SVT_NO_VERIFY;
308 irte->svt = svt;
309 irte->sq = sq;
310 irte->sid = sid;
311 }
312
313 static int set_ioapic_sid(struct irte *irte, int apic)
314 {
315 int i;
316 u16 sid = 0;
317
318 if (!irte)
319 return -1;
320
321 down_read(&dmar_global_lock);
322 for (i = 0; i < MAX_IO_APICS; i++) {
323 if (ir_ioapic[i].id == apic) {
324 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
325 break;
326 }
327 }
328 up_read(&dmar_global_lock);
329
330 if (sid == 0) {
331 pr_warning("Failed to set source-id of IOAPIC (%d)\n", apic);
332 return -1;
333 }
334
335 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
336
337 return 0;
338 }
339
340 static int set_hpet_sid(struct irte *irte, u8 id)
341 {
342 int i;
343 u16 sid = 0;
344
345 if (!irte)
346 return -1;
347
348 down_read(&dmar_global_lock);
349 for (i = 0; i < MAX_HPET_TBS; i++) {
350 if (ir_hpet[i].id == id) {
351 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
352 break;
353 }
354 }
355 up_read(&dmar_global_lock);
356
357 if (sid == 0) {
358 pr_warning("Failed to set source-id of HPET block (%d)\n", id);
359 return -1;
360 }
361
362 /*
363 * Should really use SQ_ALL_16. Some platforms are broken.
364 * While we figure out the right quirks for these broken platforms, use
365 * SQ_13_IGNORE_3 for now.
366 */
367 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
368
369 return 0;
370 }
371
372 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
373 {
374 struct pci_dev *bridge;
375
376 if (!irte || !dev)
377 return -1;
378
379 /* PCIe device or Root Complex integrated PCI device */
380 if (pci_is_pcie(dev) || !dev->bus->parent) {
381 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
382 (dev->bus->number << 8) | dev->devfn);
383 return 0;
384 }
385
386 bridge = pci_find_upstream_pcie_bridge(dev);
387 if (bridge) {
388 if (pci_is_pcie(bridge))/* this is a PCIe-to-PCI/PCIX bridge */
389 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
390 (bridge->bus->number << 8) | dev->bus->number);
391 else /* this is a legacy PCI bridge */
392 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
393 (bridge->bus->number << 8) | bridge->devfn);
394 }
395
396 return 0;
397 }
398
399 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
400 {
401 u64 addr;
402 u32 sts;
403 unsigned long flags;
404
405 addr = virt_to_phys((void *)iommu->ir_table->base);
406
407 raw_spin_lock_irqsave(&iommu->register_lock, flags);
408
409 dmar_writeq(iommu->reg + DMAR_IRTA_REG,
410 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
411
412 /* Set interrupt-remapping table pointer */
413 iommu->gcmd |= DMA_GCMD_SIRTP;
414 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
415
416 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
417 readl, (sts & DMA_GSTS_IRTPS), sts);
418 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
419
420 /*
421 * global invalidation of interrupt entry cache before enabling
422 * interrupt-remapping.
423 */
424 qi_global_iec(iommu);
425
426 raw_spin_lock_irqsave(&iommu->register_lock, flags);
427
428 /* Enable interrupt-remapping */
429 iommu->gcmd |= DMA_GCMD_IRE;
430 iommu->gcmd &= ~DMA_GCMD_CFI; /* Block compatibility-format MSIs */
431 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
432
433 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
434 readl, (sts & DMA_GSTS_IRES), sts);
435
436 /*
437 * With CFI clear in the Global Command register, we should be
438 * protected from dangerous (i.e. compatibility) interrupts
439 * regardless of x2apic status. Check just to be sure.
