KVM: Add a might_sleep() annotation to gfn_to_page()
[deliverable/linux.git] / drivers / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "x86.h"
20 #include "x86_emulate.h"
21 #include "segment_descriptor.h"
22 #include "irq.h"
23
24 #include <linux/kvm.h>
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/percpu.h>
28 #include <linux/gfp.h>
29 #include <linux/mm.h>
30 #include <linux/miscdevice.h>
31 #include <linux/vmalloc.h>
32 #include <linux/reboot.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
36 #include <linux/sysdev.h>
37 #include <linux/cpu.h>
38 #include <linux/sched.h>
39 #include <linux/cpumask.h>
40 #include <linux/smp.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/profile.h>
43 #include <linux/kvm_para.h>
44 #include <linux/pagemap.h>
45 #include <linux/mman.h>
46
47 #include <asm/processor.h>
48 #include <asm/msr.h>
49 #include <asm/io.h>
50 #include <asm/uaccess.h>
51 #include <asm/desc.h>
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static DEFINE_SPINLOCK(kvm_lock);
57 static LIST_HEAD(vm_list);
58
59 static cpumask_t cpus_hardware_enabled;
60
61 struct kvm_x86_ops *kvm_x86_ops;
62 struct kmem_cache *kvm_vcpu_cache;
63 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
64
65 static __read_mostly struct preempt_ops kvm_preempt_ops;
66
67 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
68
69 static struct kvm_stats_debugfs_item {
70 const char *name;
71 int offset;
72 struct dentry *dentry;
73 } debugfs_entries[] = {
74 { "pf_fixed", STAT_OFFSET(pf_fixed) },
75 { "pf_guest", STAT_OFFSET(pf_guest) },
76 { "tlb_flush", STAT_OFFSET(tlb_flush) },
77 { "invlpg", STAT_OFFSET(invlpg) },
78 { "exits", STAT_OFFSET(exits) },
79 { "io_exits", STAT_OFFSET(io_exits) },
80 { "mmio_exits", STAT_OFFSET(mmio_exits) },
81 { "signal_exits", STAT_OFFSET(signal_exits) },
82 { "irq_window", STAT_OFFSET(irq_window_exits) },
83 { "halt_exits", STAT_OFFSET(halt_exits) },
84 { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
85 { "request_irq", STAT_OFFSET(request_irq_exits) },
86 { "irq_exits", STAT_OFFSET(irq_exits) },
87 { "light_exits", STAT_OFFSET(light_exits) },
88 { "efer_reload", STAT_OFFSET(efer_reload) },
89 { NULL }
90 };
91
92 static struct dentry *debugfs_dir;
93
94 #define CR0_RESERVED_BITS \
95 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
96 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
97 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
98 #define CR4_RESERVED_BITS \
99 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
100 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
101 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
102 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
103
104 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
105 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
106
107 #ifdef CONFIG_X86_64
108 /* LDT or TSS descriptor in the GDT. 16 bytes. */
109 struct segment_descriptor_64 {
110 struct segment_descriptor s;
111 u32 base_higher;
112 u32 pad_zero;
113 };
114
115 #endif
116
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119
120 unsigned long segment_base(u16 selector)
121 {
122 struct descriptor_table gdt;
123 struct segment_descriptor *d;
124 unsigned long table_base;
125 unsigned long v;
126
127 if (selector == 0)
128 return 0;
129
130 asm("sgdt %0" : "=m"(gdt));
131 table_base = gdt.base;
132
133 if (selector & 4) { /* from ldt */
134 u16 ldt_selector;
135
136 asm("sldt %0" : "=g"(ldt_selector));
137 table_base = segment_base(ldt_selector);
138 }
139 d = (struct segment_descriptor *)(table_base + (selector & ~7));
140 v = d->base_low | ((unsigned long)d->base_mid << 16) |
141 ((unsigned long)d->base_high << 24);
142 #ifdef CONFIG_X86_64
143 if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
144 v |= ((unsigned long) \
145 ((struct segment_descriptor_64 *)d)->base_higher) << 32;
146 #endif
147 return v;
148 }
149 EXPORT_SYMBOL_GPL(segment_base);
150
151 static inline int valid_vcpu(int n)
152 {
153 return likely(n >= 0 && n < KVM_MAX_VCPUS);
154 }
155
156 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
157 {
158 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
159 return;
160
161 vcpu->guest_fpu_loaded = 1;
162 fx_save(&vcpu->host_fx_image);
163 fx_restore(&vcpu->guest_fx_image);
164 }
165 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
166
167 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
168 {
169 if (!vcpu->guest_fpu_loaded)
170 return;
171
172 vcpu->guest_fpu_loaded = 0;
173 fx_save(&vcpu->guest_fx_image);
174 fx_restore(&vcpu->host_fx_image);
175 }
176 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
177
178 /*
179 * Switches to specified vcpu, until a matching vcpu_put()
180 */
181 void vcpu_load(struct kvm_vcpu *vcpu)
182 {
183 int cpu;
184
185 mutex_lock(&vcpu->mutex);
186 cpu = get_cpu();
187 preempt_notifier_register(&vcpu->preempt_notifier);
188 kvm_arch_vcpu_load(vcpu, cpu);
189 put_cpu();
190 }
191
192 void vcpu_put(struct kvm_vcpu *vcpu)
193 {
194 preempt_disable();
195 kvm_arch_vcpu_put(vcpu);
196 preempt_notifier_unregister(&vcpu->preempt_notifier);
197 preempt_enable();
198 mutex_unlock(&vcpu->mutex);
199 }
200
201 static void ack_flush(void *_completed)
202 {
203 }
204
205 void kvm_flush_remote_tlbs(struct kvm *kvm)
206 {
207 int i, cpu;
208 cpumask_t cpus;
209 struct kvm_vcpu *vcpu;
210
211 cpus_clear(cpus);
212 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
213 vcpu = kvm->vcpus[i];
214 if (!vcpu)
215 continue;
216 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
217 continue;
218 cpu = vcpu->cpu;
219 if (cpu != -1 && cpu != raw_smp_processor_id())
220 cpu_set(cpu, cpus);
221 }
222 smp_call_function_mask(cpus, ack_flush, NULL, 1);
223 }
224
225 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
226 {
227 struct page *page;
228 int r;
229
230 mutex_init(&vcpu->mutex);
231 vcpu->cpu = -1;
232 vcpu->mmu.root_hpa = INVALID_PAGE;
233 vcpu->kvm = kvm;
234 vcpu->vcpu_id = id;
235 if (!irqchip_in_kernel(kvm) || id == 0)
236 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
237 else
238 vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
239 init_waitqueue_head(&vcpu->wq);
240
241 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
242 if (!page) {
243 r = -ENOMEM;
244 goto fail;
245 }
246 vcpu->run = page_address(page);
247
248 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
249 if (!page) {
250 r = -ENOMEM;
251 goto fail_free_run;
252 }
253 vcpu->pio_data = page_address(page);
254
255 r = kvm_mmu_create(vcpu);
256 if (r < 0)
257 goto fail_free_pio_data;
258
259 if (irqchip_in_kernel(kvm)) {
260 r = kvm_create_lapic(vcpu);
261 if (r < 0)
262 goto fail_mmu_destroy;
263 }
264
265 return 0;
266
267 fail_mmu_destroy:
268 kvm_mmu_destroy(vcpu);
269 fail_free_pio_data:
270 free_page((unsigned long)vcpu->pio_data);
271 fail_free_run:
272 free_page((unsigned long)vcpu->run);
273 fail:
274 return r;
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
277
278 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
279 {
280 kvm_free_lapic(vcpu);
281 kvm_mmu_destroy(vcpu);
282 free_page((unsigned long)vcpu->pio_data);
283 free_page((unsigned long)vcpu->run);
284 }
285 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
286
287 static struct kvm *kvm_create_vm(void)
288 {
289 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
290
291 if (!kvm)
292 return ERR_PTR(-ENOMEM);
293
294 kvm_io_bus_init(&kvm->pio_bus);
295 mutex_init(&kvm->lock);
296 INIT_LIST_HEAD(&kvm->active_mmu_pages);
297 kvm_io_bus_init(&kvm->mmio_bus);
298 spin_lock(&kvm_lock);
299 list_add(&kvm->vm_list, &vm_list);
300 spin_unlock(&kvm_lock);
301 return kvm;
302 }
303
304 /*
305 * Free any memory in @free but not in @dont.
306 */
307 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
308 struct kvm_memory_slot *dont)
309 {
310 if (!dont || free->rmap != dont->rmap)
311 vfree(free->rmap);
312
313 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
314 vfree(free->dirty_bitmap);
315
316 free->npages = 0;
317 free->dirty_bitmap = NULL;
318 free->rmap = NULL;
319 }
320
321 static void kvm_free_physmem(struct kvm *kvm)
322 {
323 int i;
324
325 for (i = 0; i < kvm->nmemslots; ++i)
326 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
327 }
328
329 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
330 {
331 int i;
332
333 for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
334 if (vcpu->pio.guest_pages[i]) {
335 kvm_release_page(vcpu->pio.guest_pages[i]);
336 vcpu->pio.guest_pages[i] = NULL;
337 }
338 }
339
340 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
341 {
342 vcpu_load(vcpu);
343 kvm_mmu_unload(vcpu);
344 vcpu_put(vcpu);
345 }
346
347 static void kvm_free_vcpus(struct kvm *kvm)
348 {
349 unsigned int i;
350
351 /*
352 * Unpin any mmu pages first.
353 */
354 for (i = 0; i < KVM_MAX_VCPUS; ++i)
355 if (kvm->vcpus[i])
356 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
357 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
358 if (kvm->vcpus[i]) {
359 kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
360 kvm->vcpus[i] = NULL;
361 }
362 }
363
364 }
365
366 static void kvm_destroy_vm(struct kvm *kvm)
367 {
368 spin_lock(&kvm_lock);
369 list_del(&kvm->vm_list);
370 spin_unlock(&kvm_lock);
371 kvm_io_bus_destroy(&kvm->pio_bus);
372 kvm_io_bus_destroy(&kvm->mmio_bus);
373 kfree(kvm->vpic);
374 kfree(kvm->vioapic);
375 kvm_free_vcpus(kvm);
376 kvm_free_physmem(kvm);
377 kfree(kvm);
378 }
379
380 static int kvm_vm_release(struct inode *inode, struct file *filp)
381 {
382 struct kvm *kvm = filp->private_data;
383
384 kvm_destroy_vm(kvm);
385 return 0;
386 }
387
388 static void inject_gp(struct kvm_vcpu *vcpu)
389 {
390 kvm_x86_ops->inject_gp(vcpu, 0);
391 }
392
393 /*
394 * Load the pae pdptrs. Return true is they are all valid.
