KVM: Trivial: Use standard CR0 flags macros from asm/cpu-features.h
[deliverable/linux.git] / drivers / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
21
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <linux/reboot.h>
31 #include <linux/debugfs.h>
32 #include <linux/highmem.h>
33 #include <linux/file.h>
34 #include <linux/sysdev.h>
35 #include <linux/cpu.h>
36 #include <linux/sched.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
40
41 #include <asm/processor.h>
42 #include <asm/msr.h>
43 #include <asm/io.h>
44 #include <asm/uaccess.h>
45 #include <asm/desc.h>
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
52
53 static cpumask_t cpus_hardware_enabled;
54
55 struct kvm_arch_ops *kvm_arch_ops;
56
57 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
58
59 static struct kvm_stats_debugfs_item {
60 const char *name;
61 int offset;
62 struct dentry *dentry;
63 } debugfs_entries[] = {
64 { "pf_fixed", STAT_OFFSET(pf_fixed) },
65 { "pf_guest", STAT_OFFSET(pf_guest) },
66 { "tlb_flush", STAT_OFFSET(tlb_flush) },
67 { "invlpg", STAT_OFFSET(invlpg) },
68 { "exits", STAT_OFFSET(exits) },
69 { "io_exits", STAT_OFFSET(io_exits) },
70 { "mmio_exits", STAT_OFFSET(mmio_exits) },
71 { "signal_exits", STAT_OFFSET(signal_exits) },
72 { "irq_window", STAT_OFFSET(irq_window_exits) },
73 { "halt_exits", STAT_OFFSET(halt_exits) },
74 { "request_irq", STAT_OFFSET(request_irq_exits) },
75 { "irq_exits", STAT_OFFSET(irq_exits) },
76 { "light_exits", STAT_OFFSET(light_exits) },
77 { "efer_reload", STAT_OFFSET(efer_reload) },
78 { NULL }
79 };
80
81 static struct dentry *debugfs_dir;
82
83 #define MAX_IO_MSRS 256
84
85 #define CR0_RESERVED_BITS \
86 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
87 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
88 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
89 #define LMSW_GUEST_MASK 0x0eULL
90 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
91 #define CR8_RESEVED_BITS (~0x0fULL)
92 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
93
94 #ifdef CONFIG_X86_64
95 // LDT or TSS descriptor in the GDT. 16 bytes.
96 struct segment_descriptor_64 {
97 struct segment_descriptor s;
98 u32 base_higher;
99 u32 pad_zero;
100 };
101
102 #endif
103
104 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
105 unsigned long arg);
106
107 unsigned long segment_base(u16 selector)
108 {
109 struct descriptor_table gdt;
110 struct segment_descriptor *d;
111 unsigned long table_base;
112 typedef unsigned long ul;
113 unsigned long v;
114
115 if (selector == 0)
116 return 0;
117
118 asm ("sgdt %0" : "=m"(gdt));
119 table_base = gdt.base;
120
121 if (selector & 4) { /* from ldt */
122 u16 ldt_selector;
123
124 asm ("sldt %0" : "=g"(ldt_selector));
125 table_base = segment_base(ldt_selector);
126 }
127 d = (struct segment_descriptor *)(table_base + (selector & ~7));
128 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
129 #ifdef CONFIG_X86_64
130 if (d->system == 0
131 && (d->type == 2 || d->type == 9 || d->type == 11))
132 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
133 #endif
134 return v;
135 }
136 EXPORT_SYMBOL_GPL(segment_base);
137
138 static inline int valid_vcpu(int n)
139 {
140 return likely(n >= 0 && n < KVM_MAX_VCPUS);
141 }
142
143 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
144 void *dest)
145 {
146 unsigned char *host_buf = dest;
147 unsigned long req_size = size;
148
149 while (size) {
150 hpa_t paddr;
151 unsigned now;
152 unsigned offset;
153 hva_t guest_buf;
154
155 paddr = gva_to_hpa(vcpu, addr);
156
157 if (is_error_hpa(paddr))
158 break;
159
160 guest_buf = (hva_t)kmap_atomic(
161 pfn_to_page(paddr >> PAGE_SHIFT),
162 KM_USER0);
163 offset = addr & ~PAGE_MASK;
164 guest_buf |= offset;
165 now = min(size, PAGE_SIZE - offset);
166 memcpy(host_buf, (void*)guest_buf, now);
167 host_buf += now;
168 addr += now;
169 size -= now;
170 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
171 }
172 return req_size - size;
173 }
174 EXPORT_SYMBOL_GPL(kvm_read_guest);
175
176 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
177 void *data)
178 {
179 unsigned char *host_buf = data;
180 unsigned long req_size = size;
181
182 while (size) {
183 hpa_t paddr;
184 unsigned now;
185 unsigned offset;
186 hva_t guest_buf;
187 gfn_t gfn;
188
189 paddr = gva_to_hpa(vcpu, addr);
190
191 if (is_error_hpa(paddr))
192 break;
193
194 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
195 mark_page_dirty(vcpu->kvm, gfn);
196 guest_buf = (hva_t)kmap_atomic(
197 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
198 offset = addr & ~PAGE_MASK;
199 guest_buf |= offset;
200 now = min(size, PAGE_SIZE - offset);
