Merge remote-tracking branches 'asoc/fix/jack', 'asoc/fix/max98088', 'asoc/fix/max980...
[deliverable/linux.git] / drivers / irqchip / irq-gic-v3-its.c
1 /*
2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/bitmap.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/log2.h>
23 #include <linux/mm.h>
24 #include <linux/msi.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_pci.h>
29 #include <linux/of_platform.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35
36 #include <asm/cacheflush.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44
45 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
46
47 /*
48 * Collection structure - just an ID, and a redistributor address to
49 * ping. We use one per CPU as a bag of interrupts assigned to this
50 * CPU.
51 */
52 struct its_collection {
53 u64 target_address;
54 u16 col_id;
55 };
56
57 /*
58 * The ITS structure - contains most of the infrastructure, with the
59 * top-level MSI domain, the command queue, the collections, and the
60 * list of devices writing to it.
61 */
62 struct its_node {
63 raw_spinlock_t lock;
64 struct list_head entry;
65 void __iomem *base;
66 unsigned long phys_base;
67 struct its_cmd_block *cmd_base;
68 struct its_cmd_block *cmd_write;
69 struct {
70 void *base;
71 u32 order;
72 } tables[GITS_BASER_NR_REGS];
73 struct its_collection *collections;
74 struct list_head its_device_list;
75 u64 flags;
76 u32 ite_size;
77 };
78
79 #define ITS_ITT_ALIGN SZ_256
80
81 /* Convert page order to size in bytes */
82 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
83
84 struct event_lpi_map {
85 unsigned long *lpi_map;
86 u16 *col_map;
87 irq_hw_number_t lpi_base;
88 int nr_lpis;
89 };
90
91 /*
92 * The ITS view of a device - belongs to an ITS, a collection, owns an
93 * interrupt translation table, and a list of interrupts.
94 */
95 struct its_device {
96 struct list_head entry;
97 struct its_node *its;
98 struct event_lpi_map event_map;
99 void *itt;
100 u32 nr_ites;
101 u32 device_id;
102 };
103
104 static LIST_HEAD(its_nodes);
105 static DEFINE_SPINLOCK(its_lock);
106 static struct device_node *gic_root_node;
107 static struct rdists *gic_rdists;
108
109 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
110 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
111
112 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
113 u32 event)
114 {
115 struct its_node *its = its_dev->its;
116
117 return its->collections + its_dev->event_map.col_map[event];
118 }
119
120 /*
121 * ITS command descriptors - parameters to be encoded in a command
122 * block.
123 */
124 struct its_cmd_desc {
125 union {
126 struct {
127 struct its_device *dev;
128 u32 event_id;
129 } its_inv_cmd;
130
131 struct {
132 struct its_device *dev;
133 u32 event_id;
134 } its_int_cmd;
135
136 struct {
137 struct its_device *dev;
138 int valid;
139 } its_mapd_cmd;
140
141 struct {
142 struct its_collection *col;
143 int valid;
144 } its_mapc_cmd;
145
146 struct {
147 struct its_device *dev;
148 u32 phys_id;
149 u32 event_id;
150 } its_mapvi_cmd;
151
152 struct {
153 struct its_device *dev;
154 struct its_collection *col;
155 u32 event_id;
156 } its_movi_cmd;
157
158 struct {
159 struct its_device *dev;
160 u32 event_id;
161 } its_discard_cmd;
162
163 struct {
164 struct its_collection *col;
165 } its_invall_cmd;
166 };
167 };
168
169 /*
170 * The ITS command block, which is what the ITS actually parses.
171 */
172 struct its_cmd_block {
173 u64 raw_cmd[4];
174 };
175
176 #define ITS_CMD_QUEUE_SZ SZ_64K
177 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
178
179 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
180 struct its_cmd_desc *);
181
182 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
183 {
184 cmd->raw_cmd[0] &= ~0xffUL;
185 cmd->raw_cmd[0] |= cmd_nr;
186 }
187
188 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
189 {
190 cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
191 cmd->raw_cmd[0] |= ((u64)devid) << 32;
192 }
193
194 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
195 {
196 cmd->raw_cmd[1] &= ~0xffffffffUL;
197 cmd->raw_cmd[1] |= id;
198 }
199
200 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
201 {
202 cmd->raw_cmd[1] &= 0xffffffffUL;
203 cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
204 }
205
206 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
207 {
208 cmd->raw_cmd[1] &= ~0x1fUL;
209 cmd->raw_cmd[1] |= size & 0x1f;
210 }
211
212 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
213 {
214 cmd->raw_cmd[2] &= ~0xffffffffffffUL;
215 cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
216 }
217
218 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
219 {
220 cmd->raw_cmd[2] &= ~(1UL << 63);
221 cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
222 }
223
224 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
225 {
226 cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
227 cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
228 }
229
230 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
231 {
232 cmd->raw_cmd[2] &= ~0xffffUL;
233 cmd->raw_cmd[2] |= col;
234 }
235
236 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
237 {
238 /* Let's fixup BE commands */
239 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
240 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
241 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