395 */
396 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
397 {
398 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
399 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
400 int i;
401 int ret;
402 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
403
404 mutex_lock(&vcpu->kvm->lock);
405 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
406 offset * sizeof(u64), sizeof(pdpte));
407 if (ret < 0) {
408 ret = 0;
409 goto out;
410 }
411 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
412 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
413 ret = 0;
414 goto out;
415 }
416 }
417 ret = 1;
418
419 memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
420 out:
421 mutex_unlock(&vcpu->kvm->lock);
422
423 return ret;
424 }
425
426 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
427 {
428 if (cr0 & CR0_RESERVED_BITS) {
429 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
430 cr0, vcpu->cr0);
431 inject_gp(vcpu);
432 return;
433 }
434
435 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
436 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
437 inject_gp(vcpu);
438 return;
439 }
440
441 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
442 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
443 "and a clear PE flag\n");
444 inject_gp(vcpu);
445 return;
446 }
447
448 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
449 #ifdef CONFIG_X86_64
450 if ((vcpu->shadow_efer & EFER_LME)) {
451 int cs_db, cs_l;
452
453 if (!is_pae(vcpu)) {
454 printk(KERN_DEBUG "set_cr0: #GP, start paging "
455 "in long mode while PAE is disabled\n");
456 inject_gp(vcpu);
457 return;
458 }
459 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
460 if (cs_l) {
461 printk(KERN_DEBUG "set_cr0: #GP, start paging "
462 "in long mode while CS.L == 1\n");
463 inject_gp(vcpu);
464 return;
465
466 }
467 } else
468 #endif
469 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
470 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
471 "reserved bits\n");
472 inject_gp(vcpu);
473 return;
474 }
475
476 }
477
478 kvm_x86_ops->set_cr0(vcpu, cr0);
479 vcpu->cr0 = cr0;
480
481 mutex_lock(&vcpu->kvm->lock);
482 kvm_mmu_reset_context(vcpu);
483 mutex_unlock(&vcpu->kvm->lock);
484 return;
485 }
486 EXPORT_SYMBOL_GPL(set_cr0);
487
488 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
489 {
490 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
491 }
492 EXPORT_SYMBOL_GPL(lmsw);
493
494 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
495 {
496 if (cr4 & CR4_RESERVED_BITS) {
497 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
498 inject_gp(vcpu);
499 return;
500 }
501
502 if (is_long_mode(vcpu)) {
503 if (!(cr4 & X86_CR4_PAE)) {
504 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
505 "in long mode\n");
506 inject_gp(vcpu);
507 return;
508 }
509 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
510 && !load_pdptrs(vcpu, vcpu->cr3)) {
511 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
512 inject_gp(vcpu);
513 return;
514 }
515
516 if (cr4 & X86_CR4_VMXE) {
517 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
518 inject_gp(vcpu);
519 return;
520 }
521 kvm_x86_ops->set_cr4(vcpu, cr4);
522 vcpu->cr4 = cr4;
523 mutex_lock(&vcpu->kvm->lock);
524 kvm_mmu_reset_context(vcpu);
525 mutex_unlock(&vcpu->kvm->lock);
526 }
527 EXPORT_SYMBOL_GPL(set_cr4);
528
529 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
530 {
531 if (is_long_mode(vcpu)) {
532 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
533 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
534 inject_gp(vcpu);
535 return;
536 }
537 } else {
538 if (is_pae(vcpu)) {
539 if (cr3 & CR3_PAE_RESERVED_BITS) {
540 printk(KERN_DEBUG
541 "set_cr3: #GP, reserved bits\n");
542 inject_gp(vcpu);
543 return;
544 }
545 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
546 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
547 "reserved bits\n");
548 inject_gp(vcpu);
549 return;
550 }
551 }
552 /*
553 * We don't check reserved bits in nonpae mode, because
554 * this isn't enforced, and VMware depends on this.
555 */
556 }
557
558 mutex_lock(&vcpu->kvm->lock);
559 /*
560 * Does the new cr3 value map to physical memory? (Note, we
561 * catch an invalid cr3 even in real-mode, because it would
562 * cause trouble later on when we turn on paging anyway.)
563 *
564 * A real CPU would silently accept an invalid cr3 and would
565 * attempt to use it - with largely undefined (and often hard
566 * to debug) behavior on the guest side.
567 */
568 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
569 inject_gp(vcpu);
570 else {
571 vcpu->cr3 = cr3;
572 vcpu->mmu.new_cr3(vcpu);
573 }
574 mutex_unlock(&vcpu->kvm->lock);
575 }
576 EXPORT_SYMBOL_GPL(set_cr3);
577
578 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
579 {
580 if (cr8 & CR8_RESERVED_BITS) {
581 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
582 inject_gp(vcpu);
583 return;
584 }
585 if (irqchip_in_kernel(vcpu->kvm))
586 kvm_lapic_set_tpr(vcpu, cr8);
587 else
588 vcpu->cr8 = cr8;
589 }
590 EXPORT_SYMBOL_GPL(set_cr8);
591
592 unsigned long get_cr8(struct kvm_vcpu *vcpu)
593 {
594 if (irqchip_in_kernel(vcpu->kvm))
595 return kvm_lapic_get_cr8(vcpu);
596 else
597 return vcpu->cr8;
598 }
599 EXPORT_SYMBOL_GPL(get_cr8);
600
601 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
602 {
603 if (irqchip_in_kernel(vcpu->kvm))
604 return vcpu->apic_base;
605 else
606 return vcpu->apic_base;
607 }
608 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
609
610 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
611 {
612 /* TODO: reserve bits check */
613 if (irqchip_in_kernel(vcpu->kvm))
614 kvm_lapic_set_base(vcpu, data);
615 else
616 vcpu->apic_base = data;
617 }
618 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
619
620 void fx_init(struct kvm_vcpu *vcpu)
621 {
622 unsigned after_mxcsr_mask;
623
624 /* Initialize guest FPU by resetting ours and saving into guest's */
625 preempt_disable();
626 fx_save(&vcpu->host_fx_image);
627 fpu_init();
628 fx_save(&vcpu->guest_fx_image);
629 fx_restore(&vcpu->host_fx_image);
630 preempt_enable();
631
632 vcpu->cr0 |= X86_CR0_ET;
633 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
634 vcpu->guest_fx_image.mxcsr = 0x1f80;
635 memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
636 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
637 }
638 EXPORT_SYMBOL_GPL(fx_init);
639
640 /*
641 * Allocate some memory and give it an address in the guest physical address
642 * space.
643 *
644 * Discontiguous memory is allowed, mostly for framebuffers.
645 */
646 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
647 struct
648 kvm_userspace_memory_region *mem,
649 int user_alloc)
650 {
651 int r;
652 gfn_t base_gfn;
653 unsigned long npages;
654 unsigned long i;
655 struct kvm_memory_slot *memslot;
656 struct kvm_memory_slot old, new;
657
658 r = -EINVAL;
659 /* General sanity checks */
660 if (mem->memory_size & (PAGE_SIZE - 1))
661 goto out;
662 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
663 goto out;
664 if (mem->slot >= KVM_MEMORY_SLOTS)
665 goto out;
666 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
667 goto out;
668
669 memslot = &kvm->memslots[mem->slot];
670 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
671 npages = mem->memory_size >> PAGE_SHIFT;
672
673 if (!npages)
674 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
675
676 mutex_lock(&kvm->lock);
677
678 new = old = *memslot;
679
680 new.base_gfn = base_gfn;
681 new.npages = npages;
682 new.flags = mem->flags;
683
684 /* Disallow changing a memory slot's size. */
685 r = -EINVAL;
686 if (npages && old.npages && npages != old.npages)
687 goto out_unlock;
688
689 /* Check for overlaps */
690 r = -EEXIST;
691 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
692 struct kvm_memory_slot *s = &kvm->memslots[i];
693
694 if (s == memslot)
695 continue;
696 if (!((base_gfn + npages <= s->base_gfn) ||
697 (base_gfn >= s->base_gfn + s->npages)))
698 goto out_unlock;
699 }
700
701 /* Free page dirty bitmap if unneeded */
702 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
703 new.dirty_bitmap = NULL;
704
705 r = -ENOMEM;
706
707 /* Allocate if a slot is being created */
708 if (npages && !new.rmap) {
709 new.rmap = vmalloc(npages * sizeof(struct page *));
710
711 if (!new.rmap)
712 goto out_unlock;
713
714 memset(new.rmap, 0, npages * sizeof(*new.rmap));
715
716 if (user_alloc)
717 new.userspace_addr = mem->userspace_addr;
718 else {
719 down_write(&current->mm->mmap_sem);
720 new.userspace_addr = do_mmap(NULL, 0,
721 npages * PAGE_SIZE,
722 PROT_READ | PROT_WRITE,
723 MAP_SHARED | MAP_ANONYMOUS,
724 0);
725 up_write(&current->mm->mmap_sem);
726
727 if (IS_ERR((void *)new.userspace_addr))
728 goto out_unlock;
729 }
730 }
731
732 /* Allocate page dirty bitmap if needed */
733 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
734 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
735
736 new.dirty_bitmap = vmalloc(dirty_bytes);
737 if (!new.dirty_bitmap)
738 goto out_unlock;
739 memset(new.dirty_bitmap, 0, dirty_bytes);
740 }
741
742 if (mem->slot >= kvm->nmemslots)
743 kvm->nmemslots = mem->slot + 1;
744
745 if (!kvm->n_requested_mmu_pages) {
746 unsigned int n_pages;
747
748 if (npages) {
749 n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
750 kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
751 n_pages);
752 } else {
753 unsigned int nr_mmu_pages;
754
755 n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
756 nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
757 nr_mmu_pages = max(nr_mmu_pages,
758 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
759 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
760 }
761 }
762
763 *memslot = new;
764
765 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
766 kvm_flush_remote_tlbs(kvm);
767
768 mutex_unlock(&kvm->lock);
769
770 kvm_free_physmem_slot(&old, &new);
771 return 0;
772
773 out_unlock:
774 mutex_unlock(&kvm->lock);
775 kvm_free_physmem_slot(&new, &old);
776 out:
777 return r;
778 }
779
780 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
781 u32 kvm_nr_mmu_pages)
782 {
783 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
784 return -EINVAL;
785
786 mutex_lock(&kvm->lock);
787
788 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
789 kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
790
791 mutex_unlock(&kvm->lock);
792 return 0;
793 }
794
795 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
796 {
797 return kvm->n_alloc_mmu_pages;
798 }
799
800 /*
801 * Get (and clear) the dirty memory log for a memory slot.
802 */
803 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
804 struct kvm_dirty_log *log)
805 {
806 struct kvm_memory_slot *memslot;
807 int r, i;
808 int n;
809 unsigned long any = 0;
810
811 mutex_lock(&kvm->lock);
812
813 r = -EINVAL;
814 if (log->slot >= KVM_MEMORY_SLOTS)
815 goto out;
816
817 memslot = &kvm->memslots[log->slot];
818 r = -ENOENT;
819 if (!memslot->dirty_bitmap)
820 goto out;
821
822 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
823
824 for (i = 0; !any && i < n/sizeof(long); ++i)
825 any = memslot->dirty_bitmap[i];
826
827 r = -EFAULT;
828 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
829 goto out;
830
831 /* If nothing is dirty, don't bother messing with page tables. */
832 if (any) {
833 kvm_mmu_slot_remove_write_access(kvm, log->slot);
834 kvm_flush_remote_tlbs(kvm);
835 memset(memslot->dirty_bitmap, 0, n);
836 }
837
838 r = 0;
839
840 out:
841 mutex_unlock(&kvm->lock);
842 return r;
843 }
844
845 /*
846 * Set a new alias region. Aliases map a portion of physical memory into
847 * another portion. This is useful for memory windows, for example the PC
848 * VGA region.
