ASoC: fix ABE_TWL6040 dependency
[deliverable/linux.git] / drivers / irqchip / irq-gic-v3-its.c
1 /*
2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/bitmap.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/log2.h>
23 #include <linux/mm.h>
24 #include <linux/msi.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_pci.h>
29 #include <linux/of_platform.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35
36 #include <asm/cacheflush.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44
45 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
46
47 /*
48 * Collection structure - just an ID, and a redistributor address to
49 * ping. We use one per CPU as a bag of interrupts assigned to this
50 * CPU.
51 */
52 struct its_collection {
53 u64 target_address;
54 u16 col_id;
55 };
56
57 /*
58 * The ITS_BASER structure - contains memory information and cached
59 * value of BASER register configuration.
60 */
61 struct its_baser {
62 void *base;
63 u64 val;
64 u32 order;
65 };
66
67 /*
68 * The ITS structure - contains most of the infrastructure, with the
69 * top-level MSI domain, the command queue, the collections, and the
70 * list of devices writing to it.
71 */
72 struct its_node {
73 raw_spinlock_t lock;
74 struct list_head entry;
75 void __iomem *base;
76 unsigned long phys_base;
77 struct its_cmd_block *cmd_base;
78 struct its_cmd_block *cmd_write;
79 struct its_baser tables[GITS_BASER_NR_REGS];
80 struct its_collection *collections;
81 struct list_head its_device_list;
82 u64 flags;
83 u32 ite_size;
84 u32 device_ids;
85 };
86
87 #define ITS_ITT_ALIGN SZ_256
88
89 /* Convert page order to size in bytes */
90 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
91
92 struct event_lpi_map {
93 unsigned long *lpi_map;
94 u16 *col_map;
95 irq_hw_number_t lpi_base;
96 int nr_lpis;
97 };
98
99 /*
100 * The ITS view of a device - belongs to an ITS, a collection, owns an
101 * interrupt translation table, and a list of interrupts.
102 */
103 struct its_device {
104 struct list_head entry;
105 struct its_node *its;
106 struct event_lpi_map event_map;
107 void *itt;
108 u32 nr_ites;
109 u32 device_id;
110 };
111
112 static LIST_HEAD(its_nodes);
113 static DEFINE_SPINLOCK(its_lock);
114 static struct rdists *gic_rdists;
115
116 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
117 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
118
119 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
120 u32 event)
121 {
122 struct its_node *its = its_dev->its;
123
124 return its->collections + its_dev->event_map.col_map[event];
125 }
126
127 /*
128 * ITS command descriptors - parameters to be encoded in a command
129 * block.
130 */
131 struct its_cmd_desc {
132 union {
133 struct {
134 struct its_device *dev;
135 u32 event_id;
136 } its_inv_cmd;
137
138 struct {
139 struct its_device *dev;
140 u32 event_id;
141 } its_int_cmd;
142
143 struct {
144 struct its_device *dev;
145 int valid;
146 } its_mapd_cmd;
147
148 struct {
149 struct its_collection *col;
150 int valid;
151 } its_mapc_cmd;
152
153 struct {
154 struct its_device *dev;
155 u32 phys_id;
156 u32 event_id;
157 } its_mapvi_cmd;
158
159 struct {
160 struct its_device *dev;
161 struct its_collection *col;
162 u32 event_id;
163 } its_movi_cmd;
164
165 struct {
166 struct its_device *dev;
167 u32 event_id;
168 } its_discard_cmd;
169
170 struct {
171 struct its_collection *col;
172 } its_invall_cmd;
173 };
174 };
175
176 /*
177 * The ITS command block, which is what the ITS actually parses.
178 */
179 struct its_cmd_block {
180 u64 raw_cmd[4];
181 };
182
183 #define ITS_CMD_QUEUE_SZ SZ_64K
184 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
185
186 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
187 struct its_cmd_desc *);
188
189 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
190 {
191 cmd->raw_cmd[0] &= ~0xffUL;
192 cmd->raw_cmd[0] |= cmd_nr;
193 }
194
195 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
196 {
197 cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
198 cmd->raw_cmd[0] |= ((u64)devid) << 32;
199 }
200
201 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
202 {
203 cmd->raw_cmd[1] &= ~0xffffffffUL;
204 cmd->raw_cmd[1] |= id;
205 }
206
207 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
208 {
209 cmd->raw_cmd[1] &= 0xffffffffUL;
210 cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
211 }
212
213 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
214 {
215 cmd->raw_cmd[1] &= ~0x1fUL;
216 cmd->raw_cmd[1] |= size & 0x1f;
217 }
218
219 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
220 {
221 cmd->raw_cmd[2] &= ~0xffffffffffffUL;
222 cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
223 }
224
225 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
226 {
227 cmd->raw_cmd[2] &= ~(1UL << 63);
228 cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
229 }
230
231 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
232 {
233 cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
234 cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
235 }
236
237 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
238 {
239 cmd->raw_cmd[2] &= ~0xffffUL;
240 cmd->raw_cmd[2] |= col;
241 }
242
243 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
244 {
245 /* Let's fixup BE commands */
246 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
247 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