440 */
441 if (sts & DMA_GSTS_CFIS)
442 WARN(1, KERN_WARNING
443 "Compatibility-format IRQs enabled despite intr remapping;\n"
444 "you are vulnerable to IRQ injection.\n");
445
446 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
447 }
448
449
450 static int intel_setup_irq_remapping(struct intel_iommu *iommu, int mode)
451 {
452 struct ir_table *ir_table;
453 struct page *pages;
454 unsigned long *bitmap;
455
456 ir_table = iommu->ir_table = kzalloc(sizeof(struct ir_table),
457 GFP_ATOMIC);
458
459 if (!iommu->ir_table)
460 return -ENOMEM;
461
462 pages = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
463 INTR_REMAP_PAGE_ORDER);
464
465 if (!pages) {
466 pr_err("IR%d: failed to allocate pages of order %d\n",
467 iommu->seq_id, INTR_REMAP_PAGE_ORDER);
468 kfree(iommu->ir_table);
469 return -ENOMEM;
470 }
471
472 bitmap = kcalloc(BITS_TO_LONGS(INTR_REMAP_TABLE_ENTRIES),
473 sizeof(long), GFP_ATOMIC);
474 if (bitmap == NULL) {
475 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
476 __free_pages(pages, INTR_REMAP_PAGE_ORDER);
477 kfree(ir_table);
478 return -ENOMEM;
479 }
480
481 ir_table->base = page_address(pages);
482 ir_table->bitmap = bitmap;
483
484 iommu_set_irq_remapping(iommu, mode);
485 return 0;
486 }
487
488 /*
489 * Disable Interrupt Remapping.
490 */
491 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
492 {
493 unsigned long flags;
494 u32 sts;
495
496 if (!ecap_ir_support(iommu->ecap))
497 return;
498
499 /*
500 * global invalidation of interrupt entry cache before disabling
501 * interrupt-remapping.
502 */
503 qi_global_iec(iommu);
504
505 raw_spin_lock_irqsave(&iommu->register_lock, flags);
506
507 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
508 if (!(sts & DMA_GSTS_IRES))
509 goto end;
510
511 iommu->gcmd &= ~DMA_GCMD_IRE;
512 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
513
514 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
515 readl, !(sts & DMA_GSTS_IRES), sts);
516
517 end:
518 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
519 }
520
521 static int __init dmar_x2apic_optout(void)
522 {
523 struct acpi_table_dmar *dmar;
524 dmar = (struct acpi_table_dmar *)dmar_tbl;
525 if (!dmar || no_x2apic_optout)
526 return 0;
527 return dmar->flags & DMAR_X2APIC_OPT_OUT;
528 }
529
530 static int __init intel_irq_remapping_supported(void)
531 {
532 struct dmar_drhd_unit *drhd;
533 struct intel_iommu *iommu;
534
535 if (disable_irq_remap)
536 return 0;
537 if (irq_remap_broken) {
538 printk(KERN_WARNING
539 "This system BIOS has enabled interrupt remapping\n"
540 "on a chipset that contains an erratum making that\n"
541 "feature unstable. To maintain system stability\n"
542 "interrupt remapping is being disabled. Please\n"
543 "contact your BIOS vendor for an update\n");
544 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
545 disable_irq_remap = 1;
546 return 0;
547 }
548
549 if (!dmar_ir_support())
550 return 0;
551
552 for_each_iommu(iommu, drhd)
553 if (!ecap_ir_support(iommu->ecap))
554 return 0;
555
556 return 1;
557 }
558
559 static int __init intel_enable_irq_remapping(void)
560 {
561 struct dmar_drhd_unit *drhd;
562 struct intel_iommu *iommu;
563 bool x2apic_present;
564 int setup = 0;
565 int eim = 0;
566
567 x2apic_present = x2apic_supported();
568
569 if (parse_ioapics_under_ir() != 1) {
570 printk(KERN_INFO "Not enable interrupt remapping\n");
571 goto error;
572 }
573
574 if (x2apic_present) {
575 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
576
577 eim = !dmar_x2apic_optout();
578 if (!eim)
579 printk(KERN_WARNING
580 "Your BIOS is broken and requested that x2apic be disabled.\n"
581 "This will slightly decrease performance.\n"
582 "Use 'intremap=no_x2apic_optout' to override BIOS request.\n");
583 }
584
585 for_each_iommu(iommu, drhd) {
586 /*
587 * If the queued invalidation is already initialized,
588 * shouldn't disable it.
589 */
590 if (iommu->qi)
591 continue;
592
593 /*
594 * Clear previous faults.
595 */
596 dmar_fault(-1, iommu);
597
598 /*
599 * Disable intr remapping and queued invalidation, if already
600 * enabled prior to OS handover.