849 */
850 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
851 struct kvm_memory_alias *alias)
852 {
853 int r, n;
854 struct kvm_mem_alias *p;
855
856 r = -EINVAL;
857 /* General sanity checks */
858 if (alias->memory_size & (PAGE_SIZE - 1))
859 goto out;
860 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
861 goto out;
862 if (alias->slot >= KVM_ALIAS_SLOTS)
863 goto out;
864 if (alias->guest_phys_addr + alias->memory_size
865 < alias->guest_phys_addr)
866 goto out;
867 if (alias->target_phys_addr + alias->memory_size
868 < alias->target_phys_addr)
869 goto out;
870
871 mutex_lock(&kvm->lock);
872
873 p = &kvm->aliases[alias->slot];
874 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
875 p->npages = alias->memory_size >> PAGE_SHIFT;
876 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
877
878 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
879 if (kvm->aliases[n - 1].npages)
880 break;
881 kvm->naliases = n;
882
883 kvm_mmu_zap_all(kvm);
884
885 mutex_unlock(&kvm->lock);
886
887 return 0;
888
889 out:
890 return r;
891 }
892
893 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
894 {
895 int r;
896
897 r = 0;
898 switch (chip->chip_id) {
899 case KVM_IRQCHIP_PIC_MASTER:
900 memcpy(&chip->chip.pic,
901 &pic_irqchip(kvm)->pics[0],
902 sizeof(struct kvm_pic_state));
903 break;
904 case KVM_IRQCHIP_PIC_SLAVE:
905 memcpy(&chip->chip.pic,
906 &pic_irqchip(kvm)->pics[1],
907 sizeof(struct kvm_pic_state));
908 break;
909 case KVM_IRQCHIP_IOAPIC:
910 memcpy(&chip->chip.ioapic,
911 ioapic_irqchip(kvm),
912 sizeof(struct kvm_ioapic_state));
913 break;
914 default:
915 r = -EINVAL;
916 break;
917 }
918 return r;
919 }
920
921 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
922 {
923 int r;
924
925 r = 0;
926 switch (chip->chip_id) {
927 case KVM_IRQCHIP_PIC_MASTER:
928 memcpy(&pic_irqchip(kvm)->pics[0],
929 &chip->chip.pic,
930 sizeof(struct kvm_pic_state));
931 break;
932 case KVM_IRQCHIP_PIC_SLAVE:
933 memcpy(&pic_irqchip(kvm)->pics[1],
934 &chip->chip.pic,
935 sizeof(struct kvm_pic_state));
936 break;
937 case KVM_IRQCHIP_IOAPIC:
938 memcpy(ioapic_irqchip(kvm),
939 &chip->chip.ioapic,
940 sizeof(struct kvm_ioapic_state));
941 break;
942 default:
943 r = -EINVAL;
944 break;
945 }
946 kvm_pic_update_irq(pic_irqchip(kvm));
947 return r;
948 }
949
950 int is_error_page(struct page *page)
951 {
952 return page == bad_page;
953 }
954 EXPORT_SYMBOL_GPL(is_error_page);
955
956 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
957 {
958 int i;
959 struct kvm_mem_alias *alias;
960
961 for (i = 0; i < kvm->naliases; ++i) {
962 alias = &kvm->aliases[i];
963 if (gfn >= alias->base_gfn
964 && gfn < alias->base_gfn + alias->npages)
965 return alias->target_gfn + gfn - alias->base_gfn;
966 }
967 return gfn;
968 }
969
970 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
971 {
972 int i;
973
974 for (i = 0; i < kvm->nmemslots; ++i) {
975 struct kvm_memory_slot *memslot = &kvm->memslots[i];
976
977 if (gfn >= memslot->base_gfn
978 && gfn < memslot->base_gfn + memslot->npages)
979 return memslot;
980 }
981 return NULL;
982 }
983
984 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
985 {
986 gfn = unalias_gfn(kvm, gfn);
987 return __gfn_to_memslot(kvm, gfn);
988 }
989
990 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
991 {
992 struct kvm_memory_slot *slot;
993 struct page *page[1];
994 int npages;
995
996 might_sleep();
997
998 gfn = unalias_gfn(kvm, gfn);
999 slot = __gfn_to_memslot(kvm, gfn);
1000 if (!slot) {
1001 get_page(bad_page);
1002 return bad_page;
1003 }
1004
1005 down_read(&current->mm->mmap_sem);
1006 npages = get_user_pages(current, current->mm,
1007 slot->userspace_addr
1008 + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
1009 1, 1, page, NULL);
1010 up_read(&current->mm->mmap_sem);
1011 if (npages != 1) {
1012 get_page(bad_page);
1013 return bad_page;
1014 }
1015
1016 return page[0];
1017 }
1018 EXPORT_SYMBOL_GPL(gfn_to_page);
1019
1020 void kvm_release_page(struct page *page)
1021 {
1022 if (!PageReserved(page))
1023 SetPageDirty(page);
1024 put_page(page);
1025 }
1026 EXPORT_SYMBOL_GPL(kvm_release_page);
1027
1028 static int next_segment(unsigned long len, int offset)
1029 {
1030 if (len > PAGE_SIZE - offset)
1031 return PAGE_SIZE - offset;
1032 else
1033 return len;
1034 }
1035
1036 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1037 int len)
1038 {
1039 void *page_virt;
1040 struct page *page;
1041
1042 page = gfn_to_page(kvm, gfn);
1043 if (is_error_page(page)) {
1044 kvm_release_page(page);
1045 return -EFAULT;
1046 }
1047 page_virt = kmap_atomic(page, KM_USER0);
1048
1049 memcpy(data, page_virt + offset, len);
1050
1051 kunmap_atomic(page_virt, KM_USER0);
1052 kvm_release_page(page);
1053 return 0;
1054 }
1055 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1056
1057 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1058 {
1059 gfn_t gfn = gpa >> PAGE_SHIFT;
1060 int seg;
1061 int offset = offset_in_page(gpa);
1062 int ret;
1063
1064 while ((seg = next_segment(len, offset)) != 0) {
1065 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1066 if (ret < 0)
1067 return ret;
1068 offset = 0;
1069 len -= seg;
1070 data += seg;
1071 ++gfn;
1072 }
1073 return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_read_guest);
1076
1077 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1078 int offset, int len)
1079 {
1080 void *page_virt;
1081 struct page *page;
1082
1083 page = gfn_to_page(kvm, gfn);
1084 if (is_error_page(page)) {
1085 kvm_release_page(page);
1086 return -EFAULT;
1087 }
1088 page_virt = kmap_atomic(page, KM_USER0);
1089
1090 memcpy(page_virt + offset, data, len);
1091
1092 kunmap_atomic(page_virt, KM_USER0);
1093 mark_page_dirty(kvm, gfn);
1094 kvm_release_page(page);
1095 return 0;
1096 }
1097 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1098
1099 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1100 unsigned long len)
1101 {
1102 gfn_t gfn = gpa >> PAGE_SHIFT;
1103 int seg;
1104 int offset = offset_in_page(gpa);
1105 int ret;
1106
1107 while ((seg = next_segment(len, offset)) != 0) {
1108 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1109 if (ret < 0)
1110 return ret;
1111 offset = 0;
1112 len -= seg;
1113 data += seg;
1114 ++gfn;
1115 }
1116 return 0;
1117 }
1118
1119 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1120 {
1121 void *page_virt;
1122 struct page *page;
1123
1124 page = gfn_to_page(kvm, gfn);
1125 if (is_error_page(page)) {
1126 kvm_release_page(page);
1127 return -EFAULT;
1128 }
1129 page_virt = kmap_atomic(page, KM_USER0);
1130
1131 memset(page_virt + offset, 0, len);
1132
1133 kunmap_atomic(page_virt, KM_USER0);
1134 kvm_release_page(page);
1135 return 0;
1136 }
1137 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1138
1139 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1140 {
1141 gfn_t gfn = gpa >> PAGE_SHIFT;
1142 int seg;
1143 int offset = offset_in_page(gpa);
1144 int ret;
1145
1146 while ((seg = next_segment(len, offset)) != 0) {
1147 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1148 if (ret < 0)
1149 return ret;
1150 offset = 0;
1151 len -= seg;
1152 ++gfn;
1153 }
1154 return 0;
1155 }
1156 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1157
1158 /* WARNING: Does not work on aliased pages. */
1159 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1160 {
1161 struct kvm_memory_slot *memslot;
1162
1163 memslot = __gfn_to_memslot(kvm, gfn);
1164 if (memslot && memslot->dirty_bitmap) {
1165 unsigned long rel_gfn = gfn - memslot->base_gfn;
1166
1167 /* avoid RMW */
1168 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1169 set_bit(rel_gfn, memslot->dirty_bitmap);
1170 }
1171 }
1172
1173 int emulator_read_std(unsigned long addr,
1174 void *val,
1175 unsigned int bytes,
1176 struct kvm_vcpu *vcpu)
1177 {
1178 void *data = val;
1179
1180 while (bytes) {
1181 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1182 unsigned offset = addr & (PAGE_SIZE-1);
1183 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1184 int ret;
1185
1186 if (gpa == UNMAPPED_GVA)
1187 return X86EMUL_PROPAGATE_FAULT;
1188 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1189 if (ret < 0)
1190 return X86EMUL_UNHANDLEABLE;
1191
1192 bytes -= tocopy;
1193 data += tocopy;
1194 addr += tocopy;
1195 }
1196
1197 return X86EMUL_CONTINUE;
1198 }
1199 EXPORT_SYMBOL_GPL(emulator_read_std);
1200
1201 static int emulator_write_std(unsigned long addr,
1202 const void *val,
1203 unsigned int bytes,
1204 struct kvm_vcpu *vcpu)
1205 {
1206 pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
1207 return X86EMUL_UNHANDLEABLE;
1208 }
1209
1210 /*
1211 * Only apic need an MMIO device hook, so shortcut now..
1212 */
1213 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1214 gpa_t addr)
1215 {
1216 struct kvm_io_device *dev;
1217
1218 if (vcpu->apic) {
1219 dev = &vcpu->apic->dev;
1220 if (dev->in_range(dev, addr))
1221 return dev;
1222 }
1223 return NULL;
1224 }
1225
1226 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1227 gpa_t addr)
1228 {
1229 struct kvm_io_device *dev;
1230
1231 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1232 if (dev == NULL)
1233 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1234 return dev;
1235 }
1236
1237 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1238 gpa_t addr)
1239 {
1240 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1241 }
1242
1243 static int emulator_read_emulated(unsigned long addr,
1244 void *val,
1245 unsigned int bytes,
1246 struct kvm_vcpu *vcpu)
1247 {
1248 struct kvm_io_device *mmio_dev;
1249 gpa_t gpa;
1250
1251 if (vcpu->mmio_read_completed) {
1252 memcpy(val, vcpu->mmio_data, bytes);
1253 vcpu->mmio_read_completed = 0;
1254 return X86EMUL_CONTINUE;
1255 } else if (emulator_read_std(addr, val, bytes, vcpu)
1256 == X86EMUL_CONTINUE)
1257 return X86EMUL_CONTINUE;
1258
1259 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1260 if (gpa == UNMAPPED_GVA)
1261 return X86EMUL_PROPAGATE_FAULT;
1262
1263 /*
1264 * Is this MMIO handled locally?
1265 */
1266 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1267 if (mmio_dev) {
1268 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1269 return X86EMUL_CONTINUE;
1270 }
1271
1272 vcpu->mmio_needed = 1;
1273 vcpu->mmio_phys_addr = gpa;
1274 vcpu->mmio_size = bytes;
1275 vcpu->mmio_is_write = 0;
1276
1277 return X86EMUL_UNHANDLEABLE;
1278 }
1279
1280 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1281 const void *val, int bytes)
1282 {
1283 int ret;
1284
1285 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1286 if (ret < 0)
1287 return 0;
1288 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1289 return 1;
1290 }
1291
1292 static int emulator_write_emulated_onepage(unsigned long addr,
1293 const void *val,
1294 unsigned int bytes,
1295 struct kvm_vcpu *vcpu)
1296 {
1297 struct kvm_io_device *mmio_dev;
1298 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1299
1300 if (gpa == UNMAPPED_GVA) {
1301 kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
1302 return X86EMUL_PROPAGATE_FAULT;
1303 }
1304
1305 if (emulator_write_phys(vcpu, gpa, val, bytes))
1306 return X86EMUL_CONTINUE;
1307
1308 /*
1309 * Is this MMIO handled locally?