248 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
249 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
250 }
251
252 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
253 struct its_cmd_desc *desc)
254 {
255 unsigned long itt_addr;
256 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
257
258 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
259 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
260
261 its_encode_cmd(cmd, GITS_CMD_MAPD);
262 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
263 its_encode_size(cmd, size - 1);
264 its_encode_itt(cmd, itt_addr);
265 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
266
267 its_fixup_cmd(cmd);
268
269 return NULL;
270 }
271
272 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
273 struct its_cmd_desc *desc)
274 {
275 its_encode_cmd(cmd, GITS_CMD_MAPC);
276 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
277 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
278 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
279
280 its_fixup_cmd(cmd);
281
282 return desc->its_mapc_cmd.col;
283 }
284
285 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
286 struct its_cmd_desc *desc)
287 {
288 struct its_collection *col;
289
290 col = dev_event_to_col(desc->its_mapvi_cmd.dev,
291 desc->its_mapvi_cmd.event_id);
292
293 its_encode_cmd(cmd, GITS_CMD_MAPVI);
294 its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
295 its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
296 its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
297 its_encode_collection(cmd, col->col_id);
298
299 its_fixup_cmd(cmd);
300
301 return col;
302 }
303
304 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
305 struct its_cmd_desc *desc)
306 {
307 struct its_collection *col;
308
309 col = dev_event_to_col(desc->its_movi_cmd.dev,
310 desc->its_movi_cmd.event_id);
311
312 its_encode_cmd(cmd, GITS_CMD_MOVI);
313 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
314 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
315 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
316
317 its_fixup_cmd(cmd);
318
319 return col;
320 }
321
322 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
323 struct its_cmd_desc *desc)
324 {
325 struct its_collection *col;
326
327 col = dev_event_to_col(desc->its_discard_cmd.dev,
328 desc->its_discard_cmd.event_id);
329
330 its_encode_cmd(cmd, GITS_CMD_DISCARD);
331 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
332 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
333
334 its_fixup_cmd(cmd);
335
336 return col;
337 }
338
339 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
340 struct its_cmd_desc *desc)
341 {
342 struct its_collection *col;
343
344 col = dev_event_to_col(desc->its_inv_cmd.dev,
345 desc->its_inv_cmd.event_id);
346
347 its_encode_cmd(cmd, GITS_CMD_INV);
348 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
349 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
350
351 its_fixup_cmd(cmd);
352
353 return col;
354 }
355
356 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
357 struct its_cmd_desc *desc)
358 {
359 its_encode_cmd(cmd, GITS_CMD_INVALL);
360 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
361
362 its_fixup_cmd(cmd);
363
364 return NULL;
365 }
366
367 static u64 its_cmd_ptr_to_offset(struct its_node *its,
368 struct its_cmd_block *ptr)
369 {
370 return (ptr - its->cmd_base) * sizeof(*ptr);
371 }
372
373 static int its_queue_full(struct its_node *its)
374 {
375 int widx;
376 int ridx;
377
378 widx = its->cmd_write - its->cmd_base;
379 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
380
381 /* This is incredibly unlikely to happen, unless the ITS locks up. */
382 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
383 return 1;
384
385 return 0;
386 }
387
388 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
389 {
390 struct its_cmd_block *cmd;
391 u32 count = 1000000; /* 1s! */
392
393 while (its_queue_full(its)) {
394 count--;
395 if (!count) {
396 pr_err_ratelimited("ITS queue not draining\n");
397 return NULL;
398 }
399 cpu_relax();
400 udelay(1);
401 }
402
403 cmd = its->cmd_write++;
404
405 /* Handle queue wrapping */
406 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
407 its->cmd_write = its->cmd_base;
408
409 return cmd;
410 }
411
412 static struct its_cmd_block *its_post_commands(struct its_node *its)
413 {
414 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
415
416 writel_relaxed(wr, its->base + GITS_CWRITER);
417
418 return its->cmd_write;
419 }
420
421 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
422 {
423 /*
424 * Make sure the commands written to memory are observable by
425 * the ITS.
426 */
427 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
428 __flush_dcache_area(cmd, sizeof(*cmd));
429 else
430 dsb(ishst);
431 }
432
433 static void its_wait_for_range_completion(struct its_node *its,
434 struct its_cmd_block *from,
435 struct its_cmd_block *to)
436 {
437 u64 rd_idx, from_idx, to_idx;
438 u32 count = 1000000; /* 1s! */
439
440 from_idx = its_cmd_ptr_to_offset(its, from);
441 to_idx = its_cmd_ptr_to_offset(its, to);
442
443 while (1) {
444 rd_idx = readl_relaxed(its->base + GITS_CREADR);
445 if (rd_idx >= to_idx || rd_idx < from_idx)
446 break;
447
448 count--;
449 if (!count) {
450 pr_err_ratelimited("ITS queue timeout\n");
451 return;
452 }
453 cpu_relax();
454 udelay(1);
455 }
456 }
457
458 static void its_send_single_command(struct its_node *its,