242 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
243 }
244
245 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
246 struct its_cmd_desc *desc)
247 {
248 unsigned long itt_addr;
249 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
250
251 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
252 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
253
254 its_encode_cmd(cmd, GITS_CMD_MAPD);
255 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
256 its_encode_size(cmd, size - 1);
257 its_encode_itt(cmd, itt_addr);
258 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
259
260 its_fixup_cmd(cmd);
261
262 return NULL;
263 }
264
265 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
266 struct its_cmd_desc *desc)
267 {
268 its_encode_cmd(cmd, GITS_CMD_MAPC);
269 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
270 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
271 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
272
273 its_fixup_cmd(cmd);
274
275 return desc->its_mapc_cmd.col;
276 }
277
278 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
279 struct its_cmd_desc *desc)
280 {
281 struct its_collection *col;
282
283 col = dev_event_to_col(desc->its_mapvi_cmd.dev,
284 desc->its_mapvi_cmd.event_id);
285
286 its_encode_cmd(cmd, GITS_CMD_MAPVI);
287 its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
288 its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
289 its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
290 its_encode_collection(cmd, col->col_id);
291
292 its_fixup_cmd(cmd);
293
294 return col;
295 }
296
297 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
298 struct its_cmd_desc *desc)
299 {
300 struct its_collection *col;
301
302 col = dev_event_to_col(desc->its_movi_cmd.dev,
303 desc->its_movi_cmd.event_id);
304
305 its_encode_cmd(cmd, GITS_CMD_MOVI);
306 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
307 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
308 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
309
310 its_fixup_cmd(cmd);
311
312 return col;
313 }
314
315 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
316 struct its_cmd_desc *desc)
317 {
318 struct its_collection *col;
319
320 col = dev_event_to_col(desc->its_discard_cmd.dev,
321 desc->its_discard_cmd.event_id);
322
323 its_encode_cmd(cmd, GITS_CMD_DISCARD);
324 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
325 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
326
327 its_fixup_cmd(cmd);
328
329 return col;
330 }
331
332 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
333 struct its_cmd_desc *desc)
334 {
335 struct its_collection *col;
336
337 col = dev_event_to_col(desc->its_inv_cmd.dev,
338 desc->its_inv_cmd.event_id);
339
340 its_encode_cmd(cmd, GITS_CMD_INV);
341 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
342 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
343
344 its_fixup_cmd(cmd);
345
346 return col;
347 }
348
349 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
350 struct its_cmd_desc *desc)
351 {
352 its_encode_cmd(cmd, GITS_CMD_INVALL);
353 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
354
355 its_fixup_cmd(cmd);
356
357 return NULL;
358 }
359
360 static u64 its_cmd_ptr_to_offset(struct its_node *its,
361 struct its_cmd_block *ptr)
362 {
363 return (ptr - its->cmd_base) * sizeof(*ptr);
364 }
365
366 static int its_queue_full(struct its_node *its)
367 {
368 int widx;
369 int ridx;
370
371 widx = its->cmd_write - its->cmd_base;
372 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
373
374 /* This is incredibly unlikely to happen, unless the ITS locks up. */
375 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
376 return 1;
377
378 return 0;
379 }
380
381 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
382 {
383 struct its_cmd_block *cmd;
384 u32 count = 1000000; /* 1s! */
385
386 while (its_queue_full(its)) {
387 count--;
388 if (!count) {
389 pr_err_ratelimited("ITS queue not draining\n");
390 return NULL;
391 }
392 cpu_relax();
393 udelay(1);
394 }
395
396 cmd = its->cmd_write++;
397
398 /* Handle queue wrapping */
399 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
400 its->cmd_write = its->cmd_base;
401
402 return cmd;
403 }
404
405 static struct its_cmd_block *its_post_commands(struct its_node *its)
406 {
407 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
408
409 writel_relaxed(wr, its->base + GITS_CWRITER);
410
411 return its->cmd_write;
412 }
413
414 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
415 {
416 /*
417 * Make sure the commands written to memory are observable by
418 * the ITS.
419 */
420 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
421 __flush_dcache_area(cmd, sizeof(*cmd));
422 else
423 dsb(ishst);
424 }
425
426 static void its_wait_for_range_completion(struct its_node *its,
427 struct its_cmd_block *from,
428 struct its_cmd_block *to)
429 {
430 u64 rd_idx, from_idx, to_idx;
431 u32 count = 1000000; /* 1s! */
432
433 from_idx = its_cmd_ptr_to_offset(its, from);
434 to_idx = its_cmd_ptr_to_offset(its, to);
435
436 while (1) {
437 rd_idx = readl_relaxed(its->base + GITS_CREADR);
438 if (rd_idx >= to_idx || rd_idx < from_idx)
439 break;
440
441 count--;
442 if (!count) {
443 pr_err_ratelimited("ITS queue timeout\n");
444 return;
445 }
446 cpu_relax();
447 udelay(1);
448 }
449 }
450
451 static void its_send_single_command(struct its_node *its,