1310 */
1311 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1312 if (mmio_dev) {
1313 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1314 return X86EMUL_CONTINUE;
1315 }
1316
1317 vcpu->mmio_needed = 1;
1318 vcpu->mmio_phys_addr = gpa;
1319 vcpu->mmio_size = bytes;
1320 vcpu->mmio_is_write = 1;
1321 memcpy(vcpu->mmio_data, val, bytes);
1322
1323 return X86EMUL_CONTINUE;
1324 }
1325
1326 int emulator_write_emulated(unsigned long addr,
1327 const void *val,
1328 unsigned int bytes,
1329 struct kvm_vcpu *vcpu)
1330 {
1331 /* Crossing a page boundary? */
1332 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1333 int rc, now;
1334
1335 now = -addr & ~PAGE_MASK;
1336 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1337 if (rc != X86EMUL_CONTINUE)
1338 return rc;
1339 addr += now;
1340 val += now;
1341 bytes -= now;
1342 }
1343 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1344 }
1345 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1346
1347 static int emulator_cmpxchg_emulated(unsigned long addr,
1348 const void *old,
1349 const void *new,
1350 unsigned int bytes,
1351 struct kvm_vcpu *vcpu)
1352 {
1353 static int reported;
1354
1355 if (!reported) {
1356 reported = 1;
1357 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1358 }
1359 return emulator_write_emulated(addr, new, bytes, vcpu);
1360 }
1361
1362 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1363 {
1364 return kvm_x86_ops->get_segment_base(vcpu, seg);
1365 }
1366
1367 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1368 {
1369 return X86EMUL_CONTINUE;
1370 }
1371
1372 int emulate_clts(struct kvm_vcpu *vcpu)
1373 {
1374 kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
1375 return X86EMUL_CONTINUE;
1376 }
1377
1378 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
1379 {
1380 struct kvm_vcpu *vcpu = ctxt->vcpu;
1381
1382 switch (dr) {
1383 case 0 ... 3:
1384 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1385 return X86EMUL_CONTINUE;
1386 default:
1387 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1388 return X86EMUL_UNHANDLEABLE;
1389 }
1390 }
1391
1392 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1393 {
1394 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1395 int exception;
1396
1397 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1398 if (exception) {
1399 /* FIXME: better handling */
1400 return X86EMUL_UNHANDLEABLE;
1401 }
1402 return X86EMUL_CONTINUE;
1403 }
1404
1405 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
1406 {
1407 static int reported;
1408 u8 opcodes[4];
1409 unsigned long rip = vcpu->rip;
1410 unsigned long rip_linear;
1411
1412 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
1413
1414 if (reported)
1415 return;
1416
1417 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
1418
1419 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1420 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1421 reported = 1;
1422 }
1423 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
1424
1425 struct x86_emulate_ops emulate_ops = {
1426 .read_std = emulator_read_std,
1427 .write_std = emulator_write_std,
1428 .read_emulated = emulator_read_emulated,
1429 .write_emulated = emulator_write_emulated,
1430 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1431 };
1432
1433 int emulate_instruction(struct kvm_vcpu *vcpu,
1434 struct kvm_run *run,
1435 unsigned long cr2,
1436 u16 error_code,
1437 int no_decode)
1438 {
1439 int r;
1440
1441 vcpu->mmio_fault_cr2 = cr2;
1442 kvm_x86_ops->cache_regs(vcpu);
1443
1444 vcpu->mmio_is_write = 0;
1445 vcpu->pio.string = 0;
1446
1447 if (!no_decode) {
1448 int cs_db, cs_l;
1449 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1450
1451 vcpu->emulate_ctxt.vcpu = vcpu;
1452 vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
1453 vcpu->emulate_ctxt.cr2 = cr2;
1454 vcpu->emulate_ctxt.mode =
1455 (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
1456 ? X86EMUL_MODE_REAL : cs_l
1457 ? X86EMUL_MODE_PROT64 : cs_db
1458 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1459
1460 if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1461 vcpu->emulate_ctxt.cs_base = 0;
1462 vcpu->emulate_ctxt.ds_base = 0;
1463 vcpu->emulate_ctxt.es_base = 0;
1464 vcpu->emulate_ctxt.ss_base = 0;
1465 } else {
1466 vcpu->emulate_ctxt.cs_base =
1467 get_segment_base(vcpu, VCPU_SREG_CS);
1468 vcpu->emulate_ctxt.ds_base =
1469 get_segment_base(vcpu, VCPU_SREG_DS);
1470 vcpu->emulate_ctxt.es_base =
1471 get_segment_base(vcpu, VCPU_SREG_ES);
1472 vcpu->emulate_ctxt.ss_base =
1473 get_segment_base(vcpu, VCPU_SREG_SS);
1474 }
1475
1476 vcpu->emulate_ctxt.gs_base =
1477 get_segment_base(vcpu, VCPU_SREG_GS);
1478 vcpu->emulate_ctxt.fs_base =
1479 get_segment_base(vcpu, VCPU_SREG_FS);
1480
1481 r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
1482 if (r) {
1483 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1484 return EMULATE_DONE;
1485 return EMULATE_FAIL;
1486 }
1487 }
1488
1489 r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
1490
1491 if (vcpu->pio.string)
1492 return EMULATE_DO_MMIO;
1493
1494 if ((r || vcpu->mmio_is_write) && run) {
1495 run->exit_reason = KVM_EXIT_MMIO;
1496 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1497 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1498 run->mmio.len = vcpu->mmio_size;
1499 run->mmio.is_write = vcpu->mmio_is_write;
1500 }
1501
1502 if (r) {
1503 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1504 return EMULATE_DONE;
1505 if (!vcpu->mmio_needed) {
1506 kvm_report_emulation_failure(vcpu, "mmio");
1507 return EMULATE_FAIL;
1508 }
1509 return EMULATE_DO_MMIO;
1510 }
1511
1512 kvm_x86_ops->decache_regs(vcpu);
1513 kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
1514
1515 if (vcpu->mmio_is_write) {
1516 vcpu->mmio_needed = 0;
1517 return EMULATE_DO_MMIO;
1518 }
1519
1520 return EMULATE_DONE;
1521 }
1522 EXPORT_SYMBOL_GPL(emulate_instruction);
1523
1524 /*
1525 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1526 */
1527 static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1528 {
1529 DECLARE_WAITQUEUE(wait, current);
1530
1531 add_wait_queue(&vcpu->wq, &wait);
1532
1533 /*
1534 * We will block until either an interrupt or a signal wakes us up
1535 */
1536 while (!kvm_cpu_has_interrupt(vcpu)
1537 && !signal_pending(current)
1538 && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
1539 && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
1540 set_current_state(TASK_INTERRUPTIBLE);
1541 vcpu_put(vcpu);
1542 schedule();
1543 vcpu_load(vcpu);
1544 }
1545
1546 __set_current_state(TASK_RUNNING);
1547 remove_wait_queue(&vcpu->wq, &wait);
1548 }
1549
1550 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1551 {
1552 ++vcpu->stat.halt_exits;
1553 if (irqchip_in_kernel(vcpu->kvm)) {
1554 vcpu->mp_state = VCPU_MP_STATE_HALTED;
1555 kvm_vcpu_block(vcpu);
1556 if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
1557 return -EINTR;
1558 return 1;
1559 } else {
1560 vcpu->run->exit_reason = KVM_EXIT_HLT;
1561 return 0;
1562 }
1563 }
1564 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1565
1566 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
1567 {
1568 unsigned long nr, a0, a1, a2, a3, ret;
1569
1570 kvm_x86_ops->cache_regs(vcpu);
1571
1572 nr = vcpu->regs[VCPU_REGS_RAX];
1573 a0 = vcpu->regs[VCPU_REGS_RBX];
1574 a1 = vcpu->regs[VCPU_REGS_RCX];
1575 a2 = vcpu->regs[VCPU_REGS_RDX];
1576 a3 = vcpu->regs[VCPU_REGS_RSI];
1577
1578 if (!is_long_mode(vcpu)) {
1579 nr &= 0xFFFFFFFF;
1580 a0 &= 0xFFFFFFFF;
1581 a1 &= 0xFFFFFFFF;
1582 a2 &= 0xFFFFFFFF;
1583 a3 &= 0xFFFFFFFF;
1584 }
1585
1586 switch (nr) {
1587 default:
1588 ret = -KVM_ENOSYS;
1589 break;
1590 }
1591 vcpu->regs[VCPU_REGS_RAX] = ret;
1592 kvm_x86_ops->decache_regs(vcpu);
1593 return 0;
1594 }
1595 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
1596
1597 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
1598 {
1599 char instruction[3];
1600 int ret = 0;
1601
1602 mutex_lock(&vcpu->kvm->lock);
1603
1604 /*
1605 * Blow out the MMU to ensure that no other VCPU has an active mapping
1606 * to ensure that the updated hypercall appears atomically across all
1607 * VCPUs.
1608 */
1609 kvm_mmu_zap_all(vcpu->kvm);
1610
1611 kvm_x86_ops->cache_regs(vcpu);
1612 kvm_x86_ops->patch_hypercall(vcpu, instruction);
1613 if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
1614 != X86EMUL_CONTINUE)
1615 ret = -EFAULT;
1616
1617 mutex_unlock(&vcpu->kvm->lock);
1618
1619 return ret;
1620 }
1621
1622 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1623 {
1624 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1625 }
1626
1627 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1628 {
1629 struct descriptor_table dt = { limit, base };
1630
1631 kvm_x86_ops->set_gdt(vcpu, &dt);
1632 }
1633
1634 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1635 {
1636 struct descriptor_table dt = { limit, base };
1637
1638 kvm_x86_ops->set_idt(vcpu, &dt);
1639 }
1640
1641 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1642 unsigned long *rflags)
1643 {
1644 lmsw(vcpu, msw);
1645 *rflags = kvm_x86_ops->get_rflags(vcpu);
1646 }
1647
1648 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1649 {
1650 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
1651 switch (cr) {
1652 case 0:
1653 return vcpu->cr0;
1654 case 2:
1655 return vcpu->cr2;
1656 case 3:
1657 return vcpu->cr3;
1658 case 4:
1659 return vcpu->cr4;
1660 default:
1661 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1662 return 0;
1663 }
1664 }
1665
1666 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1667 unsigned long *rflags)
1668 {
1669 switch (cr) {
1670 case 0:
1671 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1672 *rflags = kvm_x86_ops->get_rflags(vcpu);
1673 break;
1674 case 2:
1675 vcpu->cr2 = val;
1676 break;
1677 case 3:
1678 set_cr3(vcpu, val);
1679 break;
1680 case 4:
1681 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1682 break;
1683 default:
1684 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1685 }
1686 }
1687
1688 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1689 {
1690 u64 data;
1691
1692 switch (msr) {
1693 case 0xc0010010: /* SYSCFG */
1694 case 0xc0010015: /* HWCR */
1695 case MSR_IA32_PLATFORM_ID:
1696 case MSR_IA32_P5_MC_ADDR:
1697 case MSR_IA32_P5_MC_TYPE:
1698 case MSR_IA32_MC0_CTL:
1699 case MSR_IA32_MCG_STATUS:
1700 case MSR_IA32_MCG_CAP:
1701 case MSR_IA32_MC0_MISC:
1702 case MSR_IA32_MC0_MISC+4:
1703 case MSR_IA32_MC0_MISC+8:
1704 case MSR_IA32_MC0_MISC+12:
1705 case MSR_IA32_MC0_MISC+16:
1706 case MSR_IA32_UCODE_REV:
1707 case MSR_IA32_PERF_STATUS:
1708 case MSR_IA32_EBL_CR_POWERON:
1709 /* MTRR registers */
1710 case 0xfe:
1711 case 0x200 ... 0x2ff:
1712 data = 0;
1713 break;
1714 case 0xcd: /* fsb frequency */
1715 data = 3;
1716 break;
1717 case MSR_IA32_APICBASE:
1718 data = kvm_get_apic_base(vcpu);
1719 break;
1720 case MSR_IA32_MISC_ENABLE:
1721 data = vcpu->ia32_misc_enable_msr;
1722 break;
1723 #ifdef CONFIG_X86_64
1724 case MSR_EFER:
1725 data = vcpu->shadow_efer;
1726 break;
1727 #endif
1728 default:
1729 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1730 return 1;
1731 }
1732 *pdata = data;
1733 return 0;
1734 }
1735 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1736
1737 /*
1738 * Reads an msr value (of 'msr_index') into 'pdata'.
1739 * Returns 0 on success, non-0 otherwise.
1740 * Assumes vcpu_load() was already called.
1741 */
1742 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1743 {
1744 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1745 }
1746
1747 #ifdef CONFIG_X86_64
1748
1749 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1750 {
1751 if (efer & EFER_RESERVED_BITS) {
1752 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1753 efer);
1754 inject_gp(vcpu);
1755 return;
1756 }
1757
1758 if (is_paging(vcpu)
1759 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1760 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1761 inject_gp(vcpu);
1762 return;
1763 }
1764
1765 kvm_x86_ops->set_efer(vcpu, efer);
1766
1767 efer &= ~EFER_LMA;
1768 efer |= vcpu->shadow_efer & EFER_LMA;
1769
1770 vcpu->shadow_efer = efer;
1771 }
1772
1773 #endif
1774
1775 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1776 {
1777 switch (msr) {
1778 #ifdef CONFIG_X86_64
1779 case MSR_EFER:
1780 set_efer(vcpu, data);
1781 break;
1782 #endif
1783 case MSR_IA32_MC0_STATUS:
1784 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1785 __FUNCTION__, data);
1786 break;
1787 case MSR_IA32_MCG_STATUS:
1788 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1789 __FUNCTION__, data);
1790 break;
1791 case MSR_IA32_UCODE_REV:
1792 case MSR_IA32_UCODE_WRITE:
1793 case 0x200 ... 0x2ff: /* MTRRs */
1794 break;
1795 case MSR_IA32_APICBASE:
1796 kvm_set_apic_base(vcpu, data);
1797 break;
1798 case MSR_IA32_MISC_ENABLE:
1799 vcpu->ia32_misc_enable_msr = data;
1800 break;
1801 default:
1802 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
1803 return 1;
1804 }
1805 return 0;
1806 }
1807 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1808
1809 /*
1810 * Writes msr value into into the appropriate "register".
1811 * Returns 0 on success, non-0 otherwise.
1812 * Assumes vcpu_load() was already called.