459 its_cmd_builder_t builder,
460 struct its_cmd_desc *desc)
461 {
462 struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
463 struct its_collection *sync_col;
464 unsigned long flags;
465
466 raw_spin_lock_irqsave(&its->lock, flags);
467
468 cmd = its_allocate_entry(its);
469 if (!cmd) { /* We're soooooo screewed... */
470 pr_err_ratelimited("ITS can't allocate, dropping command\n");
471 raw_spin_unlock_irqrestore(&its->lock, flags);
472 return;
473 }
474 sync_col = builder(cmd, desc);
475 its_flush_cmd(its, cmd);
476
477 if (sync_col) {
478 sync_cmd = its_allocate_entry(its);
479 if (!sync_cmd) {
480 pr_err_ratelimited("ITS can't SYNC, skipping\n");
481 goto post;
482 }
483 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
484 its_encode_target(sync_cmd, sync_col->target_address);
485 its_fixup_cmd(sync_cmd);
486 its_flush_cmd(its, sync_cmd);
487 }
488
489 post:
490 next_cmd = its_post_commands(its);
491 raw_spin_unlock_irqrestore(&its->lock, flags);
492
493 its_wait_for_range_completion(its, cmd, next_cmd);
494 }
495
496 static void its_send_inv(struct its_device *dev, u32 event_id)
497 {
498 struct its_cmd_desc desc;
499
500 desc.its_inv_cmd.dev = dev;
501 desc.its_inv_cmd.event_id = event_id;
502
503 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
504 }
505
506 static void its_send_mapd(struct its_device *dev, int valid)
507 {
508 struct its_cmd_desc desc;
509
510 desc.its_mapd_cmd.dev = dev;
511 desc.its_mapd_cmd.valid = !!valid;
512
513 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
514 }
515
516 static void its_send_mapc(struct its_node *its, struct its_collection *col,
517 int valid)
518 {
519 struct its_cmd_desc desc;
520
521 desc.its_mapc_cmd.col = col;
522 desc.its_mapc_cmd.valid = !!valid;
523
524 its_send_single_command(its, its_build_mapc_cmd, &desc);
525 }
526
527 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
528 {
529 struct its_cmd_desc desc;
530
531 desc.its_mapvi_cmd.dev = dev;
532 desc.its_mapvi_cmd.phys_id = irq_id;
533 desc.its_mapvi_cmd.event_id = id;
534
535 its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
536 }
537
538 static void its_send_movi(struct its_device *dev,
539 struct its_collection *col, u32 id)
540 {
541 struct its_cmd_desc desc;
542
543 desc.its_movi_cmd.dev = dev;
544 desc.its_movi_cmd.col = col;
545 desc.its_movi_cmd.event_id = id;
546
547 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
548 }
549
550 static void its_send_discard(struct its_device *dev, u32 id)
551 {
552 struct its_cmd_desc desc;
553
554 desc.its_discard_cmd.dev = dev;
555 desc.its_discard_cmd.event_id = id;
556
557 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
558 }
559
560 static void its_send_invall(struct its_node *its, struct its_collection *col)
561 {
562 struct its_cmd_desc desc;
563
564 desc.its_invall_cmd.col = col;
565
566 its_send_single_command(its, its_build_invall_cmd, &desc);
567 }
568
569 /*
570 * irqchip functions - assumes MSI, mostly.
571 */
572
573 static inline u32 its_get_event_id(struct irq_data *d)
574 {
575 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
576 return d->hwirq - its_dev->event_map.lpi_base;
577 }
578
579 static void lpi_set_config(struct irq_data *d, bool enable)
580 {
581 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
582 irq_hw_number_t hwirq = d->hwirq;
583 u32 id = its_get_event_id(d);
584 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
585
586 if (enable)
587 *cfg |= LPI_PROP_ENABLED;
588 else
589 *cfg &= ~LPI_PROP_ENABLED;
590
591 /*
592 * Make the above write visible to the redistributors.
593 * And yes, we're flushing exactly: One. Single. Byte.
594 * Humpf...
595 */
596 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
597 __flush_dcache_area(cfg, sizeof(*cfg));
598 else
599 dsb(ishst);
600 its_send_inv(its_dev, id);
601 }
602
603 static void its_mask_irq(struct irq_data *d)
604 {
605 lpi_set_config(d, false);
606 }
607
608 static void its_unmask_irq(struct irq_data *d)
609 {
610 lpi_set_config(d, true);
611 }
612
613 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
614 bool force)
615 {
616 unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
617 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
618 struct its_collection *target_col;
619 u32 id = its_get_event_id(d);
620
621 if (cpu >= nr_cpu_ids)
622 return -EINVAL;
623
624 target_col = &its_dev->its->collections[cpu];
625 its_send_movi(its_dev, target_col, id);
626 its_dev->event_map.col_map[id] = cpu;
627
628 return IRQ_SET_MASK_OK_DONE;
629 }
630
631 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
632 {
633 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
634 struct its_node *its;
635 u64 addr;
636
637 its = its_dev->its;
638 addr = its->phys_base + GITS_TRANSLATER;
639
640 msg->address_lo = addr & ((1UL << 32) - 1);
641 msg->address_hi = addr >> 32;
642 msg->data = its_get_event_id(d);
643 }
644
645 static struct irq_chip its_irq_chip = {
646 .name = "ITS",
647 .irq_mask = its_mask_irq,
648 .irq_unmask = its_unmask_irq,
649 .irq_eoi = irq_chip_eoi_parent,
650 .irq_set_affinity = its_set_affinity,
651 .irq_compose_msi_msg = its_irq_compose_msi_msg,
652 };
653
654 /*
655 * How we allocate LPIs:
656 *
657 * The GIC has id_bits bits for interrupt identifiers. From there, we
658 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
659 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
660 * bits to the right.