201 memcpy((void*)guest_buf, host_buf, now);
202 host_buf += now;
203 addr += now;
204 size -= now;
205 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
206 }
207 return req_size - size;
208 }
209 EXPORT_SYMBOL_GPL(kvm_write_guest);
210
211 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
212 {
213 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
214 return;
215
216 vcpu->guest_fpu_loaded = 1;
217 fx_save(vcpu->host_fx_image);
218 fx_restore(vcpu->guest_fx_image);
219 }
220 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
221
222 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
223 {
224 if (!vcpu->guest_fpu_loaded)
225 return;
226
227 vcpu->guest_fpu_loaded = 0;
228 fx_save(vcpu->guest_fx_image);
229 fx_restore(vcpu->host_fx_image);
230 }
231 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
232
233 /*
234 * Switches to specified vcpu, until a matching vcpu_put()
235 */
236 static void vcpu_load(struct kvm_vcpu *vcpu)
237 {
238 mutex_lock(&vcpu->mutex);
239 kvm_arch_ops->vcpu_load(vcpu);
240 }
241
242 static void vcpu_put(struct kvm_vcpu *vcpu)
243 {
244 kvm_arch_ops->vcpu_put(vcpu);
245 mutex_unlock(&vcpu->mutex);
246 }
247
248 static void ack_flush(void *_completed)
249 {
250 atomic_t *completed = _completed;
251
252 atomic_inc(completed);
253 }
254
255 void kvm_flush_remote_tlbs(struct kvm *kvm)
256 {
257 int i, cpu, needed;
258 cpumask_t cpus;
259 struct kvm_vcpu *vcpu;
260 atomic_t completed;
261
262 atomic_set(&completed, 0);
263 cpus_clear(cpus);
264 needed = 0;
265 for (i = 0; i < kvm->nvcpus; ++i) {
266 vcpu = &kvm->vcpus[i];
267 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
268 continue;
269 cpu = vcpu->cpu;
270 if (cpu != -1 && cpu != raw_smp_processor_id())
271 if (!cpu_isset(cpu, cpus)) {
272 cpu_set(cpu, cpus);
273 ++needed;
274 }
275 }
276
277 /*
278 * We really want smp_call_function_mask() here. But that's not
279 * available, so ipi all cpus in parallel and wait for them
280 * to complete.
281 */
282 for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
283 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
284 while (atomic_read(&completed) != needed) {
285 cpu_relax();
286 barrier();
287 }
288 }
289
290 static struct kvm *kvm_create_vm(void)
291 {
292 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
293 int i;
294
295 if (!kvm)
296 return ERR_PTR(-ENOMEM);
297
298 kvm_io_bus_init(&kvm->pio_bus);
299 spin_lock_init(&kvm->lock);
300 INIT_LIST_HEAD(&kvm->active_mmu_pages);
301 kvm_io_bus_init(&kvm->mmio_bus);
302 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
303 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
304
305 mutex_init(&vcpu->mutex);
306 vcpu->cpu = -1;
307 vcpu->kvm = kvm;
308 vcpu->mmu.root_hpa = INVALID_PAGE;
309 }
310 spin_lock(&kvm_lock);
311 list_add(&kvm->vm_list, &vm_list);
312 spin_unlock(&kvm_lock);
313 return kvm;
314 }
315
316 static int kvm_dev_open(struct inode *inode, struct file *filp)
317 {
318 return 0;
319 }
320
321 /*
322 * Free any memory in @free but not in @dont.
323 */
324 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
325 struct kvm_memory_slot *dont)
326 {
327 int i;
328
329 if (!dont || free->phys_mem != dont->phys_mem)
330 if (free->phys_mem) {
331 for (i = 0; i < free->npages; ++i)
332 if (free->phys_mem[i])
333 __free_page(free->phys_mem[i]);
334 vfree(free->phys_mem);
335 }
336
337 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
338 vfree(free->dirty_bitmap);
339
340 free->phys_mem = NULL;
341 free->npages = 0;
342 free->dirty_bitmap = NULL;
343 }
344
345 static void kvm_free_physmem(struct kvm *kvm)
346 {
347 int i;
348
349 for (i = 0; i < kvm->nmemslots; ++i)
350 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
351 }
352
353 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
354 {
355 int i;
356
357 for (i = 0; i < 2; ++i)
358 if (vcpu->pio.guest_pages[i]) {
359 __free_page(vcpu->pio.guest_pages[i]);
360 vcpu->pio.guest_pages[i] = NULL;
361 }
362 }
363
364 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
365 {
366 if (!vcpu->vmcs)
367 return;
368
369 vcpu_load(vcpu);
370 kvm_mmu_unload(vcpu);
371 vcpu_put(vcpu);
372 }
373
374 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
375 {
376 if (!vcpu->vmcs)
377 return;
378
379 vcpu_load(vcpu);
380 kvm_mmu_destroy(vcpu);
381 vcpu_put(vcpu);
382 kvm_arch_ops->vcpu_free(vcpu);
383 free_page((unsigned long)vcpu->run);
384 vcpu->run = NULL;
385 free_page((unsigned long)vcpu->pio_data);
386 vcpu->pio_data = NULL;
387 free_pio_guest_pages(vcpu);
388 }
389
390 static void kvm_free_vcpus(struct kvm *kvm)
391 {
392 unsigned int i;
393
394 /*
395 * Unpin any mmu pages first.