1813 */
1814 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1815 {
1816 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
1817 }
1818
1819 void kvm_resched(struct kvm_vcpu *vcpu)
1820 {
1821 if (!need_resched())
1822 return;
1823 cond_resched();
1824 }
1825 EXPORT_SYMBOL_GPL(kvm_resched);
1826
1827 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1828 {
1829 int i;
1830 u32 function;
1831 struct kvm_cpuid_entry *e, *best;
1832
1833 kvm_x86_ops->cache_regs(vcpu);
1834 function = vcpu->regs[VCPU_REGS_RAX];
1835 vcpu->regs[VCPU_REGS_RAX] = 0;
1836 vcpu->regs[VCPU_REGS_RBX] = 0;
1837 vcpu->regs[VCPU_REGS_RCX] = 0;
1838 vcpu->regs[VCPU_REGS_RDX] = 0;
1839 best = NULL;
1840 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1841 e = &vcpu->cpuid_entries[i];
1842 if (e->function == function) {
1843 best = e;
1844 break;
1845 }
1846 /*
1847 * Both basic or both extended?
1848 */
1849 if (((e->function ^ function) & 0x80000000) == 0)
1850 if (!best || e->function > best->function)
1851 best = e;
1852 }
1853 if (best) {
1854 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1855 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1856 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1857 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1858 }
1859 kvm_x86_ops->decache_regs(vcpu);
1860 kvm_x86_ops->skip_emulated_instruction(vcpu);
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1863
1864 static int pio_copy_data(struct kvm_vcpu *vcpu)
1865 {
1866 void *p = vcpu->pio_data;
1867 void *q;
1868 unsigned bytes;
1869 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1870
1871 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1872 PAGE_KERNEL);
1873 if (!q) {
1874 free_pio_guest_pages(vcpu);
1875 return -ENOMEM;
1876 }
1877 q += vcpu->pio.guest_page_offset;
1878 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1879 if (vcpu->pio.in)
1880 memcpy(q, p, bytes);
1881 else
1882 memcpy(p, q, bytes);
1883 q -= vcpu->pio.guest_page_offset;
1884 vunmap(q);
1885 free_pio_guest_pages(vcpu);
1886 return 0;
1887 }
1888
1889 static int complete_pio(struct kvm_vcpu *vcpu)
1890 {
1891 struct kvm_pio_request *io = &vcpu->pio;
1892 long delta;
1893 int r;
1894
1895 kvm_x86_ops->cache_regs(vcpu);
1896
1897 if (!io->string) {
1898 if (io->in)
1899 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1900 io->size);
1901 } else {
1902 if (io->in) {
1903 r = pio_copy_data(vcpu);
1904 if (r) {
1905 kvm_x86_ops->cache_regs(vcpu);
1906 return r;
1907 }
1908 }
1909
1910 delta = 1;
1911 if (io->rep) {
1912 delta *= io->cur_count;
1913 /*
1914 * The size of the register should really depend on
1915 * current address size.
1916 */
1917 vcpu->regs[VCPU_REGS_RCX] -= delta;
1918 }
1919 if (io->down)
1920 delta = -delta;
1921 delta *= io->size;
1922 if (io->in)
1923 vcpu->regs[VCPU_REGS_RDI] += delta;
1924 else
1925 vcpu->regs[VCPU_REGS_RSI] += delta;
1926 }
1927
1928 kvm_x86_ops->decache_regs(vcpu);
1929
1930 io->count -= io->cur_count;
1931 io->cur_count = 0;
1932
1933 return 0;
1934 }
1935
1936 static void kernel_pio(struct kvm_io_device *pio_dev,
1937 struct kvm_vcpu *vcpu,
1938 void *pd)
1939 {
1940 /* TODO: String I/O for in kernel device */
1941
1942 mutex_lock(&vcpu->kvm->lock);
1943 if (vcpu->pio.in)
1944 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1945 vcpu->pio.size,
1946 pd);
1947 else
1948 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1949 vcpu->pio.size,
1950 pd);
1951 mutex_unlock(&vcpu->kvm->lock);
1952 }
1953
1954 static void pio_string_write(struct kvm_io_device *pio_dev,
1955 struct kvm_vcpu *vcpu)
1956 {
1957 struct kvm_pio_request *io = &vcpu->pio;
1958 void *pd = vcpu->pio_data;
1959 int i;
1960
1961 mutex_lock(&vcpu->kvm->lock);
1962 for (i = 0; i < io->cur_count; i++) {
1963 kvm_iodevice_write(pio_dev, io->port,
1964 io->size,
1965 pd);
1966 pd += io->size;
1967 }
1968 mutex_unlock(&vcpu->kvm->lock);
1969 }
1970
1971 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1972 int size, unsigned port)
1973 {
1974 struct kvm_io_device *pio_dev;
1975
1976 vcpu->run->exit_reason = KVM_EXIT_IO;
1977 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1978 vcpu->run->io.size = vcpu->pio.size = size;
1979 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1980 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
1981 vcpu->run->io.port = vcpu->pio.port = port;
1982 vcpu->pio.in = in;
1983 vcpu->pio.string = 0;
1984 vcpu->pio.down = 0;
1985 vcpu->pio.guest_page_offset = 0;
1986 vcpu->pio.rep = 0;
1987
1988 kvm_x86_ops->cache_regs(vcpu);
1989 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1990 kvm_x86_ops->decache_regs(vcpu);
1991
1992 kvm_x86_ops->skip_emulated_instruction(vcpu);
1993
1994 pio_dev = vcpu_find_pio_dev(vcpu, port);
1995 if (pio_dev) {
1996 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1997 complete_pio(vcpu);
1998 return 1;
1999 }
2000 return 0;
2001 }
2002 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2003
2004 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2005 int size, unsigned long count, int down,
2006 gva_t address, int rep, unsigned port)
2007 {
2008 unsigned now, in_page;
2009 int i, ret = 0;
2010 int nr_pages = 1;
2011 struct page *page;
2012 struct kvm_io_device *pio_dev;
2013
2014 vcpu->run->exit_reason = KVM_EXIT_IO;
2015 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2016 vcpu->run->io.size = vcpu->pio.size = size;
2017 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2018 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
2019 vcpu->run->io.port = vcpu->pio.port = port;
2020 vcpu->pio.in = in;
2021 vcpu->pio.string = 1;
2022 vcpu->pio.down = down;
2023 vcpu->pio.guest_page_offset = offset_in_page(address);
2024 vcpu->pio.rep = rep;
2025
2026 if (!count) {
2027 kvm_x86_ops->skip_emulated_instruction(vcpu);
2028 return 1;
2029 }
2030
2031 if (!down)
2032 in_page = PAGE_SIZE - offset_in_page(address);
2033 else
2034 in_page = offset_in_page(address) + size;
2035 now = min(count, (unsigned long)in_page / size);
2036 if (!now) {
2037 /*
2038 * String I/O straddles page boundary. Pin two guest pages
2039 * so that we satisfy atomicity constraints. Do just one
2040 * transaction to avoid complexity.
2041 */
2042 nr_pages = 2;
2043 now = 1;
2044 }
2045 if (down) {
2046 /*
2047 * String I/O in reverse. Yuck. Kill the guest, fix later.
2048 */
2049 pr_unimpl(vcpu, "guest string pio down\n");
2050 inject_gp(vcpu);
2051 return 1;
2052 }
2053 vcpu->run->io.count = now;
2054 vcpu->pio.cur_count = now;
2055
2056 if (vcpu->pio.cur_count == vcpu->pio.count)
2057 kvm_x86_ops->skip_emulated_instruction(vcpu);
2058
2059 for (i = 0; i < nr_pages; ++i) {
2060 mutex_lock(&vcpu->kvm->lock);
2061 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2062 vcpu->pio.guest_pages[i] = page;
2063 mutex_unlock(&vcpu->kvm->lock);
2064 if (!page) {
2065 inject_gp(vcpu);
2066 free_pio_guest_pages(vcpu);
2067 return 1;
2068 }
2069 }
2070
2071 pio_dev = vcpu_find_pio_dev(vcpu, port);
2072 if (!vcpu->pio.in) {
2073 /* string PIO write */
2074 ret = pio_copy_data(vcpu);
2075 if (ret >= 0 && pio_dev) {
2076 pio_string_write(pio_dev, vcpu);
2077 complete_pio(vcpu);
2078 if (vcpu->pio.count == 0)
2079 ret = 1;
2080 }
2081 } else if (pio_dev)
2082 pr_unimpl(vcpu, "no string pio read support yet, "
2083 "port %x size %d count %ld\n",
2084 port, size, count);
2085
2086 return ret;
2087 }
2088 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2089
2090 /*
2091 * Check if userspace requested an interrupt window, and that the
2092 * interrupt window is open.
2093 *
2094 * No need to exit to userspace if we already have an interrupt queued.
2095 */
2096 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2097 struct kvm_run *kvm_run)
2098 {
2099 return (!vcpu->irq_summary &&
2100 kvm_run->request_interrupt_window &&
2101 vcpu->interrupt_window_open &&
2102 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2103 }
2104
2105 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2106 struct kvm_run *kvm_run)
2107 {
2108 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2109 kvm_run->cr8 = get_cr8(vcpu);
2110 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2111 if (irqchip_in_kernel(vcpu->kvm))
2112 kvm_run->ready_for_interrupt_injection = 1;
2113 else
2114 kvm_run->ready_for_interrupt_injection =
2115 (vcpu->interrupt_window_open &&
2116 vcpu->irq_summary == 0);
2117 }
2118
2119 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2120 {
2121 int r;
2122
2123 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2124 pr_debug("vcpu %d received sipi with vector # %x\n",
2125 vcpu->vcpu_id, vcpu->sipi_vector);
2126 kvm_lapic_reset(vcpu);
2127 r = kvm_x86_ops->vcpu_reset(vcpu);
2128 if (r)
2129 return r;
2130 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
2131 }
2132
2133 preempted:
2134 if (vcpu->guest_debug.enabled)
2135 kvm_x86_ops->guest_debug_pre(vcpu);
2136
2137 again:
2138 r = kvm_mmu_reload(vcpu);
2139 if (unlikely(r))
2140 goto out;
2141
2142 kvm_inject_pending_timer_irqs(vcpu);
2143
2144 preempt_disable();
2145
2146 kvm_x86_ops->prepare_guest_switch(vcpu);
2147 kvm_load_guest_fpu(vcpu);
2148
2149 local_irq_disable();
2150
2151 if (signal_pending(current)) {
2152 local_irq_enable();
2153 preempt_enable();
2154 r = -EINTR;
2155 kvm_run->exit_reason = KVM_EXIT_INTR;
2156 ++vcpu->stat.signal_exits;
2157 goto out;
2158 }
2159
2160 if (irqchip_in_kernel(vcpu->kvm))
2161 kvm_x86_ops->inject_pending_irq(vcpu);
2162 else if (!vcpu->mmio_read_completed)
2163 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2164
2165 vcpu->guest_mode = 1;
2166 kvm_guest_enter();
2167
2168 if (vcpu->requests)
2169 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2170 kvm_x86_ops->tlb_flush(vcpu);
2171
2172 kvm_x86_ops->run(vcpu, kvm_run);
2173
2174 vcpu->guest_mode = 0;
2175 local_irq_enable();
2176
2177 ++vcpu->stat.exits;
2178
2179 /*
2180 * We must have an instruction between local_irq_enable() and
2181 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2182 * the interrupt shadow. The stat.exits increment will do nicely.