601 */
602 iommu_disable_irq_remapping(iommu);
603
604 dmar_disable_qi(iommu);
605 }
606
607 /*
608 * check for the Interrupt-remapping support
609 */
610 for_each_iommu(iommu, drhd) {
611 if (!ecap_ir_support(iommu->ecap))
612 continue;
613
614 if (eim && !ecap_eim_support(iommu->ecap)) {
615 printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, "
616 " ecap %Lx\n", drhd->reg_base_addr, iommu->ecap);
617 goto error;
618 }
619 }
620
621 /*
622 * Enable queued invalidation for all the DRHD's.
623 */
624 for_each_iommu(iommu, drhd) {
625 int ret = dmar_enable_qi(iommu);
626
627 if (ret) {
628 printk(KERN_ERR "DRHD %Lx: failed to enable queued, "
629 " invalidation, ecap %Lx, ret %d\n",
630 drhd->reg_base_addr, iommu->ecap, ret);
631 goto error;
632 }
633 }
634
635 /*
636 * Setup Interrupt-remapping for all the DRHD's now.
637 */
638 for_each_iommu(iommu, drhd) {
639 if (!ecap_ir_support(iommu->ecap))
640 continue;
641
642 if (intel_setup_irq_remapping(iommu, eim))
643 goto error;
644
645 setup = 1;
646 }
647
648 if (!setup)
649 goto error;
650
651 irq_remapping_enabled = 1;
652
653 /*
654 * VT-d has a different layout for IO-APIC entries when
655 * interrupt remapping is enabled. So it needs a special routine
656 * to print IO-APIC entries for debugging purposes too.
657 */
658 x86_io_apic_ops.print_entries = intel_ir_io_apic_print_entries;
659
660 pr_info("Enabled IRQ remapping in %s mode\n", eim ? "x2apic" : "xapic");
661
662 return eim ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
663
664 error:
665 /*
666 * handle error condition gracefully here!
667 */
668
669 if (x2apic_present)
670 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
671
672 return -1;
673 }
674
675 static void ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
676 struct intel_iommu *iommu)
677 {
678 struct acpi_dmar_pci_path *path;
679 u8 bus;
680 int count;
681
682 bus = scope->bus;
683 path = (struct acpi_dmar_pci_path *)(scope + 1);
684 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
685 / sizeof(struct acpi_dmar_pci_path);
686
687 while (--count > 0) {
688 /*
689 * Access PCI directly due to the PCI
690 * subsystem isn't initialized yet.
691 */
692 bus = read_pci_config_byte(bus, path->device, path->function,
693 PCI_SECONDARY_BUS);
694 path++;
695 }
696 ir_hpet[ir_hpet_num].bus = bus;
697 ir_hpet[ir_hpet_num].devfn = PCI_DEVFN(path->device, path->function);
698 ir_hpet[ir_hpet_num].iommu = iommu;
699 ir_hpet[ir_hpet_num].id = scope->enumeration_id;
700 ir_hpet_num++;
701 }
702
703 static void ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
704 struct intel_iommu *iommu)
705 {
706 struct acpi_dmar_pci_path *path;
707 u8 bus;
708 int count;
709
710 bus = scope->bus;
711 path = (struct acpi_dmar_pci_path *)(scope + 1);
712 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
713 / sizeof(struct acpi_dmar_pci_path);
714
715 while (--count > 0) {
716 /*
717 * Access PCI directly due to the PCI
718 * subsystem isn't initialized yet.
719 */
720 bus = read_pci_config_byte(bus, path->device, path->function,
721 PCI_SECONDARY_BUS);
722 path++;
723 }
724
725 ir_ioapic[ir_ioapic_num].bus = bus;
726 ir_ioapic[ir_ioapic_num].devfn = PCI_DEVFN(path->device, path->function);
727 ir_ioapic[ir_ioapic_num].iommu = iommu;
728 ir_ioapic[ir_ioapic_num].id = scope->enumeration_id;
729 ir_ioapic_num++;
730 }
731
732 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
733 struct intel_iommu *iommu)
734 {
735 struct acpi_dmar_hardware_unit *drhd;
736 struct acpi_dmar_device_scope *scope;
737 void *start, *end;
738
739 drhd = (struct acpi_dmar_hardware_unit *)header;
740
741 start = (void *)(drhd + 1);
742 end = ((void *)drhd) + header->length;
743
744 while (start < end) {
745 scope = start;
746 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
747 if (ir_ioapic_num == MAX_IO_APICS) {
748 printk(KERN_WARNING "Exceeded Max IO APICS\n");
749 return -1;
750 }
751
752 printk(KERN_INFO "IOAPIC id %d under DRHD base "
753 " 0x%Lx IOMMU %d\n", scope->enumeration_id,
754 drhd->address, iommu->seq_id);
755
756 ir_parse_one_ioapic_scope(scope, iommu);
757 } else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) {
758 if (ir_hpet_num == MAX_HPET_TBS) {
759 printk(KERN_WARNING "Exceeded Max HPET blocks\n");
760 return -1;
761 }
762
763 printk(KERN_INFO "HPET id %d under DRHD base"
764 " 0x%Lx\n", scope->enumeration_id,
765 drhd->address);
766
767 ir_parse_one_hpet_scope(scope, iommu);
768 }
769 start += scope->length;
770 }
771
772 return 0;
773 }
774
775 /*
776 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
777 * hardware unit.