452 its_cmd_builder_t builder,
453 struct its_cmd_desc *desc)
454 {
455 struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
456 struct its_collection *sync_col;
457 unsigned long flags;
458
459 raw_spin_lock_irqsave(&its->lock, flags);
460
461 cmd = its_allocate_entry(its);
462 if (!cmd) { /* We're soooooo screewed... */
463 pr_err_ratelimited("ITS can't allocate, dropping command\n");
464 raw_spin_unlock_irqrestore(&its->lock, flags);
465 return;
466 }
467 sync_col = builder(cmd, desc);
468 its_flush_cmd(its, cmd);
469
470 if (sync_col) {
471 sync_cmd = its_allocate_entry(its);
472 if (!sync_cmd) {
473 pr_err_ratelimited("ITS can't SYNC, skipping\n");
474 goto post;
475 }
476 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
477 its_encode_target(sync_cmd, sync_col->target_address);
478 its_fixup_cmd(sync_cmd);
479 its_flush_cmd(its, sync_cmd);
480 }
481
482 post:
483 next_cmd = its_post_commands(its);
484 raw_spin_unlock_irqrestore(&its->lock, flags);
485
486 its_wait_for_range_completion(its, cmd, next_cmd);
487 }
488
489 static void its_send_inv(struct its_device *dev, u32 event_id)
490 {
491 struct its_cmd_desc desc;
492
493 desc.its_inv_cmd.dev = dev;
494 desc.its_inv_cmd.event_id = event_id;
495
496 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
497 }
498
499 static void its_send_mapd(struct its_device *dev, int valid)
500 {
501 struct its_cmd_desc desc;
502
503 desc.its_mapd_cmd.dev = dev;
504 desc.its_mapd_cmd.valid = !!valid;
505
506 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
507 }
508
509 static void its_send_mapc(struct its_node *its, struct its_collection *col,
510 int valid)
511 {
512 struct its_cmd_desc desc;
513
514 desc.its_mapc_cmd.col = col;
515 desc.its_mapc_cmd.valid = !!valid;
516
517 its_send_single_command(its, its_build_mapc_cmd, &desc);
518 }
519
520 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
521 {
522 struct its_cmd_desc desc;
523
524 desc.its_mapvi_cmd.dev = dev;
525 desc.its_mapvi_cmd.phys_id = irq_id;
526 desc.its_mapvi_cmd.event_id = id;
527
528 its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
529 }
530
531 static void its_send_movi(struct its_device *dev,
532 struct its_collection *col, u32 id)
533 {
534 struct its_cmd_desc desc;
535
536 desc.its_movi_cmd.dev = dev;
537 desc.its_movi_cmd.col = col;
538 desc.its_movi_cmd.event_id = id;
539
540 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
541 }
542
543 static void its_send_discard(struct its_device *dev, u32 id)
544 {
545 struct its_cmd_desc desc;
546
547 desc.its_discard_cmd.dev = dev;
548 desc.its_discard_cmd.event_id = id;
549
550 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
551 }
552
553 static void its_send_invall(struct its_node *its, struct its_collection *col)
554 {
555 struct its_cmd_desc desc;
556
557 desc.its_invall_cmd.col = col;
558
559 its_send_single_command(its, its_build_invall_cmd, &desc);
560 }
561
562 /*
563 * irqchip functions - assumes MSI, mostly.
564 */
565
566 static inline u32 its_get_event_id(struct irq_data *d)
567 {
568 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
569 return d->hwirq - its_dev->event_map.lpi_base;
570 }
571
572 static void lpi_set_config(struct irq_data *d, bool enable)
573 {
574 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
575 irq_hw_number_t hwirq = d->hwirq;
576 u32 id = its_get_event_id(d);
577 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
578
579 if (enable)
580 *cfg |= LPI_PROP_ENABLED;
581 else
582 *cfg &= ~LPI_PROP_ENABLED;
583
584 /*
585 * Make the above write visible to the redistributors.
586 * And yes, we're flushing exactly: One. Single. Byte.
587 * Humpf...
588 */
589 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
590 __flush_dcache_area(cfg, sizeof(*cfg));
591 else
592 dsb(ishst);
593 its_send_inv(its_dev, id);
594 }
595
596 static void its_mask_irq(struct irq_data *d)
597 {
598 lpi_set_config(d, false);
599 }
600
601 static void its_unmask_irq(struct irq_data *d)
602 {
603 lpi_set_config(d, true);
604 }
605
606 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
607 bool force)
608 {
609 unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
610 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
611 struct its_collection *target_col;
612 u32 id = its_get_event_id(d);
613
614 if (cpu >= nr_cpu_ids)
615 return -EINVAL;
616
617 target_col = &its_dev->its->collections[cpu];
618 its_send_movi(its_dev, target_col, id);
619 its_dev->event_map.col_map[id] = cpu;
620
621 return IRQ_SET_MASK_OK_DONE;
622 }
623
624 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
625 {
626 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
627 struct its_node *its;
628 u64 addr;
629
630 its = its_dev->its;
631 addr = its->phys_base + GITS_TRANSLATER;
632
633 msg->address_lo = addr & ((1UL << 32) - 1);
634 msg->address_hi = addr >> 32;
635 msg->data = its_get_event_id(d);
636 }
637
638 static struct irq_chip its_irq_chip = {
639 .name = "ITS",
640 .irq_mask = its_mask_irq,
641 .irq_unmask = its_unmask_irq,
642 .irq_eoi = irq_chip_eoi_parent,
643 .irq_set_affinity = its_set_affinity,
644 .irq_compose_msi_msg = its_irq_compose_msi_msg,
645 };
646
647 /*
648 * How we allocate LPIs:
649 *
650 * The GIC has id_bits bits for interrupt identifiers. From there, we
651 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
652 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
653 * bits to the right.