2183 * But we need to prevent reordering, hence this barrier():
2184 */
2185 barrier();
2186
2187 kvm_guest_exit();
2188
2189 preempt_enable();
2190
2191 /*
2192 * Profile KVM exit RIPs:
2193 */
2194 if (unlikely(prof_on == KVM_PROFILING)) {
2195 kvm_x86_ops->cache_regs(vcpu);
2196 profile_hit(KVM_PROFILING, (void *)vcpu->rip);
2197 }
2198
2199 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2200
2201 if (r > 0) {
2202 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2203 r = -EINTR;
2204 kvm_run->exit_reason = KVM_EXIT_INTR;
2205 ++vcpu->stat.request_irq_exits;
2206 goto out;
2207 }
2208 if (!need_resched()) {
2209 ++vcpu->stat.light_exits;
2210 goto again;
2211 }
2212 }
2213
2214 out:
2215 if (r > 0) {
2216 kvm_resched(vcpu);
2217 goto preempted;
2218 }
2219
2220 post_kvm_run_save(vcpu, kvm_run);
2221
2222 return r;
2223 }
2224
2225
2226 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2227 {
2228 int r;
2229 sigset_t sigsaved;
2230
2231 vcpu_load(vcpu);
2232
2233 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2234 kvm_vcpu_block(vcpu);
2235 vcpu_put(vcpu);
2236 return -EAGAIN;
2237 }
2238
2239 if (vcpu->sigset_active)
2240 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2241
2242 /* re-sync apic's tpr */
2243 if (!irqchip_in_kernel(vcpu->kvm))
2244 set_cr8(vcpu, kvm_run->cr8);
2245
2246 if (vcpu->pio.cur_count) {
2247 r = complete_pio(vcpu);
2248 if (r)
2249 goto out;
2250 }
2251 #if CONFIG_HAS_IOMEM
2252 if (vcpu->mmio_needed) {
2253 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2254 vcpu->mmio_read_completed = 1;
2255 vcpu->mmio_needed = 0;
2256 r = emulate_instruction(vcpu, kvm_run,
2257 vcpu->mmio_fault_cr2, 0, 1);
2258 if (r == EMULATE_DO_MMIO) {
2259 /*
2260 * Read-modify-write. Back to userspace.
2261 */
2262 r = 0;
2263 goto out;
2264 }
2265 }
2266 #endif
2267 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2268 kvm_x86_ops->cache_regs(vcpu);
2269 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2270 kvm_x86_ops->decache_regs(vcpu);
2271 }
2272
2273 r = __vcpu_run(vcpu, kvm_run);
2274
2275 out:
2276 if (vcpu->sigset_active)
2277 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2278
2279 vcpu_put(vcpu);
2280 return r;
2281 }
2282
2283 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
2284 struct kvm_regs *regs)
2285 {
2286 vcpu_load(vcpu);
2287
2288 kvm_x86_ops->cache_regs(vcpu);
2289
2290 regs->rax = vcpu->regs[VCPU_REGS_RAX];
2291 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
2292 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
2293 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
2294 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
2295 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
2296 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
2297 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
2298 #ifdef CONFIG_X86_64
2299 regs->r8 = vcpu->regs[VCPU_REGS_R8];
2300 regs->r9 = vcpu->regs[VCPU_REGS_R9];
2301 regs->r10 = vcpu->regs[VCPU_REGS_R10];
2302 regs->r11 = vcpu->regs[VCPU_REGS_R11];
2303 regs->r12 = vcpu->regs[VCPU_REGS_R12];
2304 regs->r13 = vcpu->regs[VCPU_REGS_R13];
2305 regs->r14 = vcpu->regs[VCPU_REGS_R14];
2306 regs->r15 = vcpu->regs[VCPU_REGS_R15];
2307 #endif
2308
2309 regs->rip = vcpu->rip;
2310 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2311
2312 /*
2313 * Don't leak debug flags in case they were set for guest debugging
2314 */
2315 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2316 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2317
2318 vcpu_put(vcpu);
2319
2320 return 0;
2321 }
2322
2323 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2324 struct kvm_regs *regs)
2325 {
2326 vcpu_load(vcpu);
2327
2328 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2329 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2330 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2331 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2332 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2333 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2334 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2335 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2336 #ifdef CONFIG_X86_64
2337 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2338 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2339 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2340 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2341 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2342 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2343 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2344 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2345 #endif
2346
2347 vcpu->rip = regs->rip;
2348 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2349
2350 kvm_x86_ops->decache_regs(vcpu);
2351
2352 vcpu_put(vcpu);
2353
2354 return 0;
2355 }
2356
2357 static void get_segment(struct kvm_vcpu *vcpu,
2358 struct kvm_segment *var, int seg)
2359 {
2360 return kvm_x86_ops->get_segment(vcpu, var, seg);
2361 }
2362
2363 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2364 struct kvm_sregs *sregs)
2365 {
2366 struct descriptor_table dt;
2367 int pending_vec;
2368
2369 vcpu_load(vcpu);
2370
2371 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2372 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2373 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2374 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2375 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2376 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2377
2378 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2379 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2380
2381 kvm_x86_ops->get_idt(vcpu, &dt);
2382 sregs->idt.limit = dt.limit;
2383 sregs->idt.base = dt.base;
2384 kvm_x86_ops->get_gdt(vcpu, &dt);
2385 sregs->gdt.limit = dt.limit;
2386 sregs->gdt.base = dt.base;
2387
2388 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2389 sregs->cr0 = vcpu->cr0;
2390 sregs->cr2 = vcpu->cr2;
2391 sregs->cr3 = vcpu->cr3;
2392 sregs->cr4 = vcpu->cr4;
2393 sregs->cr8 = get_cr8(vcpu);
2394 sregs->efer = vcpu->shadow_efer;
2395 sregs->apic_base = kvm_get_apic_base(vcpu);
2396
2397 if (irqchip_in_kernel(vcpu->kvm)) {
2398 memset(sregs->interrupt_bitmap, 0,
2399 sizeof sregs->interrupt_bitmap);
2400 pending_vec = kvm_x86_ops->get_irq(vcpu);
2401 if (pending_vec >= 0)
2402 set_bit(pending_vec,
2403 (unsigned long *)sregs->interrupt_bitmap);
2404 } else
2405 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2406 sizeof sregs->interrupt_bitmap);
2407
2408 vcpu_put(vcpu);
2409
2410 return 0;
2411 }
2412
2413 static void set_segment(struct kvm_vcpu *vcpu,
2414 struct kvm_segment *var, int seg)
2415 {
2416 return kvm_x86_ops->set_segment(vcpu, var, seg);
2417 }
2418
2419 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2420 struct kvm_sregs *sregs)
2421 {
2422 int mmu_reset_needed = 0;
2423 int i, pending_vec, max_bits;
2424 struct descriptor_table dt;
2425
2426 vcpu_load(vcpu);
2427
2428 dt.limit = sregs->idt.limit;
2429 dt.base = sregs->idt.base;
2430 kvm_x86_ops->set_idt(vcpu, &dt);
2431 dt.limit = sregs->gdt.limit;
2432 dt.base = sregs->gdt.base;
2433 kvm_x86_ops->set_gdt(vcpu, &dt);
2434
2435 vcpu->cr2 = sregs->cr2;
2436 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2437 vcpu->cr3 = sregs->cr3;
2438
2439 set_cr8(vcpu, sregs->cr8);
2440
2441 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2442 #ifdef CONFIG_X86_64
2443 kvm_x86_ops->set_efer(vcpu, sregs->efer);
2444 #endif
2445 kvm_set_apic_base(vcpu, sregs->apic_base);
2446
2447 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2448
2449 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2450 vcpu->cr0 = sregs->cr0;
2451 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
2452
2453 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2454 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
2455 if (!is_long_mode(vcpu) && is_pae(vcpu))
2456 load_pdptrs(vcpu, vcpu->cr3);
2457
2458 if (mmu_reset_needed)
2459 kvm_mmu_reset_context(vcpu);
2460
2461 if (!irqchip_in_kernel(vcpu->kvm)) {
2462 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2463 sizeof vcpu->irq_pending);
2464 vcpu->irq_summary = 0;
2465 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2466 if (vcpu->irq_pending[i])
2467 __set_bit(i, &vcpu->irq_summary);
2468 } else {
2469 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
2470 pending_vec = find_first_bit(
2471 (const unsigned long *)sregs->interrupt_bitmap,
2472 max_bits);
2473 /* Only pending external irq is handled here */
2474 if (pending_vec < max_bits) {
2475 kvm_x86_ops->set_irq(vcpu, pending_vec);
2476 pr_debug("Set back pending irq %d\n",
2477 pending_vec);
2478 }
2479 }
2480
2481 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2482 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2483 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2484 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2485 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2486 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2487
2488 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2489 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2490
2491 vcpu_put(vcpu);
2492
2493 return 0;
2494 }
2495
2496 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2497 {
2498 struct kvm_segment cs;
2499
2500 get_segment(vcpu, &cs, VCPU_SREG_CS);
2501 *db = cs.db;
2502 *l = cs.l;
2503 }
2504 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2505
2506 /*
2507 * Translate a guest virtual address to a guest physical address.
2508 */
2509 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2510 struct kvm_translation *tr)
2511 {
2512 unsigned long vaddr = tr->linear_address;
2513 gpa_t gpa;
2514
2515 vcpu_load(vcpu);
2516 mutex_lock(&vcpu->kvm->lock);
2517 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2518 tr->physical_address = gpa;
2519 tr->valid = gpa != UNMAPPED_GVA;
2520 tr->writeable = 1;
2521 tr->usermode = 0;
2522 mutex_unlock(&vcpu->kvm->lock);
2523 vcpu_put(vcpu);
2524
2525 return 0;
2526 }
2527
2528 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2529 struct kvm_interrupt *irq)
2530 {
2531 if (irq->irq < 0 || irq->irq >= 256)
2532 return -EINVAL;
2533 if (irqchip_in_kernel(vcpu->kvm))
2534 return -ENXIO;
2535 vcpu_load(vcpu);
2536
2537 set_bit(irq->irq, vcpu->irq_pending);
2538 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2539
2540 vcpu_put(vcpu);
2541
2542 return 0;
2543 }
2544
2545 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2546 struct kvm_debug_guest *dbg)
2547 {
2548 int r;
2549
2550 vcpu_load(vcpu);
2551
2552 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
2553
2554 vcpu_put(vcpu);
2555
2556 return r;
2557 }
2558
2559 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2560 unsigned long address,
2561 int *type)
2562 {
2563 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2564 unsigned long pgoff;
2565 struct page *page;
2566
2567 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2568 if (pgoff == 0)
2569 page = virt_to_page(vcpu->run);
2570 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2571 page = virt_to_page(vcpu->pio_data);
2572 else
2573 return NOPAGE_SIGBUS;
2574 get_page(page);
2575 if (type != NULL)
2576 *type = VM_FAULT_MINOR;
2577
2578 return page;
2579 }
2580
2581 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2582 .nopage = kvm_vcpu_nopage,
2583 };
2584
2585 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2586 {
2587 vma->vm_ops = &kvm_vcpu_vm_ops;
2588 return 0;
2589 }
2590
2591 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2592 {
2593 struct kvm_vcpu *vcpu = filp->private_data;
2594
2595 fput(vcpu->kvm->filp);
2596 return 0;
2597 }
2598
2599 static struct file_operations kvm_vcpu_fops = {
2600 .release = kvm_vcpu_release,
2601 .unlocked_ioctl = kvm_vcpu_ioctl,
2602 .compat_ioctl = kvm_vcpu_ioctl,
2603 .mmap = kvm_vcpu_mmap,
2604 };
2605
2606 /*
2607 * Allocates an inode for the vcpu.
2608 */
2609 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2610 {
2611 int fd, r;
2612 struct inode *inode;
2613 struct file *file;
2614
2615 r = anon_inode_getfd(&fd, &inode, &file,
2616 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2617 if (r)
2618 return r;
2619 atomic_inc(&vcpu->kvm->filp->f_count);
2620 return fd;
2621 }
2622
2623 /*
2624 * Creates some virtual cpus. Good luck creating more than one.