661 *
662 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
663 */
664 #define IRQS_PER_CHUNK_SHIFT 5
665 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT)
666
667 static unsigned long *lpi_bitmap;
668 static u32 lpi_chunks;
669 static DEFINE_SPINLOCK(lpi_lock);
670
671 static int its_lpi_to_chunk(int lpi)
672 {
673 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
674 }
675
676 static int its_chunk_to_lpi(int chunk)
677 {
678 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
679 }
680
681 static int __init its_lpi_init(u32 id_bits)
682 {
683 lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
684
685 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
686 GFP_KERNEL);
687 if (!lpi_bitmap) {
688 lpi_chunks = 0;
689 return -ENOMEM;
690 }
691
692 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
693 return 0;
694 }
695
696 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
697 {
698 unsigned long *bitmap = NULL;
699 int chunk_id;
700 int nr_chunks;
701 int i;
702
703 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
704
705 spin_lock(&lpi_lock);
706
707 do {
708 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
709 0, nr_chunks, 0);
710 if (chunk_id < lpi_chunks)
711 break;
712
713 nr_chunks--;
714 } while (nr_chunks > 0);
715
716 if (!nr_chunks)
717 goto out;
718
719 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
720 GFP_ATOMIC);
721 if (!bitmap)
722 goto out;
723
724 for (i = 0; i < nr_chunks; i++)
725 set_bit(chunk_id + i, lpi_bitmap);
726
727 *base = its_chunk_to_lpi(chunk_id);
728 *nr_ids = nr_chunks * IRQS_PER_CHUNK;
729
730 out:
731 spin_unlock(&lpi_lock);
732
733 if (!bitmap)
734 *base = *nr_ids = 0;
735
736 return bitmap;
737 }
738
739 static void its_lpi_free(struct event_lpi_map *map)
740 {
741 int base = map->lpi_base;
742 int nr_ids = map->nr_lpis;
743 int lpi;
744
745 spin_lock(&lpi_lock);
746
747 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
748 int chunk = its_lpi_to_chunk(lpi);
749 BUG_ON(chunk > lpi_chunks);
750 if (test_bit(chunk, lpi_bitmap)) {
751 clear_bit(chunk, lpi_bitmap);
752 } else {
753 pr_err("Bad LPI chunk %d\n", chunk);
754 }
755 }
756
757 spin_unlock(&lpi_lock);
758
759 kfree(map->lpi_map);
760 kfree(map->col_map);
761 }
762
763 /*
764 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
765 * deal with (one configuration byte per interrupt). PENDBASE has to
766 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
767 */
768 #define LPI_PROPBASE_SZ SZ_64K
769 #define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K)
770
771 /*
772 * This is how many bits of ID we need, including the useless ones.
773 */
774 #define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K)
775
776 #define LPI_PROP_DEFAULT_PRIO 0xa0
777
778 static int __init its_alloc_lpi_tables(void)
779 {
780 phys_addr_t paddr;
781
782 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
783 get_order(LPI_PROPBASE_SZ));
784 if (!gic_rdists->prop_page) {
785 pr_err("Failed to allocate PROPBASE\n");
786 return -ENOMEM;
787 }
788
789 paddr = page_to_phys(gic_rdists->prop_page);
790 pr_info("GIC: using LPI property table @%pa\n", &paddr);
791
792 /* Priority 0xa0, Group-1, disabled */
793 memset(page_address(gic_rdists->prop_page),
794 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
795 LPI_PROPBASE_SZ);
796
797 /* Make sure the GIC will observe the written configuration */
798 __flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
799
800 return 0;
801 }
802
803 static const char *its_base_type_string[] = {
804 [GITS_BASER_TYPE_DEVICE] = "Devices",
805 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
806 [GITS_BASER_TYPE_CPU] = "Physical CPUs",
807 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
808 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
809 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
810 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
811 };
812
813 static void its_free_tables(struct its_node *its)
814 {
815 int i;
816
817 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
818 if (its->tables[i].base) {
819 free_pages((unsigned long)its->tables[i].base,
820 its->tables[i].order);
821 its->tables[i].base = NULL;
822 }
823 }
824 }
825
826 static int its_alloc_tables(const char *node_name, struct its_node *its)
827 {
828 int err;
829 int i;
830 int psz = SZ_64K;
831 u64 shr = GITS_BASER_InnerShareable;
832 u64 cache;
833 u64 typer;
834 u32 ids;
835
836 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
837 /*
838 * erratum 22375: only alloc 8MB table size
839 * erratum 24313: ignore memory access type
840 */
841 cache = 0;
842 ids = 0x14; /* 20 bits, 8MB */
843 } else {
844 cache = GITS_BASER_WaWb;
845 typer = readq_relaxed(its->base + GITS_TYPER);
846 ids = GITS_TYPER_DEVBITS(typer);
847 }
848
849 its->device_ids = ids;
850
851 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
852 u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
853 u64 type = GITS_BASER_TYPE(val);
854 u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
855 int order = get_order(psz);
856 int alloc_pages;
857 u64 tmp;
858 void *base;
859
860 if (type == GITS_BASER_TYPE_NONE)
861 continue;
862
863 /*
864 * Allocate as many entries as required to fit the
865 * range of device IDs that the ITS can grok... The ID
866 * space being incredibly sparse, this results in a
867 * massive waste of memory.
868 *
869 * For other tables, only allocate a single page.
870 */
871 if (type == GITS_BASER_TYPE_DEVICE) {
872 /*
873 * 'order' was initialized earlier to the default page
874 * granule of the the ITS. We can't have an allocation
875 * smaller than that. If the requested allocation
876 * is smaller, round up to the default page granule.