654 *
655 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
656 */
657 #define IRQS_PER_CHUNK_SHIFT 5
658 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT)
659
660 static unsigned long *lpi_bitmap;
661 static u32 lpi_chunks;
662 static DEFINE_SPINLOCK(lpi_lock);
663
664 static int its_lpi_to_chunk(int lpi)
665 {
666 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
667 }
668
669 static int its_chunk_to_lpi(int chunk)
670 {
671 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
672 }
673
674 static int its_lpi_init(u32 id_bits)
675 {
676 lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
677
678 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
679 GFP_KERNEL);
680 if (!lpi_bitmap) {
681 lpi_chunks = 0;
682 return -ENOMEM;
683 }
684
685 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
686 return 0;
687 }
688
689 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
690 {
691 unsigned long *bitmap = NULL;
692 int chunk_id;
693 int nr_chunks;
694 int i;
695
696 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
697
698 spin_lock(&lpi_lock);
699
700 do {
701 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
702 0, nr_chunks, 0);
703 if (chunk_id < lpi_chunks)
704 break;
705
706 nr_chunks--;
707 } while (nr_chunks > 0);
708
709 if (!nr_chunks)
710 goto out;
711
712 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
713 GFP_ATOMIC);
714 if (!bitmap)
715 goto out;
716
717 for (i = 0; i < nr_chunks; i++)
718 set_bit(chunk_id + i, lpi_bitmap);
719
720 *base = its_chunk_to_lpi(chunk_id);
721 *nr_ids = nr_chunks * IRQS_PER_CHUNK;
722
723 out:
724 spin_unlock(&lpi_lock);
725
726 if (!bitmap)
727 *base = *nr_ids = 0;
728
729 return bitmap;
730 }
731
732 static void its_lpi_free(struct event_lpi_map *map)
733 {
734 int base = map->lpi_base;
735 int nr_ids = map->nr_lpis;
736 int lpi;
737
738 spin_lock(&lpi_lock);
739
740 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
741 int chunk = its_lpi_to_chunk(lpi);
742 BUG_ON(chunk > lpi_chunks);
743 if (test_bit(chunk, lpi_bitmap)) {
744 clear_bit(chunk, lpi_bitmap);
745 } else {
746 pr_err("Bad LPI chunk %d\n", chunk);
747 }
748 }
749
750 spin_unlock(&lpi_lock);
751
752 kfree(map->lpi_map);
753 kfree(map->col_map);
754 }
755
756 /*
757 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
758 * deal with (one configuration byte per interrupt). PENDBASE has to
759 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
760 */
761 #define LPI_PROPBASE_SZ SZ_64K
762 #define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K)
763
764 /*
765 * This is how many bits of ID we need, including the useless ones.
766 */
767 #define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K)
768
769 #define LPI_PROP_DEFAULT_PRIO 0xa0
770
771 static int __init its_alloc_lpi_tables(void)
772 {
773 phys_addr_t paddr;
774
775 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
776 get_order(LPI_PROPBASE_SZ));
777 if (!gic_rdists->prop_page) {
778 pr_err("Failed to allocate PROPBASE\n");
779 return -ENOMEM;
780 }
781
782 paddr = page_to_phys(gic_rdists->prop_page);
783 pr_info("GIC: using LPI property table @%pa\n", &paddr);
784
785 /* Priority 0xa0, Group-1, disabled */
786 memset(page_address(gic_rdists->prop_page),
787 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
788 LPI_PROPBASE_SZ);
789
790 /* Make sure the GIC will observe the written configuration */
791 __flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
792
793 return 0;
794 }
795
796 static const char *its_base_type_string[] = {
797 [GITS_BASER_TYPE_DEVICE] = "Devices",
798 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
799 [GITS_BASER_TYPE_CPU] = "Physical CPUs",
800 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
801 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
802 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
803 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
804 };
805
806 static void its_free_tables(struct its_node *its)
807 {
808 int i;
809
810 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
811 if (its->tables[i].base) {
812 free_pages((unsigned long)its->tables[i].base,
813 its->tables[i].order);
814 its->tables[i].base = NULL;
815 }
816 }
817 }
818
819 static int its_alloc_tables(const char *node_name, struct its_node *its)
820 {
821 int err;
822 int i;
823 int psz = SZ_64K;
824 u64 shr = GITS_BASER_InnerShareable;
825 u64 cache;
826 u64 typer;
827 u32 ids;
828
829 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
830 /*
831 * erratum 22375: only alloc 8MB table size
832 * erratum 24313: ignore memory access type
833 */
834 cache = 0;
835 ids = 0x14; /* 20 bits, 8MB */
836 } else {
837 cache = GITS_BASER_WaWb;
838 typer = readq_relaxed(its->base + GITS_TYPER);
839 ids = GITS_TYPER_DEVBITS(typer);
840 }
841
842 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
843 u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
844 u64 type = GITS_BASER_TYPE(val);
845 u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
846 int order = get_order(psz);
847 int alloc_pages;
848 u64 tmp;
849 void *base;
850
851 if (type == GITS_BASER_TYPE_NONE)
852 continue;
853
854 /*
855 * Allocate as many entries as required to fit the
856 * range of device IDs that the ITS can grok... The ID
857 * space being incredibly sparse, this results in a
858 * massive waste of memory.
859 *
860 * For other tables, only allocate a single page.
861 */
862 if (type == GITS_BASER_TYPE_DEVICE) {
863 /*
864 * 'order' was initialized earlier to the default page
865 * granule of the the ITS. We can't have an allocation
866 * smaller than that. If the requested allocation
867 * is smaller, round up to the default page granule.