2625 */
2626 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2627 {
2628 int r;
2629 struct kvm_vcpu *vcpu;
2630
2631 if (!valid_vcpu(n))
2632 return -EINVAL;
2633
2634 vcpu = kvm_x86_ops->vcpu_create(kvm, n);
2635 if (IS_ERR(vcpu))
2636 return PTR_ERR(vcpu);
2637
2638 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2639
2640 /* We do fxsave: this must be aligned. */
2641 BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2642
2643 vcpu_load(vcpu);
2644 r = kvm_x86_ops->vcpu_reset(vcpu);
2645 if (r == 0)
2646 r = kvm_mmu_setup(vcpu);
2647 vcpu_put(vcpu);
2648 if (r < 0)
2649 goto free_vcpu;
2650
2651 mutex_lock(&kvm->lock);
2652 if (kvm->vcpus[n]) {
2653 r = -EEXIST;
2654 mutex_unlock(&kvm->lock);
2655 goto mmu_unload;
2656 }
2657 kvm->vcpus[n] = vcpu;
2658 mutex_unlock(&kvm->lock);
2659
2660 /* Now it's all set up, let userspace reach it */
2661 r = create_vcpu_fd(vcpu);
2662 if (r < 0)
2663 goto unlink;
2664 return r;
2665
2666 unlink:
2667 mutex_lock(&kvm->lock);
2668 kvm->vcpus[n] = NULL;
2669 mutex_unlock(&kvm->lock);
2670
2671 mmu_unload:
2672 vcpu_load(vcpu);
2673 kvm_mmu_unload(vcpu);
2674 vcpu_put(vcpu);
2675
2676 free_vcpu:
2677 kvm_x86_ops->vcpu_free(vcpu);
2678 return r;
2679 }
2680
2681 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2682 {
2683 if (sigset) {
2684 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2685 vcpu->sigset_active = 1;
2686 vcpu->sigset = *sigset;
2687 } else
2688 vcpu->sigset_active = 0;
2689 return 0;
2690 }
2691
2692 /*
2693 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2694 * we have asm/x86/processor.h
2695 */
2696 struct fxsave {
2697 u16 cwd;
2698 u16 swd;
2699 u16 twd;
2700 u16 fop;
2701 u64 rip;
2702 u64 rdp;
2703 u32 mxcsr;
2704 u32 mxcsr_mask;
2705 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2706 #ifdef CONFIG_X86_64
2707 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2708 #else
2709 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2710 #endif
2711 };
2712
2713 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2714 {
2715 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2716
2717 vcpu_load(vcpu);
2718
2719 memcpy(fpu->fpr, fxsave->st_space, 128);
2720 fpu->fcw = fxsave->cwd;
2721 fpu->fsw = fxsave->swd;
2722 fpu->ftwx = fxsave->twd;
2723 fpu->last_opcode = fxsave->fop;
2724 fpu->last_ip = fxsave->rip;
2725 fpu->last_dp = fxsave->rdp;
2726 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2727
2728 vcpu_put(vcpu);
2729
2730 return 0;
2731 }
2732
2733 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2734 {
2735 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2736
2737 vcpu_load(vcpu);
2738
2739 memcpy(fxsave->st_space, fpu->fpr, 128);
2740 fxsave->cwd = fpu->fcw;
2741 fxsave->swd = fpu->fsw;
2742 fxsave->twd = fpu->ftwx;
2743 fxsave->fop = fpu->last_opcode;
2744 fxsave->rip = fpu->last_ip;
2745 fxsave->rdp = fpu->last_dp;
2746 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2747
2748 vcpu_put(vcpu);
2749
2750 return 0;
2751 }
2752
2753 static long kvm_vcpu_ioctl(struct file *filp,
2754 unsigned int ioctl, unsigned long arg)
2755 {
2756 struct kvm_vcpu *vcpu = filp->private_data;
2757 void __user *argp = (void __user *)arg;
2758 int r;
2759
2760 switch (ioctl) {
2761 case KVM_RUN:
2762 r = -EINVAL;
2763 if (arg)
2764 goto out;
2765 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2766 break;
2767 case KVM_GET_REGS: {
2768 struct kvm_regs kvm_regs;
2769
2770 memset(&kvm_regs, 0, sizeof kvm_regs);
2771 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2772 if (r)
2773 goto out;
2774 r = -EFAULT;
2775 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2776 goto out;
2777 r = 0;
2778 break;
2779 }
2780 case KVM_SET_REGS: {
2781 struct kvm_regs kvm_regs;
2782
2783 r = -EFAULT;
2784 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2785 goto out;
2786 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2787 if (r)
2788 goto out;
2789 r = 0;
2790 break;
2791 }
2792 case KVM_GET_SREGS: {
2793 struct kvm_sregs kvm_sregs;
2794
2795 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2796 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2797 if (r)
2798 goto out;
2799 r = -EFAULT;
2800 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2801 goto out;
2802 r = 0;
2803 break;
2804 }
2805 case KVM_SET_SREGS: {
2806 struct kvm_sregs kvm_sregs;
2807
2808 r = -EFAULT;
2809 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2810 goto out;
2811 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2812 if (r)
2813 goto out;
2814 r = 0;
2815 break;
2816 }
2817 case KVM_TRANSLATE: {
2818 struct kvm_translation tr;
2819
2820 r = -EFAULT;
2821 if (copy_from_user(&tr, argp, sizeof tr))
2822 goto out;
2823 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2824 if (r)
2825 goto out;
2826 r = -EFAULT;
2827 if (copy_to_user(argp, &tr, sizeof tr))
2828 goto out;
2829 r = 0;
2830 break;
2831 }
2832 case KVM_INTERRUPT: {
2833 struct kvm_interrupt irq;
2834
2835 r = -EFAULT;
2836 if (copy_from_user(&irq, argp, sizeof irq))
2837 goto out;
2838 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2839 if (r)
2840 goto out;
2841 r = 0;
2842 break;
2843 }
2844 case KVM_DEBUG_GUEST: {
2845 struct kvm_debug_guest dbg;
2846
2847 r = -EFAULT;
2848 if (copy_from_user(&dbg, argp, sizeof dbg))
2849 goto out;
2850 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2851 if (r)
2852 goto out;
2853 r = 0;
2854 break;
2855 }
2856 case KVM_SET_SIGNAL_MASK: {
2857 struct kvm_signal_mask __user *sigmask_arg = argp;
2858 struct kvm_signal_mask kvm_sigmask;
2859 sigset_t sigset, *p;
2860
2861 p = NULL;
2862 if (argp) {
2863 r = -EFAULT;
2864 if (copy_from_user(&kvm_sigmask, argp,
2865 sizeof kvm_sigmask))
2866 goto out;
2867 r = -EINVAL;
2868 if (kvm_sigmask.len != sizeof sigset)
2869 goto out;
2870 r = -EFAULT;
2871 if (copy_from_user(&sigset, sigmask_arg->sigset,
2872 sizeof sigset))
2873 goto out;
2874 p = &sigset;
2875 }
2876 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2877 break;
2878 }
2879 case KVM_GET_FPU: {
2880 struct kvm_fpu fpu;
2881
2882 memset(&fpu, 0, sizeof fpu);
2883 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2884 if (r)
2885 goto out;
2886 r = -EFAULT;
2887 if (copy_to_user(argp, &fpu, sizeof fpu))
2888 goto out;
2889 r = 0;
2890 break;
2891 }
2892 case KVM_SET_FPU: {
2893 struct kvm_fpu fpu;
2894
2895 r = -EFAULT;
2896 if (copy_from_user(&fpu, argp, sizeof fpu))
2897 goto out;
2898 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2899 if (r)
2900 goto out;
2901 r = 0;
2902 break;
2903 }
2904 default:
2905 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2906 }
2907 out:
2908 return r;
2909 }
2910
2911 static long kvm_vm_ioctl(struct file *filp,
2912 unsigned int ioctl, unsigned long arg)
2913 {
2914 struct kvm *kvm = filp->private_data;
2915 void __user *argp = (void __user *)arg;
2916 int r = -EINVAL;
2917
2918 switch (ioctl) {
2919 case KVM_CREATE_VCPU:
2920 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2921 if (r < 0)
2922 goto out;
2923 break;
2924 case KVM_SET_MEMORY_REGION: {
2925 struct kvm_memory_region kvm_mem;
2926 struct kvm_userspace_memory_region kvm_userspace_mem;
2927
2928 r = -EFAULT;
2929 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2930 goto out;
2931 kvm_userspace_mem.slot = kvm_mem.slot;
2932 kvm_userspace_mem.flags = kvm_mem.flags;
2933 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2934 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2935 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2936 if (r)
2937 goto out;
2938 break;
2939 }
2940 case KVM_SET_USER_MEMORY_REGION: {
2941 struct kvm_userspace_memory_region kvm_userspace_mem;
2942
2943 r = -EFAULT;
2944 if (copy_from_user(&kvm_userspace_mem, argp,
2945 sizeof kvm_userspace_mem))
2946 goto out;
2947
2948 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2949 if (r)
2950 goto out;
2951 break;
2952 }
2953 case KVM_SET_NR_MMU_PAGES:
2954 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2955 if (r)
2956 goto out;
2957 break;
2958 case KVM_GET_NR_MMU_PAGES:
2959 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2960 break;
2961 case KVM_GET_DIRTY_LOG: {
2962 struct kvm_dirty_log log;
2963
2964 r = -EFAULT;
2965 if (copy_from_user(&log, argp, sizeof log))
2966 goto out;
2967 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2968 if (r)
2969 goto out;
2970 break;
2971 }
2972 case KVM_SET_MEMORY_ALIAS: {
2973 struct kvm_memory_alias alias;
2974
2975 r = -EFAULT;
2976 if (copy_from_user(&alias, argp, sizeof alias))
2977 goto out;
2978 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2979 if (r)
2980 goto out;
2981 break;
2982 }
2983 case KVM_CREATE_IRQCHIP:
2984 r = -ENOMEM;
2985 kvm->vpic = kvm_create_pic(kvm);
2986 if (kvm->vpic) {
2987 r = kvm_ioapic_init(kvm);
2988 if (r) {
2989 kfree(kvm->vpic);
2990 kvm->vpic = NULL;
2991 goto out;
2992 }
2993 } else
2994 goto out;
2995 break;
2996 case KVM_IRQ_LINE: {
2997 struct kvm_irq_level irq_event;
2998
2999 r = -EFAULT;
3000 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3001 goto out;
3002 if (irqchip_in_kernel(kvm)) {
3003 mutex_lock(&kvm->lock);
3004 if (irq_event.irq < 16)
3005 kvm_pic_set_irq(pic_irqchip(kvm),
3006 irq_event.irq,
3007 irq_event.level);
3008 kvm_ioapic_set_irq(kvm->vioapic,
3009 irq_event.irq,
3010 irq_event.level);
3011 mutex_unlock(&kvm->lock);
3012 r = 0;
3013 }
3014 break;
3015 }
3016 case KVM_GET_IRQCHIP: {
3017 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3018 struct kvm_irqchip chip;
3019
3020 r = -EFAULT;
3021 if (copy_from_user(&chip, argp, sizeof chip))
3022 goto out;
3023 r = -ENXIO;
3024 if (!irqchip_in_kernel(kvm))
3025 goto out;
3026 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
3027 if (r)
3028 goto out;
3029 r = -EFAULT;
3030 if (copy_to_user(argp, &chip, sizeof chip))
3031 goto out;
3032 r = 0;
3033 break;
3034 }
3035 case KVM_SET_IRQCHIP: {
3036 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3037 struct kvm_irqchip chip;
3038
3039 r = -EFAULT;
3040 if (copy_from_user(&chip, argp, sizeof chip))
3041 goto out;
3042 r = -ENXIO;
3043 if (!irqchip_in_kernel(kvm))
3044 goto out;
3045 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
3046 if (r)
3047 goto out;
3048 r = 0;
3049 break;
3050 }
3051 default:
3052 ;
3053 }
3054 out:
3055 return r;
3056 }
3057
3058 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
3059 unsigned long address,
3060 int *type)
3061 {
3062 struct kvm *kvm = vma->vm_file->private_data;
3063 unsigned long pgoff;
3064 struct page *page;
3065
3066 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3067 page = gfn_to_page(kvm, pgoff);
3068 if (is_error_page(page)) {
3069 kvm_release_page(page);
3070 return NOPAGE_SIGBUS;
3071 }
3072 if (type != NULL)
3073 *type = VM_FAULT_MINOR;
3074
3075 return page;
3076 }
3077
3078 static struct vm_operations_struct kvm_vm_vm_ops = {
3079 .nopage = kvm_vm_nopage,
3080 };
3081
3082 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
3083 {
3084 vma->vm_ops = &kvm_vm_vm_ops;
3085 return 0;
3086 }
3087
3088 static struct file_operations kvm_vm_fops = {
3089 .release = kvm_vm_release,
3090 .unlocked_ioctl = kvm_vm_ioctl,
3091 .compat_ioctl = kvm_vm_ioctl,
3092 .mmap = kvm_vm_mmap,
3093 };
3094
3095 static int kvm_dev_ioctl_create_vm(void)
3096 {
3097 int fd, r;
3098 struct inode *inode;
3099 struct file *file;
3100 struct kvm *kvm;
3101
3102 kvm = kvm_create_vm();
3103 if (IS_ERR(kvm))
3104 return PTR_ERR(kvm);
3105 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
3106 if (r) {
3107 kvm_destroy_vm(kvm);
3108 return r;
3109 }
3110
3111 kvm->filp = file;
3112
3113 return fd;
3114 }
3115
3116 static long kvm_dev_ioctl(struct file *filp,
3117 unsigned int ioctl, unsigned long arg)
3118 {
3119 void __user *argp = (void __user *)arg;
3120 long r = -EINVAL;
3121
3122 switch (ioctl) {
3123 case KVM_GET_API_VERSION:
3124 r = -EINVAL;
3125 if (arg)
3126 goto out;
3127 r = KVM_API_VERSION;
3128 break;
3129 case KVM_CREATE_VM:
3130 r = -EINVAL;
3131 if (arg)
3132 goto out;
3133 r = kvm_dev_ioctl_create_vm();
3134 break;
3135 case KVM_CHECK_EXTENSION: {
3136 int ext = (long)argp;
3137
3138 switch (ext) {
3139 case KVM_CAP_IRQCHIP:
3140 case KVM_CAP_HLT:
3141 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3142 case KVM_CAP_USER_MEMORY:
3143 r = 1;
3144 break;
3145 default:
3146 r = 0;
3147 break;
3148 }
3149 break;
3150 }
3151 case KVM_GET_VCPU_MMAP_SIZE:
3152 r = -EINVAL;
3153 if (arg)
3154 goto out;
3155 r = 2 * PAGE_SIZE;
3156 break;
3157 default:
3158 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3159 }
3160 out:
3161 return r;
3162 }
3163
3164 static struct file_operations kvm_chardev_ops = {
3165 .unlocked_ioctl = kvm_dev_ioctl,
3166 .compat_ioctl = kvm_dev_ioctl,
3167 };
3168
3169 static struct miscdevice kvm_dev = {
3170 KVM_MINOR,
3171 "kvm",
3172 &kvm_chardev_ops,
3173 };
3174
3175 /*
3176 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
3177 * cached on it.