877 */
878 order = max(get_order((1UL << ids) * entry_size),
879 order);
880 if (order >= MAX_ORDER) {
881 order = MAX_ORDER - 1;
882 pr_warn("%s: Device Table too large, reduce its page order to %u\n",
883 node_name, order);
884 }
885 }
886
887 retry_alloc_baser:
888 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
889 if (alloc_pages > GITS_BASER_PAGES_MAX) {
890 alloc_pages = GITS_BASER_PAGES_MAX;
891 order = get_order(GITS_BASER_PAGES_MAX * psz);
892 pr_warn("%s: Device Table too large, reduce its page order to %u (%u pages)\n",
893 node_name, order, alloc_pages);
894 }
895
896 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
897 if (!base) {
898 err = -ENOMEM;
899 goto out_free;
900 }
901
902 its->tables[i].base = base;
903 its->tables[i].order = order;
904
905 retry_baser:
906 val = (virt_to_phys(base) |
907 (type << GITS_BASER_TYPE_SHIFT) |
908 ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
909 cache |
910 shr |
911 GITS_BASER_VALID);
912
913 switch (psz) {
914 case SZ_4K:
915 val |= GITS_BASER_PAGE_SIZE_4K;
916 break;
917 case SZ_16K:
918 val |= GITS_BASER_PAGE_SIZE_16K;
919 break;
920 case SZ_64K:
921 val |= GITS_BASER_PAGE_SIZE_64K;
922 break;
923 }
924
925 val |= alloc_pages - 1;
926 its->tables[i].val = val;
927
928 writeq_relaxed(val, its->base + GITS_BASER + i * 8);
929 tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
930
931 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
932 /*
933 * Shareability didn't stick. Just use
934 * whatever the read reported, which is likely
935 * to be the only thing this redistributor
936 * supports. If that's zero, make it
937 * non-cacheable as well.
938 */
939 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
940 if (!shr) {
941 cache = GITS_BASER_nC;
942 __flush_dcache_area(base, PAGE_ORDER_TO_SIZE(order));
943 }
944 goto retry_baser;
945 }
946
947 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
948 /*
949 * Page size didn't stick. Let's try a smaller
950 * size and retry. If we reach 4K, then
951 * something is horribly wrong...
952 */
953 free_pages((unsigned long)base, order);
954 its->tables[i].base = NULL;
955
956 switch (psz) {
957 case SZ_16K:
958 psz = SZ_4K;
959 goto retry_alloc_baser;
960 case SZ_64K:
961 psz = SZ_16K;
962 goto retry_alloc_baser;
963 }
964 }
965
966 if (val != tmp) {
967 pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
968 node_name, i,
969 (unsigned long) val, (unsigned long) tmp);
970 err = -ENXIO;
971 goto out_free;
972 }
973
974 pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
975 (int)(PAGE_ORDER_TO_SIZE(order) / entry_size),
976 its_base_type_string[type],
977 (unsigned long)virt_to_phys(base),
978 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
979 }
980
981 return 0;
982
983 out_free:
984 its_free_tables(its);
985
986 return err;
987 }
988
989 static int its_alloc_collections(struct its_node *its)
990 {
991 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
992 GFP_KERNEL);
993 if (!its->collections)
994 return -ENOMEM;
995
996 return 0;
997 }
998
999 static void its_cpu_init_lpis(void)
1000 {
1001 void __iomem *rbase = gic_data_rdist_rd_base();
1002 struct page *pend_page;
1003 u64 val, tmp;
1004
1005 /* If we didn't allocate the pending table yet, do it now */
1006 pend_page = gic_data_rdist()->pend_page;
1007 if (!pend_page) {
1008 phys_addr_t paddr;
1009 /*
1010 * The pending pages have to be at least 64kB aligned,
1011 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1012 */
1013 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1014 get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1015 if (!pend_page) {
1016 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1017 smp_processor_id());
1018 return;
1019 }
1020
1021 /* Make sure the GIC will observe the zero-ed page */
1022 __flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
1023
1024 paddr = page_to_phys(pend_page);
1025 pr_info("CPU%d: using LPI pending table @%pa\n",
1026 smp_processor_id(), &paddr);
1027 gic_data_rdist()->pend_page = pend_page;
1028 }
1029
1030 /* Disable LPIs */
1031 val = readl_relaxed(rbase + GICR_CTLR);
1032 val &= ~GICR_CTLR_ENABLE_LPIS;
1033 writel_relaxed(val, rbase + GICR_CTLR);
1034
1035 /*
1036 * Make sure any change to the table is observable by the GIC.
1037 */
1038 dsb(sy);
1039
1040 /* set PROPBASE */
1041 val = (page_to_phys(gic_rdists->prop_page) |
1042 GICR_PROPBASER_InnerShareable |
1043 GICR_PROPBASER_WaWb |
1044 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1045
1046 writeq_relaxed(val, rbase + GICR_PROPBASER);
1047 tmp = readq_relaxed(rbase + GICR_PROPBASER);
1048
1049 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1050 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1051 /*
1052 * The HW reports non-shareable, we must
1053 * remove the cacheability attributes as
1054 * well.
1055 */
1056 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1057 GICR_PROPBASER_CACHEABILITY_MASK);
1058 val |= GICR_PROPBASER_nC;
1059 writeq_relaxed(val, rbase + GICR_PROPBASER);
1060 }
1061 pr_info_once("GIC: using cache flushing for LPI property table\n");
1062 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1063 }
1064
1065 /* set PENDBASE */
1066 val = (page_to_phys(pend_page) |
1067 GICR_PENDBASER_InnerShareable |
1068 GICR_PENDBASER_WaWb);
1069
1070 writeq_relaxed(val, rbase + GICR_PENDBASER);
1071 tmp = readq_relaxed(rbase + GICR_PENDBASER);
1072
1073 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1074 /*
1075 * The HW reports non-shareable, we must remove the
1076 * cacheability attributes as well.