778 */
779 static int __init parse_ioapics_under_ir(void)
780 {
781 struct dmar_drhd_unit *drhd;
782 struct intel_iommu *iommu;
783 int ir_supported = 0;
784 int ioapic_idx;
785
786 for_each_iommu(iommu, drhd)
787 if (ecap_ir_support(iommu->ecap)) {
788 if (ir_parse_ioapic_hpet_scope(drhd->hdr, iommu))
789 return -1;
790
791 ir_supported = 1;
792 }
793
794 if (!ir_supported)
795 return 0;
796
797 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
798 int ioapic_id = mpc_ioapic_id(ioapic_idx);
799 if (!map_ioapic_to_ir(ioapic_id)) {
800 pr_err(FW_BUG "ioapic %d has no mapping iommu, "
801 "interrupt remapping will be disabled\n",
802 ioapic_id);
803 return -1;
804 }
805 }
806
807 return 1;
808 }
809
810 static int __init ir_dev_scope_init(void)
811 {
812 int ret;
813
814 if (!irq_remapping_enabled)
815 return 0;
816
817 down_write(&dmar_global_lock);
818 ret = dmar_dev_scope_init();
819 up_write(&dmar_global_lock);
820
821 return ret;
822 }
823 rootfs_initcall(ir_dev_scope_init);
824
825 static void disable_irq_remapping(void)
826 {
827 struct dmar_drhd_unit *drhd;
828 struct intel_iommu *iommu = NULL;
829
830 /*
831 * Disable Interrupt-remapping for all the DRHD's now.
832 */
833 for_each_iommu(iommu, drhd) {
834 if (!ecap_ir_support(iommu->ecap))
835 continue;
836
837 iommu_disable_irq_remapping(iommu);
838 }
839 }
840
841 static int reenable_irq_remapping(int eim)
842 {
843 struct dmar_drhd_unit *drhd;
844 int setup = 0;
845 struct intel_iommu *iommu = NULL;
846
847 for_each_iommu(iommu, drhd)
848 if (iommu->qi)
849 dmar_reenable_qi(iommu);
850
851 /*
852 * Setup Interrupt-remapping for all the DRHD's now.
853 */
854 for_each_iommu(iommu, drhd) {
855 if (!ecap_ir_support(iommu->ecap))
856 continue;
857
858 /* Set up interrupt remapping for iommu.*/
859 iommu_set_irq_remapping(iommu, eim);
860 setup = 1;
861 }
862
863 if (!setup)
864 goto error;
865
866 return 0;
867
868 error:
869 /*
870 * handle error condition gracefully here!
871 */
872 return -1;
873 }
874
875 static void prepare_irte(struct irte *irte, int vector,
876 unsigned int dest)
877 {
878 memset(irte, 0, sizeof(*irte));
879
880 irte->present = 1;
881 irte->dst_mode = apic->irq_dest_mode;
882 /*
883 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
884 * actual level or edge trigger will be setup in the IO-APIC
885 * RTE. This will help simplify level triggered irq migration.
886 * For more details, see the comments (in io_apic.c) explainig IO-APIC
887 * irq migration in the presence of interrupt-remapping.