396 */
397 for (i = 0; i < KVM_MAX_VCPUS; ++i)
398 kvm_unload_vcpu_mmu(&kvm->vcpus[i]);
399 for (i = 0; i < KVM_MAX_VCPUS; ++i)
400 kvm_free_vcpu(&kvm->vcpus[i]);
401 }
402
403 static int kvm_dev_release(struct inode *inode, struct file *filp)
404 {
405 return 0;
406 }
407
408 static void kvm_destroy_vm(struct kvm *kvm)
409 {
410 spin_lock(&kvm_lock);
411 list_del(&kvm->vm_list);
412 spin_unlock(&kvm_lock);
413 kvm_io_bus_destroy(&kvm->pio_bus);
414 kvm_io_bus_destroy(&kvm->mmio_bus);
415 kvm_free_vcpus(kvm);
416 kvm_free_physmem(kvm);
417 kfree(kvm);
418 }
419
420 static int kvm_vm_release(struct inode *inode, struct file *filp)
421 {
422 struct kvm *kvm = filp->private_data;
423
424 kvm_destroy_vm(kvm);
425 return 0;
426 }
427
428 static void inject_gp(struct kvm_vcpu *vcpu)
429 {
430 kvm_arch_ops->inject_gp(vcpu, 0);
431 }
432
433 /*
434 * Load the pae pdptrs. Return true is they are all valid.
435 */
436 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
437 {
438 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440 int i;
441 u64 pdpte;
442 u64 *pdpt;
443 int ret;
444 struct page *page;
445
446 spin_lock(&vcpu->kvm->lock);
447 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
448 /* FIXME: !page - emulate? 0xff? */
449 pdpt = kmap_atomic(page, KM_USER0);
450
451 ret = 1;
452 for (i = 0; i < 4; ++i) {
453 pdpte = pdpt[offset + i];
454 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
455 ret = 0;
456 goto out;
457 }
458 }
459
460 for (i = 0; i < 4; ++i)
461 vcpu->pdptrs[i] = pdpt[offset + i];
462
463 out:
464 kunmap_atomic(pdpt, KM_USER0);
465 spin_unlock(&vcpu->kvm->lock);
466
467 return ret;
468 }
469
470 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
471 {
472 if (cr0 & CR0_RESERVED_BITS) {
473 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
474 cr0, vcpu->cr0);
475 inject_gp(vcpu);
476 return;
477 }
478
479 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
480 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
481 inject_gp(vcpu);
482 return;
483 }
484
485 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
486 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
487 "and a clear PE flag\n");
488 inject_gp(vcpu);
489 return;
490 }
491
492 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
493 #ifdef CONFIG_X86_64
494 if ((vcpu->shadow_efer & EFER_LME)) {
495 int cs_db, cs_l;
496
497 if (!is_pae(vcpu)) {
498 printk(KERN_DEBUG "set_cr0: #GP, start paging "
499 "in long mode while PAE is disabled\n");
500 inject_gp(vcpu);
501 return;
502 }
503 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
504 if (cs_l) {
505 printk(KERN_DEBUG "set_cr0: #GP, start paging "
506 "in long mode while CS.L == 1\n");
507 inject_gp(vcpu);
508 return;
509
510 }
511 } else
512 #endif
513 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
514 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
515 "reserved bits\n");
516 inject_gp(vcpu);
517 return;
518 }
519
520 }
521
522 kvm_arch_ops->set_cr0(vcpu, cr0);
523 vcpu->cr0 = cr0;
524
525 spin_lock(&vcpu->kvm->lock);
526 kvm_mmu_reset_context(vcpu);
527 spin_unlock(&vcpu->kvm->lock);
528 return;
529 }
530 EXPORT_SYMBOL_GPL(set_cr0);
531
532 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
533 {
534 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
535 }
536 EXPORT_SYMBOL_GPL(lmsw);
537
538 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
539 {
540 if (cr4 & CR4_RESEVED_BITS) {
541 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
542 inject_gp(vcpu);
543 return;
544 }
545
546 if (is_long_mode(vcpu)) {
547 if (!(cr4 & CR4_PAE_MASK)) {
548 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
549 "in long mode\n");
550 inject_gp(vcpu);
551 return;
552 }
553 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
554 && !load_pdptrs(vcpu, vcpu->cr3)) {
555 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
556 inject_gp(vcpu);
557 }
558
559 if (cr4 & CR4_VMXE_MASK) {
560 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
561 inject_gp(vcpu);
562 return;
563 }
564 kvm_arch_ops->set_cr4(vcpu, cr4);
565 spin_lock(&vcpu->kvm->lock);
566 kvm_mmu_reset_context(vcpu);
567 spin_unlock(&vcpu->kvm->lock);
568 }
569 EXPORT_SYMBOL_GPL(set_cr4);
570
571 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
572 {
573 if (is_long_mode(vcpu)) {
574 if (cr3 & CR3_L_MODE_RESEVED_BITS) {
575 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
576 inject_gp(vcpu);
577 return;
578 }
579 } else {
580 if (cr3 & CR3_RESEVED_BITS) {
581 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
582 inject_gp(vcpu);
583 return;
584 }
585 if (is_paging(vcpu) && is_pae(vcpu) &&
586 !load_pdptrs(vcpu, cr3)) {
587 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
588 "reserved bits\n");
589 inject_gp(vcpu);
590 return;
591 }
592 }
593
594 vcpu->cr3 = cr3;
595 spin_lock(&vcpu->kvm->lock);
596 /*
597 * Does the new cr3 value map to physical memory? (Note, we
598 * catch an invalid cr3 even in real-mode, because it would
599 * cause trouble later on when we turn on paging anyway.)