1077 */
1078 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1079 GICR_PENDBASER_CACHEABILITY_MASK);
1080 val |= GICR_PENDBASER_nC;
1081 writeq_relaxed(val, rbase + GICR_PENDBASER);
1082 }
1083
1084 /* Enable LPIs */
1085 val = readl_relaxed(rbase + GICR_CTLR);
1086 val |= GICR_CTLR_ENABLE_LPIS;
1087 writel_relaxed(val, rbase + GICR_CTLR);
1088
1089 /* Make sure the GIC has seen the above */
1090 dsb(sy);
1091 }
1092
1093 static void its_cpu_init_collection(void)
1094 {
1095 struct its_node *its;
1096 int cpu;
1097
1098 spin_lock(&its_lock);
1099 cpu = smp_processor_id();
1100
1101 list_for_each_entry(its, &its_nodes, entry) {
1102 u64 target;
1103
1104 /*
1105 * We now have to bind each collection to its target
1106 * redistributor.
1107 */
1108 if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1109 /*
1110 * This ITS wants the physical address of the
1111 * redistributor.
1112 */
1113 target = gic_data_rdist()->phys_base;
1114 } else {
1115 /*
1116 * This ITS wants a linear CPU number.
1117 */
1118 target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1119 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1120 }
1121
1122 /* Perform collection mapping */
1123 its->collections[cpu].target_address = target;
1124 its->collections[cpu].col_id = cpu;
1125
1126 its_send_mapc(its, &its->collections[cpu], 1);
1127 its_send_invall(its, &its->collections[cpu]);
1128 }
1129
1130 spin_unlock(&its_lock);
1131 }
1132
1133 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1134 {
1135 struct its_device *its_dev = NULL, *tmp;
1136 unsigned long flags;
1137
1138 raw_spin_lock_irqsave(&its->lock, flags);
1139
1140 list_for_each_entry(tmp, &its->its_device_list, entry) {
1141 if (tmp->device_id == dev_id) {
1142 its_dev = tmp;
1143 break;
1144 }
1145 }
1146
1147 raw_spin_unlock_irqrestore(&its->lock, flags);
1148
1149 return its_dev;
1150 }
1151
1152 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1153 {
1154 int i;
1155
1156 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1157 if (GITS_BASER_TYPE(its->tables[i].val) == type)
1158 return &its->tables[i];
1159 }
1160
1161 return NULL;
1162 }
1163
1164 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1165 int nvecs)
1166 {
1167 struct its_baser *baser;
1168 struct its_device *dev;
1169 unsigned long *lpi_map;
1170 unsigned long flags;
1171 u16 *col_map = NULL;
1172 void *itt;
1173 int lpi_base;
1174 int nr_lpis;
1175 int nr_ites;
1176 int sz;
1177
1178 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1179
1180 /* Don't allow 'dev_id' that exceeds single, flat table limit */
1181 if (baser) {
1182 if (dev_id >= (PAGE_ORDER_TO_SIZE(baser->order) /
1183 GITS_BASER_ENTRY_SIZE(baser->val)))
1184 return NULL;
1185 } else if (ilog2(dev_id) >= its->device_ids)
1186 return NULL;
1187
1188 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1189 /*
1190 * At least one bit of EventID is being used, hence a minimum
1191 * of two entries. No, the architecture doesn't let you
1192 * express an ITT with a single entry.
1193 */
1194 nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1195 sz = nr_ites * its->ite_size;
1196 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1197 itt = kzalloc(sz, GFP_KERNEL);
1198 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1199 if (lpi_map)
1200 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1201
1202 if (!dev || !itt || !lpi_map || !col_map) {
1203 kfree(dev);
1204 kfree(itt);
1205 kfree(lpi_map);
1206 kfree(col_map);
1207 return NULL;
1208 }
1209
1210 __flush_dcache_area(itt, sz);
1211
1212 dev->its = its;
1213 dev->itt = itt;
1214 dev->nr_ites = nr_ites;
1215 dev->event_map.lpi_map = lpi_map;
1216 dev->event_map.col_map = col_map;
1217 dev->event_map.lpi_base = lpi_base;
1218 dev->event_map.nr_lpis = nr_lpis;
1219 dev->device_id = dev_id;
1220 INIT_LIST_HEAD(&dev->entry);
1221
1222 raw_spin_lock_irqsave(&its->lock, flags);
1223 list_add(&dev->entry, &its->its_device_list);
1224 raw_spin_unlock_irqrestore(&its->lock, flags);
1225
1226 /* Map device to its ITT */
1227 its_send_mapd(dev, 1);
1228
1229 return dev;
1230 }
1231
1232 static void its_free_device(struct its_device *its_dev)
1233 {
1234 unsigned long flags;
1235
1236 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1237 list_del(&its_dev->entry);
1238 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1239 kfree(its_dev->itt);
1240 kfree(its_dev);
1241 }
1242
1243 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1244 {
1245 int idx;
1246
1247 idx = find_first_zero_bit(dev->event_map.lpi_map,
1248 dev->event_map.nr_lpis);
1249 if (idx == dev->event_map.nr_lpis)
1250 return -ENOSPC;
1251
1252 *hwirq = dev->event_map.lpi_base + idx;
1253 set_bit(idx, dev->event_map.lpi_map);
1254
1255 return 0;
1256 }
1257
1258 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1259 int nvec, msi_alloc_info_t *info)
1260 {
1261 struct its_node *its;
1262 struct its_device *its_dev;
1263 struct msi_domain_info *msi_info;
1264 u32 dev_id;
1265
1266 /*
1267 * We ignore "dev" entierely, and rely on the dev_id that has
1268 * been passed via the scratchpad. This limits this domain's
1269 * usefulness to upper layers that definitely know that they
1270 * are built on top of the ITS.