868 */
869 order = max(get_order((1UL << ids) * entry_size),
870 order);
871 if (order >= MAX_ORDER) {
872 order = MAX_ORDER - 1;
873 pr_warn("%s: Device Table too large, reduce its page order to %u\n",
874 node_name, order);
875 }
876 }
877
878 retry_alloc_baser:
879 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
880 if (alloc_pages > GITS_BASER_PAGES_MAX) {
881 alloc_pages = GITS_BASER_PAGES_MAX;
882 order = get_order(GITS_BASER_PAGES_MAX * psz);
883 pr_warn("%s: Device Table too large, reduce its page order to %u (%u pages)\n",
884 node_name, order, alloc_pages);
885 }
886
887 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
888 if (!base) {
889 err = -ENOMEM;
890 goto out_free;
891 }
892
893 its->tables[i].base = base;
894 its->tables[i].order = order;
895
896 retry_baser:
897 val = (virt_to_phys(base) |
898 (type << GITS_BASER_TYPE_SHIFT) |
899 ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
900 cache |
901 shr |
902 GITS_BASER_VALID);
903
904 switch (psz) {
905 case SZ_4K:
906 val |= GITS_BASER_PAGE_SIZE_4K;
907 break;
908 case SZ_16K:
909 val |= GITS_BASER_PAGE_SIZE_16K;
910 break;
911 case SZ_64K:
912 val |= GITS_BASER_PAGE_SIZE_64K;
913 break;
914 }
915
916 val |= alloc_pages - 1;
917
918 writeq_relaxed(val, its->base + GITS_BASER + i * 8);
919 tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
920
921 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
922 /*
923 * Shareability didn't stick. Just use
924 * whatever the read reported, which is likely
925 * to be the only thing this redistributor
926 * supports. If that's zero, make it
927 * non-cacheable as well.
928 */
929 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
930 if (!shr) {
931 cache = GITS_BASER_nC;
932 __flush_dcache_area(base, PAGE_ORDER_TO_SIZE(order));
933 }
934 goto retry_baser;
935 }
936
937 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
938 /*
939 * Page size didn't stick. Let's try a smaller
940 * size and retry. If we reach 4K, then
941 * something is horribly wrong...
942 */
943 free_pages((unsigned long)base, order);
944 its->tables[i].base = NULL;
945
946 switch (psz) {
947 case SZ_16K:
948 psz = SZ_4K;
949 goto retry_alloc_baser;
950 case SZ_64K:
951 psz = SZ_16K;
952 goto retry_alloc_baser;
953 }
954 }
955
956 if (val != tmp) {
957 pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
958 node_name, i,
959 (unsigned long) val, (unsigned long) tmp);
960 err = -ENXIO;
961 goto out_free;
962 }
963
964 pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
965 (int)(PAGE_ORDER_TO_SIZE(order) / entry_size),
966 its_base_type_string[type],
967 (unsigned long)virt_to_phys(base),
968 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
969 }
970
971 return 0;
972
973 out_free:
974 its_free_tables(its);
975
976 return err;
977 }
978
979 static int its_alloc_collections(struct its_node *its)
980 {
981 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
982 GFP_KERNEL);
983 if (!its->collections)
984 return -ENOMEM;
985
986 return 0;
987 }
988
989 static void its_cpu_init_lpis(void)
990 {
991 void __iomem *rbase = gic_data_rdist_rd_base();
992 struct page *pend_page;
993 u64 val, tmp;
994
995 /* If we didn't allocate the pending table yet, do it now */
996 pend_page = gic_data_rdist()->pend_page;
997 if (!pend_page) {
998 phys_addr_t paddr;
999 /*
1000 * The pending pages have to be at least 64kB aligned,
1001 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1002 */
1003 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1004 get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1005 if (!pend_page) {
1006 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1007 smp_processor_id());
1008 return;
1009 }
1010
1011 /* Make sure the GIC will observe the zero-ed page */
1012 __flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
1013
1014 paddr = page_to_phys(pend_page);
1015 pr_info("CPU%d: using LPI pending table @%pa\n",
1016 smp_processor_id(), &paddr);
1017 gic_data_rdist()->pend_page = pend_page;
1018 }
1019
1020 /* Disable LPIs */
1021 val = readl_relaxed(rbase + GICR_CTLR);
1022 val &= ~GICR_CTLR_ENABLE_LPIS;
1023 writel_relaxed(val, rbase + GICR_CTLR);
1024
1025 /*
1026 * Make sure any change to the table is observable by the GIC.
1027 */
1028 dsb(sy);
1029
1030 /* set PROPBASE */
1031 val = (page_to_phys(gic_rdists->prop_page) |
1032 GICR_PROPBASER_InnerShareable |
1033 GICR_PROPBASER_WaWb |
1034 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1035
1036 writeq_relaxed(val, rbase + GICR_PROPBASER);
1037 tmp = readq_relaxed(rbase + GICR_PROPBASER);
1038
1039 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1040 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1041 /*
1042 * The HW reports non-shareable, we must
1043 * remove the cacheability attributes as
1044 * well.
1045 */
1046 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1047 GICR_PROPBASER_CACHEABILITY_MASK);
1048 val |= GICR_PROPBASER_nC;
1049 writeq_relaxed(val, rbase + GICR_PROPBASER);
1050 }
1051 pr_info_once("GIC: using cache flushing for LPI property table\n");
1052 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1053 }
1054
1055 /* set PENDBASE */
1056 val = (page_to_phys(pend_page) |
1057 GICR_PENDBASER_InnerShareable |
1058 GICR_PENDBASER_WaWb);
1059
1060 writeq_relaxed(val, rbase + GICR_PENDBASER);
1061 tmp = readq_relaxed(rbase + GICR_PENDBASER);
1062
1063 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1064 /*
1065 * The HW reports non-shareable, we must remove the
1066 * cacheability attributes as well.