3178 */
3179 static void decache_vcpus_on_cpu(int cpu)
3180 {
3181 struct kvm *vm;
3182 struct kvm_vcpu *vcpu;
3183 int i;
3184
3185 spin_lock(&kvm_lock);
3186 list_for_each_entry(vm, &vm_list, vm_list)
3187 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3188 vcpu = vm->vcpus[i];
3189 if (!vcpu)
3190 continue;
3191 /*
3192 * If the vcpu is locked, then it is running on some
3193 * other cpu and therefore it is not cached on the
3194 * cpu in question.
3195 *
3196 * If it's not locked, check the last cpu it executed
3197 * on.
3198 */
3199 if (mutex_trylock(&vcpu->mutex)) {
3200 if (vcpu->cpu == cpu) {
3201 kvm_x86_ops->vcpu_decache(vcpu);
3202 vcpu->cpu = -1;
3203 }
3204 mutex_unlock(&vcpu->mutex);
3205 }
3206 }
3207 spin_unlock(&kvm_lock);
3208 }
3209
3210 static void hardware_enable(void *junk)
3211 {
3212 int cpu = raw_smp_processor_id();
3213
3214 if (cpu_isset(cpu, cpus_hardware_enabled))
3215 return;
3216 cpu_set(cpu, cpus_hardware_enabled);
3217 kvm_x86_ops->hardware_enable(NULL);
3218 }
3219
3220 static void hardware_disable(void *junk)
3221 {
3222 int cpu = raw_smp_processor_id();
3223
3224 if (!cpu_isset(cpu, cpus_hardware_enabled))
3225 return;
3226 cpu_clear(cpu, cpus_hardware_enabled);
3227 decache_vcpus_on_cpu(cpu);
3228 kvm_x86_ops->hardware_disable(NULL);
3229 }
3230
3231 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3232 void *v)
3233 {
3234 int cpu = (long)v;
3235
3236 switch (val) {
3237 case CPU_DYING:
3238 case CPU_DYING_FROZEN:
3239 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3240 cpu);
3241 hardware_disable(NULL);
3242 break;
3243 case CPU_UP_CANCELED:
3244 case CPU_UP_CANCELED_FROZEN:
3245 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3246 cpu);
3247 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3248 break;
3249 case CPU_ONLINE:
3250 case CPU_ONLINE_FROZEN:
3251 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3252 cpu);
3253 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3254 break;
3255 }
3256 return NOTIFY_OK;
3257 }
3258
3259 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3260 void *v)
3261 {
3262 if (val == SYS_RESTART) {
3263 /*
3264 * Some (well, at least mine) BIOSes hang on reboot if
3265 * in vmx root mode.
3266 */
3267 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3268 on_each_cpu(hardware_disable, NULL, 0, 1);
3269 }
3270 return NOTIFY_OK;
3271 }
3272
3273 static struct notifier_block kvm_reboot_notifier = {
3274 .notifier_call = kvm_reboot,
3275 .priority = 0,
3276 };
3277
3278 void kvm_io_bus_init(struct kvm_io_bus *bus)
3279 {
3280 memset(bus, 0, sizeof(*bus));
3281 }
3282
3283 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3284 {
3285 int i;
3286
3287 for (i = 0; i < bus->dev_count; i++) {
3288 struct kvm_io_device *pos = bus->devs[i];
3289
3290 kvm_iodevice_destructor(pos);
3291 }
3292 }
3293
3294 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3295 {
3296 int i;
3297
3298 for (i = 0; i < bus->dev_count; i++) {
3299 struct kvm_io_device *pos = bus->devs[i];
3300
3301 if (pos->in_range(pos, addr))
3302 return pos;
3303 }
3304
3305 return NULL;
3306 }
3307
3308 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3309 {
3310 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3311
3312 bus->devs[bus->dev_count++] = dev;
3313 }
3314
3315 static struct notifier_block kvm_cpu_notifier = {
3316 .notifier_call = kvm_cpu_hotplug,
3317 .priority = 20, /* must be > scheduler priority */
3318 };
3319
3320 static u64 stat_get(void *_offset)
3321 {
3322 unsigned offset = (long)_offset;
3323 u64 total = 0;
3324 struct kvm *kvm;
3325 struct kvm_vcpu *vcpu;
3326 int i;
3327
3328 spin_lock(&kvm_lock);
3329 list_for_each_entry(kvm, &vm_list, vm_list)
3330 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3331 vcpu = kvm->vcpus[i];
3332 if (vcpu)
3333 total += *(u32 *)((void *)vcpu + offset);
3334 }
3335 spin_unlock(&kvm_lock);
3336 return total;
3337 }
3338
3339 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
3340
3341 static __init void kvm_init_debug(void)
3342 {
3343 struct kvm_stats_debugfs_item *p;
3344
3345 debugfs_dir = debugfs_create_dir("kvm", NULL);
3346 for (p = debugfs_entries; p->name; ++p)
3347 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3348 (void *)(long)p->offset,
3349 &stat_fops);
3350 }
3351
3352 static void kvm_exit_debug(void)
3353 {
3354 struct kvm_stats_debugfs_item *p;
3355
3356 for (p = debugfs_entries; p->name; ++p)
3357 debugfs_remove(p->dentry);
3358 debugfs_remove(debugfs_dir);
3359 }
3360
3361 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3362 {
3363 hardware_disable(NULL);
3364 return 0;
3365 }
3366
3367 static int kvm_resume(struct sys_device *dev)
3368 {
3369 hardware_enable(NULL);
3370 return 0;
3371 }
3372
3373 static struct sysdev_class kvm_sysdev_class = {
3374 .name = "kvm",
3375 .suspend = kvm_suspend,
3376 .resume = kvm_resume,
3377 };
3378
3379 static struct sys_device kvm_sysdev = {
3380 .id = 0,
3381 .cls = &kvm_sysdev_class,
3382 };
3383
3384 struct page *bad_page;
3385
3386 static inline
3387 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3388 {
3389 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3390 }
3391
3392 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3393 {
3394 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3395
3396 kvm_x86_ops->vcpu_load(vcpu, cpu);
3397 }
3398
3399 static void kvm_sched_out(struct preempt_notifier *pn,
3400 struct task_struct *next)
3401 {
3402 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3403
3404 kvm_x86_ops->vcpu_put(vcpu);
3405 }
3406
3407 int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
3408 struct module *module)
3409 {
3410 int r;
3411 int cpu;
3412
3413 if (kvm_x86_ops) {
3414 printk(KERN_ERR "kvm: already loaded the other module\n");
3415 return -EEXIST;
3416 }
3417
3418 if (!ops->cpu_has_kvm_support()) {
3419 printk(KERN_ERR "kvm: no hardware support\n");
3420 return -EOPNOTSUPP;
3421 }
3422 if (ops->disabled_by_bios()) {
3423 printk(KERN_ERR "kvm: disabled by bios\n");
3424 return -EOPNOTSUPP;
3425 }
3426
3427 kvm_x86_ops = ops;
3428
3429 r = kvm_x86_ops->hardware_setup();
3430 if (r < 0)
3431 goto out;
3432
3433 for_each_online_cpu(cpu) {
3434 smp_call_function_single(cpu,
3435 kvm_x86_ops->check_processor_compatibility,
3436 &r, 0, 1);
3437 if (r < 0)
3438 goto out_free_0;
3439 }
3440
3441 on_each_cpu(hardware_enable, NULL, 0, 1);
3442 r = register_cpu_notifier(&kvm_cpu_notifier);
3443 if (r)
3444 goto out_free_1;
3445 register_reboot_notifier(&kvm_reboot_notifier);
3446
3447 r = sysdev_class_register(&kvm_sysdev_class);
3448 if (r)
3449 goto out_free_2;
3450
3451 r = sysdev_register(&kvm_sysdev);
3452 if (r)
3453 goto out_free_3;
3454
3455 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3456 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3457 __alignof__(struct kvm_vcpu), 0, 0);
3458 if (!kvm_vcpu_cache) {
3459 r = -ENOMEM;
3460 goto out_free_4;
3461 }
3462
3463 kvm_chardev_ops.owner = module;
3464
3465 r = misc_register(&kvm_dev);
3466 if (r) {
3467 printk(KERN_ERR "kvm: misc device register failed\n");
3468 goto out_free;
3469 }
3470
3471 kvm_preempt_ops.sched_in = kvm_sched_in;
3472 kvm_preempt_ops.sched_out = kvm_sched_out;
3473
3474 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3475
3476 return 0;
3477
3478 out_free:
3479 kmem_cache_destroy(kvm_vcpu_cache);
3480 out_free_4:
3481 sysdev_unregister(&kvm_sysdev);
3482 out_free_3:
3483 sysdev_class_unregister(&kvm_sysdev_class);
3484 out_free_2:
3485 unregister_reboot_notifier(&kvm_reboot_notifier);
3486 unregister_cpu_notifier(&kvm_cpu_notifier);
3487 out_free_1:
3488 on_each_cpu(hardware_disable, NULL, 0, 1);
3489 out_free_0:
3490 kvm_x86_ops->hardware_unsetup();
3491 out:
3492 kvm_x86_ops = NULL;
3493 return r;
3494 }
3495 EXPORT_SYMBOL_GPL(kvm_init_x86);
3496
3497 void kvm_exit_x86(void)
3498 {
3499 misc_deregister(&kvm_dev);
3500 kmem_cache_destroy(kvm_vcpu_cache);
3501 sysdev_unregister(&kvm_sysdev);
3502 sysdev_class_unregister(&kvm_sysdev_class);
3503 unregister_reboot_notifier(&kvm_reboot_notifier);
3504 unregister_cpu_notifier(&kvm_cpu_notifier);
3505 on_each_cpu(hardware_disable, NULL, 0, 1);
3506 kvm_x86_ops->hardware_unsetup();
3507 kvm_x86_ops = NULL;
3508 }
3509 EXPORT_SYMBOL_GPL(kvm_exit_x86);
3510
3511 static __init int kvm_init(void)
3512 {
3513 int r;
3514
3515 r = kvm_mmu_module_init();
3516 if (r)
3517 goto out4;
3518
3519 kvm_init_debug();
3520
3521 kvm_arch_init();
3522
3523 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3524
3525 if (bad_page == NULL) {
3526 r = -ENOMEM;
3527 goto out;
3528 }
3529
3530 return 0;
3531
3532 out:
3533 kvm_exit_debug();
3534 kvm_mmu_module_exit();
3535 out4:
3536 return r;
3537 }
3538
3539 static __exit void kvm_exit(void)
3540 {
3541 kvm_exit_debug();
3542 __free_page(bad_page);
3543 kvm_mmu_module_exit();
3544 }
3545
3546 module_init(kvm_init)
3547 module_exit(kvm_exit)
This page took 0.102108 seconds and 5 git commands to generate.