888 */
889 irte->trigger_mode = 0;
890 irte->dlvry_mode = apic->irq_delivery_mode;
891 irte->vector = vector;
892 irte->dest_id = IRTE_DEST(dest);
893 irte->redir_hint = 1;
894 }
895
896 static int intel_setup_ioapic_entry(int irq,
897 struct IO_APIC_route_entry *route_entry,
898 unsigned int destination, int vector,
899 struct io_apic_irq_attr *attr)
900 {
901 int ioapic_id = mpc_ioapic_id(attr->ioapic);
902 struct intel_iommu *iommu;
903 struct IR_IO_APIC_route_entry *entry;
904 struct irte irte;
905 int index;
906
907 down_read(&dmar_global_lock);
908 iommu = map_ioapic_to_ir(ioapic_id);
909 if (!iommu) {
910 pr_warn("No mapping iommu for ioapic %d\n", ioapic_id);
911 index = -ENODEV;
912 } else {
913 index = alloc_irte(iommu, irq, 1);
914 if (index < 0) {
915 pr_warn("Failed to allocate IRTE for ioapic %d\n",
916 ioapic_id);
917 index = -ENOMEM;
918 }
919 }
920 up_read(&dmar_global_lock);
921 if (index < 0)
922 return index;
923
924 prepare_irte(&irte, vector, destination);
925
926 /* Set source-id of interrupt request */
927 set_ioapic_sid(&irte, ioapic_id);
928
929 modify_irte(irq, &irte);
930
931 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: "
932 "Set IRTE entry (P:%d FPD:%d Dst_Mode:%d "
933 "Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X "
934 "Avail:%X Vector:%02X Dest:%08X "
935 "SID:%04X SQ:%X SVT:%X)\n",
936 attr->ioapic, irte.present, irte.fpd, irte.dst_mode,
937 irte.redir_hint, irte.trigger_mode, irte.dlvry_mode,
938 irte.avail, irte.vector, irte.dest_id,
939 irte.sid, irte.sq, irte.svt);
940
941 entry = (struct IR_IO_APIC_route_entry *)route_entry;
942 memset(entry, 0, sizeof(*entry));
943
944 entry->index2 = (index >> 15) & 0x1;
945 entry->zero = 0;
946 entry->format = 1;
947 entry->index = (index & 0x7fff);
948 /*
949 * IO-APIC RTE will be configured with virtual vector.
950 * irq handler will do the explicit EOI to the io-apic.
951 */
952 entry->vector = attr->ioapic_pin;
953 entry->mask = 0; /* enable IRQ */
954 entry->trigger = attr->trigger;
955 entry->polarity = attr->polarity;
956
957 /* Mask level triggered irqs.
958 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
959 */
960 if (attr->trigger)
961 entry->mask = 1;
962
963 return 0;
964 }
965
966 /*
967 * Migrate the IO-APIC irq in the presence of intr-remapping.
968 *
969 * For both level and edge triggered, irq migration is a simple atomic
970 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
971 *
972 * For level triggered, we eliminate the io-apic RTE modification (with the
973 * updated vector information), by using a virtual vector (io-apic pin number).
974 * Real vector that is used for interrupting cpu will be coming from
975 * the interrupt-remapping table entry.
976 *
977 * As the migration is a simple atomic update of IRTE, the same mechanism
978 * is used to migrate MSI irq's in the presence of interrupt-remapping.
979 */
980 static int
981 intel_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
982 bool force)
983 {
984 struct irq_cfg *cfg = data->chip_data;
985 unsigned int dest, irq = data->irq;
986 struct irte irte;
987 int err;
988
989 if (!config_enabled(CONFIG_SMP))
990 return -EINVAL;
991
992 if (!cpumask_intersects(mask, cpu_online_mask))
993 return -EINVAL;
994
995 if (get_irte(irq, &irte))
996 return -EBUSY;
997
998 err = assign_irq_vector(irq, cfg, mask);
999 if (err)
1000 return err;
1001
1002 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
1003 if (err) {
1004 if (assign_irq_vector(irq, cfg, data->affinity))
1005 pr_err("Failed to recover vector for irq %d\n", irq);
1006 return err;
1007 }
1008
1009 irte.vector = cfg->vector;
1010 irte.dest_id = IRTE_DEST(dest);
1011
1012 /*
1013 * Atomically updates the IRTE with the new destination, vector
1014 * and flushes the interrupt entry cache.
1015 */
1016 modify_irte(irq, &irte);
1017
1018 /*
1019 * After this point, all the interrupts will start arriving
1020 * at the new destination. So, time to cleanup the previous
1021 * vector allocation.