600 *
601 * A real CPU would silently accept an invalid cr3 and would
602 * attempt to use it - with largely undefined (and often hard
603 * to debug) behavior on the guest side.
604 */
605 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
606 inject_gp(vcpu);
607 else
608 vcpu->mmu.new_cr3(vcpu);
609 spin_unlock(&vcpu->kvm->lock);
610 }
611 EXPORT_SYMBOL_GPL(set_cr3);
612
613 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
614 {
615 if ( cr8 & CR8_RESEVED_BITS) {
616 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
617 inject_gp(vcpu);
618 return;
619 }
620 vcpu->cr8 = cr8;
621 }
622 EXPORT_SYMBOL_GPL(set_cr8);
623
624 void fx_init(struct kvm_vcpu *vcpu)
625 {
626 struct __attribute__ ((__packed__)) fx_image_s {
627 u16 control; //fcw
628 u16 status; //fsw
629 u16 tag; // ftw
630 u16 opcode; //fop
631 u64 ip; // fpu ip
632 u64 operand;// fpu dp
633 u32 mxcsr;
634 u32 mxcsr_mask;
635
636 } *fx_image;
637
638 fx_save(vcpu->host_fx_image);
639 fpu_init();
640 fx_save(vcpu->guest_fx_image);
641 fx_restore(vcpu->host_fx_image);
642
643 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
644 fx_image->mxcsr = 0x1f80;
645 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
646 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
647 }
648 EXPORT_SYMBOL_GPL(fx_init);
649
650 /*
651 * Allocate some memory and give it an address in the guest physical address
652 * space.
653 *
654 * Discontiguous memory is allowed, mostly for framebuffers.
655 */
656 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
657 struct kvm_memory_region *mem)
658 {
659 int r;
660 gfn_t base_gfn;
661 unsigned long npages;
662 unsigned long i;
663 struct kvm_memory_slot *memslot;
664 struct kvm_memory_slot old, new;
665 int memory_config_version;
666
667 r = -EINVAL;
668 /* General sanity checks */
669 if (mem->memory_size & (PAGE_SIZE - 1))
670 goto out;
671 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
672 goto out;
673 if (mem->slot >= KVM_MEMORY_SLOTS)
674 goto out;
675 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
676 goto out;
677
678 memslot = &kvm->memslots[mem->slot];
679 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
680 npages = mem->memory_size >> PAGE_SHIFT;
681
682 if (!npages)
683 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
684
685 raced:
686 spin_lock(&kvm->lock);
687
688 memory_config_version = kvm->memory_config_version;
689 new = old = *memslot;
690
691 new.base_gfn = base_gfn;
692 new.npages = npages;
693 new.flags = mem->flags;
694
695 /* Disallow changing a memory slot's size. */
696 r = -EINVAL;
697 if (npages && old.npages && npages != old.npages)
698 goto out_unlock;
699
700 /* Check for overlaps */
701 r = -EEXIST;
702 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
703 struct kvm_memory_slot *s = &kvm->memslots[i];
704
705 if (s == memslot)
706 continue;
707 if (!((base_gfn + npages <= s->base_gfn) ||
708 (base_gfn >= s->base_gfn + s->npages)))
709 goto out_unlock;
710 }
711 /*
712 * Do memory allocations outside lock. memory_config_version will
713 * detect any races.
714 */
715 spin_unlock(&kvm->lock);
716
717 /* Deallocate if slot is being removed */
718 if (!npages)
719 new.phys_mem = NULL;
720
721 /* Free page dirty bitmap if unneeded */
722 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
723 new.dirty_bitmap = NULL;
724
725 r = -ENOMEM;
726
727 /* Allocate if a slot is being created */
728 if (npages && !new.phys_mem) {
729 new.phys_mem = vmalloc(npages * sizeof(struct page *));
730
731 if (!new.phys_mem)
732 goto out_free;
733
734 memset(new.phys_mem, 0, npages * sizeof(struct page *));
735 for (i = 0; i < npages; ++i) {
736 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
737 | __GFP_ZERO);
738 if (!new.phys_mem[i])
739 goto out_free;
740 set_page_private(new.phys_mem[i],0);
741 }
742 }
743
744 /* Allocate page dirty bitmap if needed */
745 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
746 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
747
748 new.dirty_bitmap = vmalloc(dirty_bytes);
749 if (!new.dirty_bitmap)
750 goto out_free;
751 memset(new.dirty_bitmap, 0, dirty_bytes);
752 }
753
754 spin_lock(&kvm->lock);
755
756 if (memory_config_version != kvm->memory_config_version) {
757 spin_unlock(&kvm->lock);
758 kvm_free_physmem_slot(&new, &old);
759 goto raced;
760 }
761
762 r = -EAGAIN;
763 if (kvm->busy)
764 goto out_unlock;
765
766 if (mem->slot >= kvm->nmemslots)
767 kvm->nmemslots = mem->slot + 1;
768
769 *memslot = new;
770 ++kvm->memory_config_version;
771
772 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
773 kvm_flush_remote_tlbs(kvm);
774
775 spin_unlock(&kvm->lock);
776
777 kvm_free_physmem_slot(&old, &new);
778 return 0;
779
780 out_unlock:
781 spin_unlock(&kvm->lock);
782 out_free:
783 kvm_free_physmem_slot(&new, &old);
784 out:
785 return r;
786 }
787
788 /*
789 * Get (and clear) the dirty memory log for a memory slot.