1271 */
1272 dev_id = info->scratchpad[0].ul;
1273
1274 msi_info = msi_get_domain_info(domain);
1275 its = msi_info->data;
1276
1277 its_dev = its_find_device(its, dev_id);
1278 if (its_dev) {
1279 /*
1280 * We already have seen this ID, probably through
1281 * another alias (PCI bridge of some sort). No need to
1282 * create the device.
1283 */
1284 pr_debug("Reusing ITT for devID %x\n", dev_id);
1285 goto out;
1286 }
1287
1288 its_dev = its_create_device(its, dev_id, nvec);
1289 if (!its_dev)
1290 return -ENOMEM;
1291
1292 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1293 out:
1294 info->scratchpad[0].ptr = its_dev;
1295 return 0;
1296 }
1297
1298 static struct msi_domain_ops its_msi_domain_ops = {
1299 .msi_prepare = its_msi_prepare,
1300 };
1301
1302 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1303 unsigned int virq,
1304 irq_hw_number_t hwirq)
1305 {
1306 struct irq_fwspec fwspec;
1307
1308 if (irq_domain_get_of_node(domain->parent)) {
1309 fwspec.fwnode = domain->parent->fwnode;
1310 fwspec.param_count = 3;
1311 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1312 fwspec.param[1] = hwirq;
1313 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1314 } else {
1315 return -EINVAL;
1316 }
1317
1318 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1319 }
1320
1321 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1322 unsigned int nr_irqs, void *args)
1323 {
1324 msi_alloc_info_t *info = args;
1325 struct its_device *its_dev = info->scratchpad[0].ptr;
1326 irq_hw_number_t hwirq;
1327 int err;
1328 int i;
1329
1330 for (i = 0; i < nr_irqs; i++) {
1331 err = its_alloc_device_irq(its_dev, &hwirq);
1332 if (err)
1333 return err;
1334
1335 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1336 if (err)
1337 return err;
1338
1339 irq_domain_set_hwirq_and_chip(domain, virq + i,
1340 hwirq, &its_irq_chip, its_dev);
1341 pr_debug("ID:%d pID:%d vID:%d\n",
1342 (int)(hwirq - its_dev->event_map.lpi_base),
1343 (int) hwirq, virq + i);
1344 }
1345
1346 return 0;
1347 }
1348
1349 static void its_irq_domain_activate(struct irq_domain *domain,
1350 struct irq_data *d)
1351 {
1352 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1353 u32 event = its_get_event_id(d);
1354
1355 /* Bind the LPI to the first possible CPU */
1356 its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask);
1357
1358 /* Map the GIC IRQ and event to the device */
1359 its_send_mapvi(its_dev, d->hwirq, event);
1360 }
1361
1362 static void its_irq_domain_deactivate(struct irq_domain *domain,
1363 struct irq_data *d)
1364 {
1365 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1366 u32 event = its_get_event_id(d);
1367
1368 /* Stop the delivery of interrupts */
1369 its_send_discard(its_dev, event);
1370 }
1371
1372 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1373 unsigned int nr_irqs)
1374 {
1375 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1376 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1377 int i;
1378
1379 for (i = 0; i < nr_irqs; i++) {
1380 struct irq_data *data = irq_domain_get_irq_data(domain,
1381 virq + i);
1382 u32 event = its_get_event_id(data);
1383
1384 /* Mark interrupt index as unused */
1385 clear_bit(event, its_dev->event_map.lpi_map);
1386
1387 /* Nuke the entry in the domain */
1388 irq_domain_reset_irq_data(data);
1389 }
1390
1391 /* If all interrupts have been freed, start mopping the floor */
1392 if (bitmap_empty(its_dev->event_map.lpi_map,
1393 its_dev->event_map.nr_lpis)) {
1394 its_lpi_free(&its_dev->event_map);
1395
1396 /* Unmap device/itt */
1397 its_send_mapd(its_dev, 0);
1398 its_free_device(its_dev);
1399 }
1400
1401 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1402 }
1403
1404 static const struct irq_domain_ops its_domain_ops = {
1405 .alloc = its_irq_domain_alloc,
1406 .free = its_irq_domain_free,
1407 .activate = its_irq_domain_activate,
1408 .deactivate = its_irq_domain_deactivate,
1409 };
1410
1411 static int its_force_quiescent(void __iomem *base)
1412 {
1413 u32 count = 1000000; /* 1s */
1414 u32 val;
1415
1416 val = readl_relaxed(base + GITS_CTLR);
1417 if (val & GITS_CTLR_QUIESCENT)
1418 return 0;
1419
1420 /* Disable the generation of all interrupts to this ITS */
1421 val &= ~GITS_CTLR_ENABLE;
1422 writel_relaxed(val, base + GITS_CTLR);
1423
1424 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
1425 while (1) {
1426 val = readl_relaxed(base + GITS_CTLR);
1427 if (val & GITS_CTLR_QUIESCENT)
1428 return 0;
1429
1430 count--;
1431 if (!count)
1432 return -EBUSY;
1433
1434 cpu_relax();
1435 udelay(1);
1436 }
1437 }
1438
1439 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1440 {
1441 struct its_node *its = data;
1442
1443 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1444 }
1445
1446 static const struct gic_quirk its_quirks[] = {
1447 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1448 {
1449 .desc = "ITS: Cavium errata 22375, 24313",
1450 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1451 .mask = 0xffff0fff,
1452 .init = its_enable_quirk_cavium_22375,
1453 },
1454 #endif
1455 {