1067 */
1068 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1069 GICR_PENDBASER_CACHEABILITY_MASK);
1070 val |= GICR_PENDBASER_nC;
1071 writeq_relaxed(val, rbase + GICR_PENDBASER);
1072 }
1073
1074 /* Enable LPIs */
1075 val = readl_relaxed(rbase + GICR_CTLR);
1076 val |= GICR_CTLR_ENABLE_LPIS;
1077 writel_relaxed(val, rbase + GICR_CTLR);
1078
1079 /* Make sure the GIC has seen the above */
1080 dsb(sy);
1081 }
1082
1083 static void its_cpu_init_collection(void)
1084 {
1085 struct its_node *its;
1086 int cpu;
1087
1088 spin_lock(&its_lock);
1089 cpu = smp_processor_id();
1090
1091 list_for_each_entry(its, &its_nodes, entry) {
1092 u64 target;
1093
1094 /*
1095 * We now have to bind each collection to its target
1096 * redistributor.
1097 */
1098 if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1099 /*
1100 * This ITS wants the physical address of the
1101 * redistributor.
1102 */
1103 target = gic_data_rdist()->phys_base;
1104 } else {
1105 /*
1106 * This ITS wants a linear CPU number.
1107 */
1108 target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1109 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1110 }
1111
1112 /* Perform collection mapping */
1113 its->collections[cpu].target_address = target;
1114 its->collections[cpu].col_id = cpu;
1115
1116 its_send_mapc(its, &its->collections[cpu], 1);
1117 its_send_invall(its, &its->collections[cpu]);
1118 }
1119
1120 spin_unlock(&its_lock);
1121 }
1122
1123 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1124 {
1125 struct its_device *its_dev = NULL, *tmp;
1126 unsigned long flags;
1127
1128 raw_spin_lock_irqsave(&its->lock, flags);
1129
1130 list_for_each_entry(tmp, &its->its_device_list, entry) {
1131 if (tmp->device_id == dev_id) {
1132 its_dev = tmp;
1133 break;
1134 }
1135 }
1136
1137 raw_spin_unlock_irqrestore(&its->lock, flags);
1138
1139 return its_dev;
1140 }
1141
1142 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1143 int nvecs)
1144 {
1145 struct its_device *dev;
1146 unsigned long *lpi_map;
1147 unsigned long flags;
1148 u16 *col_map = NULL;
1149 void *itt;
1150 int lpi_base;
1151 int nr_lpis;
1152 int nr_ites;
1153 int sz;
1154
1155 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1156 /*
1157 * At least one bit of EventID is being used, hence a minimum
1158 * of two entries. No, the architecture doesn't let you
1159 * express an ITT with a single entry.
1160 */
1161 nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1162 sz = nr_ites * its->ite_size;
1163 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1164 itt = kzalloc(sz, GFP_KERNEL);
1165 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1166 if (lpi_map)
1167 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1168
1169 if (!dev || !itt || !lpi_map || !col_map) {
1170 kfree(dev);
1171 kfree(itt);
1172 kfree(lpi_map);
1173 kfree(col_map);
1174 return NULL;
1175 }
1176
1177 __flush_dcache_area(itt, sz);
1178
1179 dev->its = its;
1180 dev->itt = itt;
1181 dev->nr_ites = nr_ites;
1182 dev->event_map.lpi_map = lpi_map;
1183 dev->event_map.col_map = col_map;
1184 dev->event_map.lpi_base = lpi_base;
1185 dev->event_map.nr_lpis = nr_lpis;
1186 dev->device_id = dev_id;
1187 INIT_LIST_HEAD(&dev->entry);
1188
1189 raw_spin_lock_irqsave(&its->lock, flags);
1190 list_add(&dev->entry, &its->its_device_list);
1191 raw_spin_unlock_irqrestore(&its->lock, flags);
1192
1193 /* Map device to its ITT */
1194 its_send_mapd(dev, 1);
1195
1196 return dev;
1197 }
1198
1199 static void its_free_device(struct its_device *its_dev)
1200 {
1201 unsigned long flags;
1202
1203 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1204 list_del(&its_dev->entry);
1205 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1206 kfree(its_dev->itt);
1207 kfree(its_dev);
1208 }
1209
1210 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1211 {
1212 int idx;
1213
1214 idx = find_first_zero_bit(dev->event_map.lpi_map,
1215 dev->event_map.nr_lpis);
1216 if (idx == dev->event_map.nr_lpis)
1217 return -ENOSPC;
1218
1219 *hwirq = dev->event_map.lpi_base + idx;
1220 set_bit(idx, dev->event_map.lpi_map);
1221
1222 return 0;
1223 }
1224
1225 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1226 int nvec, msi_alloc_info_t *info)
1227 {
1228 struct its_node *its;
1229 struct its_device *its_dev;
1230 struct msi_domain_info *msi_info;
1231 u32 dev_id;
1232
1233 /*
1234 * We ignore "dev" entierely, and rely on the dev_id that has
1235 * been passed via the scratchpad. This limits this domain's
1236 * usefulness to upper layers that definitely know that they
1237 * are built on top of the ITS.
1238 */
1239 dev_id = info->scratchpad[0].ul;
1240
1241 msi_info = msi_get_domain_info(domain);
1242 its = msi_info->data;
1243
1244 its_dev = its_find_device(its, dev_id);
1245 if (its_dev) {
1246 /*
1247 * We already have seen this ID, probably through
1248 * another alias (PCI bridge of some sort). No need to
1249 * create the device.