790 */
791 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
792 struct kvm_dirty_log *log)
793 {
794 struct kvm_memory_slot *memslot;
795 int r, i;
796 int n;
797 unsigned long any = 0;
798
799 spin_lock(&kvm->lock);
800
801 /*
802 * Prevent changes to guest memory configuration even while the lock
803 * is not taken.
804 */
805 ++kvm->busy;
806 spin_unlock(&kvm->lock);
807 r = -EINVAL;
808 if (log->slot >= KVM_MEMORY_SLOTS)
809 goto out;
810
811 memslot = &kvm->memslots[log->slot];
812 r = -ENOENT;
813 if (!memslot->dirty_bitmap)
814 goto out;
815
816 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
817
818 for (i = 0; !any && i < n/sizeof(long); ++i)
819 any = memslot->dirty_bitmap[i];
820
821 r = -EFAULT;
822 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
823 goto out;
824
825 spin_lock(&kvm->lock);
826 kvm_mmu_slot_remove_write_access(kvm, log->slot);
827 kvm_flush_remote_tlbs(kvm);
828 memset(memslot->dirty_bitmap, 0, n);
829 spin_unlock(&kvm->lock);
830
831 r = 0;
832
833 out:
834 spin_lock(&kvm->lock);
835 --kvm->busy;
836 spin_unlock(&kvm->lock);
837 return r;
838 }
839
840 /*
841 * Set a new alias region. Aliases map a portion of physical memory into
842 * another portion. This is useful for memory windows, for example the PC
843 * VGA region.
844 */
845 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
846 struct kvm_memory_alias *alias)
847 {
848 int r, n;
849 struct kvm_mem_alias *p;
850
851 r = -EINVAL;
852 /* General sanity checks */
853 if (alias->memory_size & (PAGE_SIZE - 1))
854 goto out;
855 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
856 goto out;
857 if (alias->slot >= KVM_ALIAS_SLOTS)
858 goto out;
859 if (alias->guest_phys_addr + alias->memory_size
860 < alias->guest_phys_addr)
861 goto out;
862 if (alias->target_phys_addr + alias->memory_size
863 < alias->target_phys_addr)
864 goto out;
865
866 spin_lock(&kvm->lock);
867
868 p = &kvm->aliases[alias->slot];
869 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
870 p->npages = alias->memory_size >> PAGE_SHIFT;
871 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
872
873 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
874 if (kvm->aliases[n - 1].npages)
875 break;
876 kvm->naliases = n;
877
878 kvm_mmu_zap_all(kvm);
879
880 spin_unlock(&kvm->lock);
881
882 return 0;
883
884 out:
885 return r;
886 }
887
888 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
889 {
890 int i;
891 struct kvm_mem_alias *alias;
892
893 for (i = 0; i < kvm->naliases; ++i) {
894 alias = &kvm->aliases[i];
895 if (gfn >= alias->base_gfn
896 && gfn < alias->base_gfn + alias->npages)
897 return alias->target_gfn + gfn - alias->base_gfn;
898 }
899 return gfn;
900 }
901
902 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
903 {
904 int i;
905
906 for (i = 0; i < kvm->nmemslots; ++i) {
907 struct kvm_memory_slot *memslot = &kvm->memslots[i];
908
909 if (gfn >= memslot->base_gfn
910 && gfn < memslot->base_gfn + memslot->npages)
911 return memslot;
912 }
913 return NULL;
914 }
915
916 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
917 {
918 gfn = unalias_gfn(kvm, gfn);
919 return __gfn_to_memslot(kvm, gfn);
920 }
921
922 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
923 {
924 struct kvm_memory_slot *slot;
925
926 gfn = unalias_gfn(kvm, gfn);
927 slot = __gfn_to_memslot(kvm, gfn);
928 if (!slot)
929 return NULL;
930 return slot->phys_mem[gfn - slot->base_gfn];
931 }
932 EXPORT_SYMBOL_GPL(gfn_to_page);
933
934 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
935 {
936 int i;
937 struct kvm_memory_slot *memslot;
938 unsigned long rel_gfn;
939
940 for (i = 0; i < kvm->nmemslots; ++i) {
941 memslot = &kvm->memslots[i];
942
943 if (gfn >= memslot->base_gfn
944 && gfn < memslot->base_gfn + memslot->npages) {
945
946 if (!memslot->dirty_bitmap)
947 return;
948
949 rel_gfn = gfn - memslot->base_gfn;
950
951 /* avoid RMW */
952 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