1456 }
1457 };
1458
1459 static void its_enable_quirks(struct its_node *its)
1460 {
1461 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1462
1463 gic_enable_quirks(iidr, its_quirks, its);
1464 }
1465
1466 static int __init its_probe(struct device_node *node,
1467 struct irq_domain *parent)
1468 {
1469 struct resource res;
1470 struct its_node *its;
1471 void __iomem *its_base;
1472 struct irq_domain *inner_domain;
1473 u32 val;
1474 u64 baser, tmp;
1475 int err;
1476
1477 err = of_address_to_resource(node, 0, &res);
1478 if (err) {
1479 pr_warn("%s: no regs?\n", node->full_name);
1480 return -ENXIO;
1481 }
1482
1483 its_base = ioremap(res.start, resource_size(&res));
1484 if (!its_base) {
1485 pr_warn("%s: unable to map registers\n", node->full_name);
1486 return -ENOMEM;
1487 }
1488
1489 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1490 if (val != 0x30 && val != 0x40) {
1491 pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1492 err = -ENODEV;
1493 goto out_unmap;
1494 }
1495
1496 err = its_force_quiescent(its_base);
1497 if (err) {
1498 pr_warn("%s: failed to quiesce, giving up\n",
1499 node->full_name);
1500 goto out_unmap;
1501 }
1502
1503 pr_info("ITS: %s\n", node->full_name);
1504
1505 its = kzalloc(sizeof(*its), GFP_KERNEL);
1506 if (!its) {
1507 err = -ENOMEM;
1508 goto out_unmap;
1509 }
1510
1511 raw_spin_lock_init(&its->lock);
1512 INIT_LIST_HEAD(&its->entry);
1513 INIT_LIST_HEAD(&its->its_device_list);
1514 its->base = its_base;
1515 its->phys_base = res.start;
1516 its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1517
1518 its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1519 if (!its->cmd_base) {
1520 err = -ENOMEM;
1521 goto out_free_its;
1522 }
1523 its->cmd_write = its->cmd_base;
1524
1525 its_enable_quirks(its);
1526
1527 err = its_alloc_tables(node->full_name, its);
1528 if (err)
1529 goto out_free_cmd;
1530
1531 err = its_alloc_collections(its);
1532 if (err)
1533 goto out_free_tables;
1534
1535 baser = (virt_to_phys(its->cmd_base) |
1536 GITS_CBASER_WaWb |
1537 GITS_CBASER_InnerShareable |
1538 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
1539 GITS_CBASER_VALID);
1540
1541 writeq_relaxed(baser, its->base + GITS_CBASER);
1542 tmp = readq_relaxed(its->base + GITS_CBASER);
1543
1544 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1545 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1546 /*
1547 * The HW reports non-shareable, we must
1548 * remove the cacheability attributes as
1549 * well.
1550 */
1551 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1552 GITS_CBASER_CACHEABILITY_MASK);
1553 baser |= GITS_CBASER_nC;
1554 writeq_relaxed(baser, its->base + GITS_CBASER);
1555 }
1556 pr_info("ITS: using cache flushing for cmd queue\n");
1557 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1558 }
1559
1560 writeq_relaxed(0, its->base + GITS_CWRITER);
1561 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1562
1563 if (of_property_read_bool(node, "msi-controller")) {
1564 struct msi_domain_info *info;
1565
1566 info = kzalloc(sizeof(*info), GFP_KERNEL);
1567 if (!info) {
1568 err = -ENOMEM;
1569 goto out_free_tables;
1570 }
1571
1572 inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
1573 if (!inner_domain) {
1574 err = -ENOMEM;
1575 kfree(info);
1576 goto out_free_tables;
1577 }
1578
1579 inner_domain->parent = parent;
1580 inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1581 info->ops = &its_msi_domain_ops;
1582 info->data = its;
1583 inner_domain->host_data = info;
1584 }
1585
1586 spin_lock(&its_lock);
1587 list_add(&its->entry, &its_nodes);
1588 spin_unlock(&its_lock);
1589
1590 return 0;
1591
1592 out_free_tables:
1593 its_free_tables(its);
1594 out_free_cmd:
1595 kfree(its->cmd_base);
1596 out_free_its:
1597 kfree(its);
1598 out_unmap:
1599 iounmap(its_base);
1600 pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1601 return err;
1602 }
1603
1604 static bool gic_rdists_supports_plpis(void)
1605 {
1606 return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1607 }
1608
1609 int its_cpu_init(void)
1610 {
1611 if (!list_empty(&its_nodes)) {
1612 if (!gic_rdists_supports_plpis()) {
1613 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1614 return -ENXIO;
1615 }
1616 its_cpu_init_lpis();
1617 its_cpu_init_collection();
1618 }
1619
1620 return 0;
1621 }
1622
1623 static struct of_device_id its_device_id[] = {
1624 { .compatible = "arm,gic-v3-its", },
1625 {},
1626 };
1627
1628 int __init its_init(struct device_node *node, struct rdists *rdists,
1629 struct irq_domain *parent_domain)
1630 {
1631 struct device_node *np;
1632
1633 for (np = of_find_matching_node(node, its_device_id); np;
1634 np = of_find_matching_node(np, its_device_id)) {
1635 its_probe(np, parent_domain);
1636 }
1637
1638 if (list_empty(&its_nodes)) {
1639 pr_warn("ITS: No ITS available, not enabling LPIs\n");
1640 return -ENXIO;
1641 }
1642
1643 gic_rdists = rdists;
1644 its_alloc_lpi_tables();
1645 its_lpi_init(rdists->id_bits);
1646
1647 return 0;
1648 }
This page took 0.085985 seconds and 5 git commands to generate.