1250 */
1251 pr_debug("Reusing ITT for devID %x\n", dev_id);
1252 goto out;
1253 }
1254
1255 its_dev = its_create_device(its, dev_id, nvec);
1256 if (!its_dev)
1257 return -ENOMEM;
1258
1259 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1260 out:
1261 info->scratchpad[0].ptr = its_dev;
1262 return 0;
1263 }
1264
1265 static struct msi_domain_ops its_msi_domain_ops = {
1266 .msi_prepare = its_msi_prepare,
1267 };
1268
1269 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1270 unsigned int virq,
1271 irq_hw_number_t hwirq)
1272 {
1273 struct irq_fwspec fwspec;
1274
1275 if (irq_domain_get_of_node(domain->parent)) {
1276 fwspec.fwnode = domain->parent->fwnode;
1277 fwspec.param_count = 3;
1278 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1279 fwspec.param[1] = hwirq;
1280 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1281 } else {
1282 return -EINVAL;
1283 }
1284
1285 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1286 }
1287
1288 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1289 unsigned int nr_irqs, void *args)
1290 {
1291 msi_alloc_info_t *info = args;
1292 struct its_device *its_dev = info->scratchpad[0].ptr;
1293 irq_hw_number_t hwirq;
1294 int err;
1295 int i;
1296
1297 for (i = 0; i < nr_irqs; i++) {
1298 err = its_alloc_device_irq(its_dev, &hwirq);
1299 if (err)
1300 return err;
1301
1302 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1303 if (err)
1304 return err;
1305
1306 irq_domain_set_hwirq_and_chip(domain, virq + i,
1307 hwirq, &its_irq_chip, its_dev);
1308 pr_debug("ID:%d pID:%d vID:%d\n",
1309 (int)(hwirq - its_dev->event_map.lpi_base),
1310 (int) hwirq, virq + i);
1311 }
1312
1313 return 0;
1314 }
1315
1316 static void its_irq_domain_activate(struct irq_domain *domain,
1317 struct irq_data *d)
1318 {
1319 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1320 u32 event = its_get_event_id(d);
1321
1322 /* Bind the LPI to the first possible CPU */
1323 its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask);
1324
1325 /* Map the GIC IRQ and event to the device */
1326 its_send_mapvi(its_dev, d->hwirq, event);
1327 }
1328
1329 static void its_irq_domain_deactivate(struct irq_domain *domain,
1330 struct irq_data *d)
1331 {
1332 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1333 u32 event = its_get_event_id(d);
1334
1335 /* Stop the delivery of interrupts */
1336 its_send_discard(its_dev, event);
1337 }
1338
1339 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1340 unsigned int nr_irqs)
1341 {
1342 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1343 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1344 int i;
1345
1346 for (i = 0; i < nr_irqs; i++) {
1347 struct irq_data *data = irq_domain_get_irq_data(domain,
1348 virq + i);
1349 u32 event = its_get_event_id(data);
1350
1351 /* Mark interrupt index as unused */
1352 clear_bit(event, its_dev->event_map.lpi_map);
1353
1354 /* Nuke the entry in the domain */
1355 irq_domain_reset_irq_data(data);
1356 }
1357
1358 /* If all interrupts have been freed, start mopping the floor */
1359 if (bitmap_empty(its_dev->event_map.lpi_map,
1360 its_dev->event_map.nr_lpis)) {
1361 its_lpi_free(&its_dev->event_map);
1362
1363 /* Unmap device/itt */
1364 its_send_mapd(its_dev, 0);
1365 its_free_device(its_dev);
1366 }
1367
1368 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1369 }
1370
1371 static const struct irq_domain_ops its_domain_ops = {
1372 .alloc = its_irq_domain_alloc,
1373 .free = its_irq_domain_free,
1374 .activate = its_irq_domain_activate,
1375 .deactivate = its_irq_domain_deactivate,
1376 };
1377
1378 static int its_force_quiescent(void __iomem *base)
1379 {
1380 u32 count = 1000000; /* 1s */
1381 u32 val;
1382
1383 val = readl_relaxed(base + GITS_CTLR);
1384 if (val & GITS_CTLR_QUIESCENT)
1385 return 0;
1386
1387 /* Disable the generation of all interrupts to this ITS */
1388 val &= ~GITS_CTLR_ENABLE;
1389 writel_relaxed(val, base + GITS_CTLR);
1390
1391 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
1392 while (1) {
1393 val = readl_relaxed(base + GITS_CTLR);
1394 if (val & GITS_CTLR_QUIESCENT)
1395 return 0;
1396
1397 count--;
1398 if (!count)
1399 return -EBUSY;
1400
1401 cpu_relax();
1402 udelay(1);
1403 }
1404 }
1405
1406 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1407 {
1408 struct its_node *its = data;
1409
1410 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1411 }
1412
1413 static const struct gic_quirk its_quirks[] = {
1414 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1415 {
1416 .desc = "ITS: Cavium errata 22375, 24313",
1417 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1418 .mask = 0xffff0fff,
1419 .init = its_enable_quirk_cavium_22375,
1420 },
1421 #endif
1422 {
1423 }
1424 };
1425
1426 static void its_enable_quirks(struct its_node *its)
1427 {
1428 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1429
1430 gic_enable_quirks(iidr, its_quirks, its);