953 set_bit(rel_gfn, memslot->dirty_bitmap);
954 return;
955 }
956 }
957 }
958
959 static int emulator_read_std(unsigned long addr,
960 void *val,
961 unsigned int bytes,
962 struct x86_emulate_ctxt *ctxt)
963 {
964 struct kvm_vcpu *vcpu = ctxt->vcpu;
965 void *data = val;
966
967 while (bytes) {
968 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
969 unsigned offset = addr & (PAGE_SIZE-1);
970 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
971 unsigned long pfn;
972 struct page *page;
973 void *page_virt;
974
975 if (gpa == UNMAPPED_GVA)
976 return X86EMUL_PROPAGATE_FAULT;
977 pfn = gpa >> PAGE_SHIFT;
978 page = gfn_to_page(vcpu->kvm, pfn);
979 if (!page)
980 return X86EMUL_UNHANDLEABLE;
981 page_virt = kmap_atomic(page, KM_USER0);
982
983 memcpy(data, page_virt + offset, tocopy);
984
985 kunmap_atomic(page_virt, KM_USER0);
986
987 bytes -= tocopy;
988 data += tocopy;
989 addr += tocopy;
990 }
991
992 return X86EMUL_CONTINUE;
993 }
994
995 static int emulator_write_std(unsigned long addr,
996 const void *val,
997 unsigned int bytes,
998 struct x86_emulate_ctxt *ctxt)
999 {
1000 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
1001 addr, bytes);
1002 return X86EMUL_UNHANDLEABLE;
1003 }
1004
1005 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1006 gpa_t addr)
1007 {
1008 /*
1009 * Note that its important to have this wrapper function because
1010 * in the very near future we will be checking for MMIOs against
1011 * the LAPIC as well as the general MMIO bus
1012 */
1013 return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1014 }
1015
1016 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1017 gpa_t addr)
1018 {
1019 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1020 }
1021
1022 static int emulator_read_emulated(unsigned long addr,
1023 void *val,
1024 unsigned int bytes,
1025 struct x86_emulate_ctxt *ctxt)
1026 {
1027 struct kvm_vcpu *vcpu = ctxt->vcpu;
1028 struct kvm_io_device *mmio_dev;
1029 gpa_t gpa;
1030
1031 if (vcpu->mmio_read_completed) {
1032 memcpy(val, vcpu->mmio_data, bytes);
1033 vcpu->mmio_read_completed = 0;
1034 return X86EMUL_CONTINUE;
1035 } else if (emulator_read_std(addr, val, bytes, ctxt)
1036 == X86EMUL_CONTINUE)
1037 return X86EMUL_CONTINUE;
1038
1039 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1040 if (gpa == UNMAPPED_GVA)
1041 return X86EMUL_PROPAGATE_FAULT;
1042
1043 /*
1044 * Is this MMIO handled locally?
1045 */
1046 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1047 if (mmio_dev) {
1048 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1049 return X86EMUL_CONTINUE;
1050 }
1051
1052 vcpu->mmio_needed = 1;
1053 vcpu->mmio_phys_addr = gpa;
1054 vcpu->mmio_size = bytes;
1055 vcpu->mmio_is_write = 0;
1056
1057 return X86EMUL_UNHANDLEABLE;
1058 }
1059
1060 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1061 const void *val, int bytes)
1062 {
1063 struct page *page;
1064 void *virt;
1065 unsigned offset = offset_in_page(gpa);
1066
1067 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1068 return 0;
1069 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1070 if (!page)
1071 return 0;
1072 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1073 virt = kmap_atomic(page, KM_USER0);
1074 kvm_mmu_pte_write(vcpu, gpa, virt + offset, val, bytes);
1075 memcpy(virt + offset_in_page(gpa), val, bytes);
1076 kunmap_atomic(virt, KM_USER0);
1077 return 1;
1078 }
1079
1080 static int emulator_write_emulated_onepage(unsigned long addr,
1081 const void *val,
1082 unsigned int bytes,
1083 struct x86_emulate_ctxt *ctxt)
1084 {
1085 struct kvm_vcpu *vcpu = ctxt->vcpu;
1086 struct kvm_io_device *mmio_dev;
1087 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1088
1089 if (gpa == UNMAPPED_GVA) {
1090 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1091 return X86EMUL_PROPAGATE_FAULT;
1092 }
1093
1094 if (emulator_write_phys(vcpu, gpa, val, bytes))
1095 return X86EMUL_CONTINUE;
1096
1097 /*
1098 * Is this MMIO handled locally?