1022 */
1023 if (cfg->move_in_progress)
1024 send_cleanup_vector(cfg);
1025
1026 cpumask_copy(data->affinity, mask);
1027 return 0;
1028 }
1029
1030 static void intel_compose_msi_msg(struct pci_dev *pdev,
1031 unsigned int irq, unsigned int dest,
1032 struct msi_msg *msg, u8 hpet_id)
1033 {
1034 struct irq_cfg *cfg;
1035 struct irte irte;
1036 u16 sub_handle = 0;
1037 int ir_index;
1038
1039 cfg = irq_get_chip_data(irq);
1040
1041 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
1042 BUG_ON(ir_index == -1);
1043
1044 prepare_irte(&irte, cfg->vector, dest);
1045
1046 /* Set source-id of interrupt request */
1047 if (pdev)
1048 set_msi_sid(&irte, pdev);
1049 else
1050 set_hpet_sid(&irte, hpet_id);
1051
1052 modify_irte(irq, &irte);
1053
1054 msg->address_hi = MSI_ADDR_BASE_HI;
1055 msg->data = sub_handle;
1056 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
1057 MSI_ADDR_IR_SHV |
1058 MSI_ADDR_IR_INDEX1(ir_index) |
1059 MSI_ADDR_IR_INDEX2(ir_index);
1060 }
1061
1062 /*
1063 * Map the PCI dev to the corresponding remapping hardware unit
1064 * and allocate 'nvec' consecutive interrupt-remapping table entries
1065 * in it.
1066 */
1067 static int intel_msi_alloc_irq(struct pci_dev *dev, int irq, int nvec)
1068 {
1069 struct intel_iommu *iommu;
1070 int index;
1071
1072 down_read(&dmar_global_lock);
1073 iommu = map_dev_to_ir(dev);
1074 if (!iommu) {
1075 printk(KERN_ERR
1076 "Unable to map PCI %s to iommu\n", pci_name(dev));
1077 index = -ENOENT;
1078 } else {
1079 index = alloc_irte(iommu, irq, nvec);
1080 if (index < 0) {
1081 printk(KERN_ERR
1082 "Unable to allocate %d IRTE for PCI %s\n",
1083 nvec, pci_name(dev));
1084 index = -ENOSPC;
1085 }
1086 }
1087 up_read(&dmar_global_lock);
1088
1089 return index;
1090 }
1091
1092 static int intel_msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
1093 int index, int sub_handle)
1094 {
1095 struct intel_iommu *iommu;
1096 int ret = -ENOENT;
1097
1098 down_read(&dmar_global_lock);
1099 iommu = map_dev_to_ir(pdev);
1100 if (iommu) {
1101 /*
1102 * setup the mapping between the irq and the IRTE
1103 * base index, the sub_handle pointing to the
1104 * appropriate interrupt remap table entry.
1105 */
1106 set_irte_irq(irq, iommu, index, sub_handle);
1107 ret = 0;
1108 }
1109 up_read(&dmar_global_lock);
1110
1111 return ret;
1112 }
1113
1114 static int intel_setup_hpet_msi(unsigned int irq, unsigned int id)
1115 {
1116 int ret = -1;
1117 struct intel_iommu *iommu;
1118 int index;
1119
1120 down_read(&dmar_global_lock);
1121 iommu = map_hpet_to_ir(id);
1122 if (iommu) {
1123 index = alloc_irte(iommu, irq, 1);
1124 if (index >= 0)
1125 ret = 0;
1126 }
1127 up_read(&dmar_global_lock);
1128
1129 return ret;
1130 }
1131
1132 struct irq_remap_ops intel_irq_remap_ops = {
1133 .supported = intel_irq_remapping_supported,
1134 .prepare = dmar_table_init,
1135 .enable = intel_enable_irq_remapping,
1136 .disable = disable_irq_remapping,
1137 .reenable = reenable_irq_remapping,
1138 .enable_faulting = enable_drhd_fault_handling,
1139 .setup_ioapic_entry = intel_setup_ioapic_entry,
1140 .set_affinity = intel_ioapic_set_affinity,
1141 .free_irq = free_irte,
1142 .compose_msi_msg = intel_compose_msi_msg,
1143 .msi_alloc_irq = intel_msi_alloc_irq,
1144 .msi_setup_irq = intel_msi_setup_irq,
1145 .setup_hpet_msi = intel_setup_hpet_msi,
1146 };
This page took 0.069449 seconds and 5 git commands to generate.