1431 }
1432
1433 static int its_probe(struct device_node *node, struct irq_domain *parent)
1434 {
1435 struct resource res;
1436 struct its_node *its;
1437 void __iomem *its_base;
1438 struct irq_domain *inner_domain;
1439 u32 val;
1440 u64 baser, tmp;
1441 int err;
1442
1443 err = of_address_to_resource(node, 0, &res);
1444 if (err) {
1445 pr_warn("%s: no regs?\n", node->full_name);
1446 return -ENXIO;
1447 }
1448
1449 its_base = ioremap(res.start, resource_size(&res));
1450 if (!its_base) {
1451 pr_warn("%s: unable to map registers\n", node->full_name);
1452 return -ENOMEM;
1453 }
1454
1455 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1456 if (val != 0x30 && val != 0x40) {
1457 pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1458 err = -ENODEV;
1459 goto out_unmap;
1460 }
1461
1462 err = its_force_quiescent(its_base);
1463 if (err) {
1464 pr_warn("%s: failed to quiesce, giving up\n",
1465 node->full_name);
1466 goto out_unmap;
1467 }
1468
1469 pr_info("ITS: %s\n", node->full_name);
1470
1471 its = kzalloc(sizeof(*its), GFP_KERNEL);
1472 if (!its) {
1473 err = -ENOMEM;
1474 goto out_unmap;
1475 }
1476
1477 raw_spin_lock_init(&its->lock);
1478 INIT_LIST_HEAD(&its->entry);
1479 INIT_LIST_HEAD(&its->its_device_list);
1480 its->base = its_base;
1481 its->phys_base = res.start;
1482 its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1483
1484 its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1485 if (!its->cmd_base) {
1486 err = -ENOMEM;
1487 goto out_free_its;
1488 }
1489 its->cmd_write = its->cmd_base;
1490
1491 its_enable_quirks(its);
1492
1493 err = its_alloc_tables(node->full_name, its);
1494 if (err)
1495 goto out_free_cmd;
1496
1497 err = its_alloc_collections(its);
1498 if (err)
1499 goto out_free_tables;
1500
1501 baser = (virt_to_phys(its->cmd_base) |
1502 GITS_CBASER_WaWb |
1503 GITS_CBASER_InnerShareable |
1504 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
1505 GITS_CBASER_VALID);
1506
1507 writeq_relaxed(baser, its->base + GITS_CBASER);
1508 tmp = readq_relaxed(its->base + GITS_CBASER);
1509
1510 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1511 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1512 /*
1513 * The HW reports non-shareable, we must
1514 * remove the cacheability attributes as
1515 * well.
1516 */
1517 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1518 GITS_CBASER_CACHEABILITY_MASK);
1519 baser |= GITS_CBASER_nC;
1520 writeq_relaxed(baser, its->base + GITS_CBASER);
1521 }
1522 pr_info("ITS: using cache flushing for cmd queue\n");
1523 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1524 }
1525
1526 writeq_relaxed(0, its->base + GITS_CWRITER);
1527 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1528
1529 if (of_property_read_bool(node, "msi-controller")) {
1530 struct msi_domain_info *info;
1531
1532 info = kzalloc(sizeof(*info), GFP_KERNEL);
1533 if (!info) {
1534 err = -ENOMEM;
1535 goto out_free_tables;
1536 }
1537
1538 inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
1539 if (!inner_domain) {
1540 err = -ENOMEM;
1541 kfree(info);
1542 goto out_free_tables;
1543 }
1544
1545 inner_domain->parent = parent;
1546 inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1547 info->ops = &its_msi_domain_ops;
1548 info->data = its;
1549 inner_domain->host_data = info;
1550 }
1551
1552 spin_lock(&its_lock);
1553 list_add(&its->entry, &its_nodes);
1554 spin_unlock(&its_lock);
1555
1556 return 0;
1557
1558 out_free_tables:
1559 its_free_tables(its);
1560 out_free_cmd:
1561 kfree(its->cmd_base);
1562 out_free_its:
1563 kfree(its);
1564 out_unmap:
1565 iounmap(its_base);
1566 pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1567 return err;
1568 }
1569
1570 static bool gic_rdists_supports_plpis(void)
1571 {
1572 return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1573 }
1574
1575 int its_cpu_init(void)
1576 {
1577 if (!list_empty(&its_nodes)) {
1578 if (!gic_rdists_supports_plpis()) {
1579 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1580 return -ENXIO;
1581 }
1582 its_cpu_init_lpis();
1583 its_cpu_init_collection();
1584 }
1585
1586 return 0;
1587 }
1588
1589 static struct of_device_id its_device_id[] = {
1590 { .compatible = "arm,gic-v3-its", },
1591 {},
1592 };
1593
1594 int its_init(struct device_node *node, struct rdists *rdists,
1595 struct irq_domain *parent_domain)
1596 {
1597 struct device_node *np;
1598
1599 for (np = of_find_matching_node(node, its_device_id); np;
1600 np = of_find_matching_node(np, its_device_id)) {
1601 its_probe(np, parent_domain);
1602 }
1603
1604 if (list_empty(&its_nodes)) {
1605 pr_warn("ITS: No ITS available, not enabling LPIs\n");
1606 return -ENXIO;
1607 }
1608
1609 gic_rdists = rdists;
1610 gic_root_node = node;
1611
1612 its_alloc_lpi_tables();
1613 its_lpi_init(rdists->id_bits);
1614
1615 return 0;
1616 }
This page took 0.065956 seconds and 5 git commands to generate.