1099 */
1100 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1101 if (mmio_dev) {
1102 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1103 return X86EMUL_CONTINUE;
1104 }
1105
1106 vcpu->mmio_needed = 1;
1107 vcpu->mmio_phys_addr = gpa;
1108 vcpu->mmio_size = bytes;
1109 vcpu->mmio_is_write = 1;
1110 memcpy(vcpu->mmio_data, val, bytes);
1111
1112 return X86EMUL_CONTINUE;
1113 }
1114
1115 static int emulator_write_emulated(unsigned long addr,
1116 const void *val,
1117 unsigned int bytes,
1118 struct x86_emulate_ctxt *ctxt)
1119 {
1120 /* Crossing a page boundary? */
1121 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1122 int rc, now;
1123
1124 now = -addr & ~PAGE_MASK;
1125 rc = emulator_write_emulated_onepage(addr, val, now, ctxt);
1126 if (rc != X86EMUL_CONTINUE)
1127 return rc;
1128 addr += now;
1129 val += now;
1130 bytes -= now;
1131 }
1132 return emulator_write_emulated_onepage(addr, val, bytes, ctxt);
1133 }
1134
1135 static int emulator_cmpxchg_emulated(unsigned long addr,
1136 const void *old,
1137 const void *new,
1138 unsigned int bytes,
1139 struct x86_emulate_ctxt *ctxt)
1140 {
1141 static int reported;
1142
1143 if (!reported) {
1144 reported = 1;
1145 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1146 }
1147 return emulator_write_emulated(addr, new, bytes, ctxt);
1148 }
1149
1150 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1151 {
1152 return kvm_arch_ops->get_segment_base(vcpu, seg);
1153 }
1154
1155 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1156 {
1157 return X86EMUL_CONTINUE;
1158 }
1159
1160 int emulate_clts(struct kvm_vcpu *vcpu)
1161 {
1162 unsigned long cr0;
1163
1164 cr0 = vcpu->cr0 & ~X86_CR0_TS;
1165 kvm_arch_ops->set_cr0(vcpu, cr0);
1166 return X86EMUL_CONTINUE;
1167 }
1168
1169 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1170 {
1171 struct kvm_vcpu *vcpu = ctxt->vcpu;
1172
1173 switch (dr) {
1174 case 0 ... 3:
1175 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1176 return X86EMUL_CONTINUE;
1177 default:
1178 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1179 __FUNCTION__, dr);
1180 return X86EMUL_UNHANDLEABLE;
1181 }
1182 }
1183
1184 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1185 {
1186 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1187 int exception;
1188
1189 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1190 if (exception) {
1191 /* FIXME: better handling */
1192 return X86EMUL_UNHANDLEABLE;
1193 }
1194 return X86EMUL_CONTINUE;
1195 }
1196
1197 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1198 {
1199 static int reported;
1200 u8 opcodes[4];
1201 unsigned long rip = ctxt->vcpu->rip;
1202 unsigned long rip_linear;
1203
1204 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1205
1206 if (reported)
1207 return;
1208
1209 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1210
1211 printk(KERN_ERR "emulation failed but !mmio_needed?"
1212 " rip %lx %02x %02x %02x %02x\n",
1213 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1214 reported = 1;
1215 }
1216
1217 struct x86_emulate_ops emulate_ops = {
1218 .read_std = emulator_read_std,
1219 .write_std = emulator_write_std,
1220 .read_emulated = emulator_read_emulated,
1221 .write_emulated = emulator_write_emulated,
1222 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1223 };
1224
1225 int emulate_instruction(struct kvm_vcpu *vcpu,
1226 struct kvm_run *run,
1227 unsigned long cr2,
1228 u16 error_code)
1229 {
1230 struct x86_emulate_ctxt emulate_ctxt;
1231 int r;
1232 int cs_db, cs_l;
1233
1234 vcpu->mmio_fault_cr2 = cr2;
1235 kvm_arch_ops->cache_regs(vcpu);
1236
1237 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1238
1239 emulate_ctxt.vcpu = vcpu;
1240 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1241 emulate_ctxt.cr2 = cr2;
1242 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1243 ? X86EMUL_MODE_REAL : cs_l
1244 ? X86EMUL_MODE_PROT64 : cs_db
1245 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1246
1247 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1248 emulate_ctxt.cs_base = 0;
1249 emulate_ctxt.ds_base = 0;
1250 emulate_ctxt.es_base = 0;
1251 emulate_ctxt.ss_base = 0;
1252 } else {
1253 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1254 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1255 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1256 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1257 }
1258
1259 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1260 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1261
1262 vcpu->mmio_is_write = 0;
1263 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1264
1265 if ((r || vcpu->mmio_is_write) && run) {
1266 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1267 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1268 run->mmio.len = vcpu->mmio_size;
1269 run->mmio.is_write = vcpu->mmio_is_write;
1270 }
1271
1272 if (r) {
1273 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1274 return EMULATE_DONE;
1275 if (!vcpu->mmio_needed) {
1276 report_emulation_failure(&emulate_ctxt);
1277 return EMULATE_FAIL;
1278 }
1279 return EMULATE_DO_MMIO;
1280 }
1281
1282 kvm_arch_ops->decache_regs(vcpu);
1283 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1284
1285 if (vcpu->mmio_is_write) {
1286 vcpu->mmio_needed = 0;
1287 return EMULATE_DO_MMIO;
1288 }
1289
1290 return EMULATE_DONE;
1291 }
1292 EXPORT_SYMBOL_GPL(emulate_instruction);
1293
1294 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1295 {
1296 if (vcpu->irq_summary)
1297 return 1;
1298
1299 vcpu->run->exit_reason = KVM_EXIT_HLT;
1300 ++vcpu->stat.halt_exits;
1301 return 0;
1302 }
1303 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1304
1305 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1306 {
1307 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1308
1309 kvm_arch_ops->cache_regs(vcpu);
1310 ret = -KVM_EINVAL;
1311 #ifdef CONFIG_X86_64
1312 if (is_long_mode(vcpu)) {
1313 nr = vcpu->regs[VCPU_REGS_RAX];
1314 a0 = vcpu->regs[VCPU_REGS_RDI];
1315 a1 = vcpu->regs[VCPU_REGS_RSI];
1316 a2 = vcpu->regs[VCPU_REGS_RDX];
1317 a3 = vcpu->regs[VCPU_REGS_RCX];
1318 a4 = vcpu->regs[VCPU_REGS_R8];
1319 a5 = vcpu->regs[VCPU_REGS_R9];
1320 } else
1321 #endif
1322 {
1323 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1324 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1325 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1326 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1327 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1328 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1329 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1330 }
1331 switch (nr) {
1332 default:
1333 run->hypercall.args[0] = a0;
1334 run->hypercall.args[1] = a1;
1335 run->hypercall.args[2] = a2;
1336 run->hypercall.args[3] = a3;
1337 run->hypercall.args[4] = a4;
1338 run->hypercall.args[5] = a5;
1339 run->hypercall.ret = ret;
1340 run->hypercall.longmode = is_long_mode(vcpu);
1341 kvm_arch_ops->decache_regs(vcpu);
1342 return 0;
1343 }
1344 vcpu->regs[VCPU_REGS_RAX] = ret;
1345 kvm_arch_ops->decache_regs(vcpu);
1346 return 1;
1347 }
1348 EXPORT_SYMBOL_GPL(kvm_hypercall);
1349
1350 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1351 {
1352 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1353 }
1354
1355 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1356 {
1357 struct descriptor_table dt = { limit, base };
1358
1359 kvm_arch_ops->set_gdt(vcpu, &dt);
1360 }
1361
1362 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1363 {
1364 struct descriptor_table dt = { limit, base };
1365
1366 kvm_arch_ops->set_idt(vcpu, &dt);
1367 }
1368
1369 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1370 unsigned long *rflags)
1371 {
1372 lmsw(vcpu, msw);
1373 *rflags = kvm_arch_ops->get_rflags(vcpu);
1374 }
1375
1376 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1377 {
1378 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1379 switch (cr) {
1380 case 0:
1381 return vcpu->cr0;
1382 case 2:
1383 return vcpu->cr2;
1384 case 3:
1385 return vcpu->cr3;
1386 case 4:
1387 return vcpu->cr4;
1388 default:
1389 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1390 return 0;
1391 }
1392 }
1393
1394 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1395 unsigned long *rflags)
1396 {
1397 switch (cr) {
1398 case 0:
1399 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1400 *rflags = kvm_arch_ops->get_rflags(vcpu);
1401 break;
1402 case 2:
1403 vcpu->cr2 = val;
1404 break;
1405 case 3:
1406 set_cr3(vcpu, val);
1407 break;
1408 case 4:
1409 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1410 break;
1411 default:
1412 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1413 }
1414 }
1415
1416 /*
1417 * Register the para guest with the host:
1418 */
1419 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1420 {
1421 struct kvm_vcpu_para_state *para_state;
1422 hpa_t para_state_hpa, hypercall_hpa;
1423 struct page *para_state_page;
1424 unsigned char *hypercall;
1425 gpa_t hypercall_gpa;
1426
1427 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1428 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1429
1430 /*
1431 * Needs to be page aligned:
1432 */
1433 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1434 goto err_gp;
1435
1436 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1437 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1438 if (is_error_hpa(para_state_hpa))
1439 goto err_gp;
1440
1441 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1442 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1443 para_state = kmap_atomic(para_state_page, KM_USER0);
1444
1445 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1446 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1447
1448 para_state->host_version = KVM_PARA_API_VERSION;
1449 /*
1450 * We cannot support guests that try to register themselves
1451 * with a newer API version than the host supports:
1452 */
1453 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1454 para_state->ret = -KVM_EINVAL;
1455 goto err_kunmap_skip;
1456 }
1457
1458 hypercall_gpa = para_state->hypercall_gpa;
1459 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1460 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1461 if (is_error_hpa(hypercall_hpa)) {
1462 para_state->ret = -KVM_EINVAL;
1463 goto err_kunmap_skip;
1464 }
1465
1466 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1467 vcpu->para_state_page = para_state_page;
1468 vcpu->para_state_gpa = para_state_gpa;
1469 vcpu->hypercall_gpa = hypercall_gpa;
1470
1471 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1472 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1473 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1474 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1475 kunmap_atomic(hypercall, KM_USER1);
1476
1477 para_state->ret = 0;
1478 err_kunmap_skip:
1479 kunmap_atomic(para_state, KM_USER0);
1480 return 0;
1481 err_gp:
1482 return 1;
1483 }
1484
1485 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1486 {
1487 u64 data;
1488
1489 switch (msr) {
1490 case 0xc0010010: /* SYSCFG */
1491 case 0xc0010015: /* HWCR */
1492 case MSR_IA32_PLATFORM_ID:
1493 case MSR_IA32_P5_MC_ADDR:
1494 case MSR_IA32_P5_MC_TYPE:
1495 case MSR_IA32_MC0_CTL:
1496 case MSR_IA32_MCG_STATUS:
1497 case MSR_IA32_MCG_CAP:
1498 case MSR_IA32_MC0_MISC:
1499 case MSR_IA32_MC0_MISC+4:
1500 case MSR_IA32_MC0_MISC+8:
1501 case MSR_IA32_MC0_MISC+12:
1502 case MSR_IA32_MC0_MISC+16:
1503 case MSR_IA32_UCODE_REV:
1504 case MSR_IA32_PERF_STATUS:
1505 case MSR_IA32_EBL_CR_POWERON:
1506 /* MTRR registers */
1507 case 0xfe:
1508 case 0x200 ... 0x2ff:
1509 data = 0;
1510 break;
1511 case 0xcd: /* fsb frequency */
1512 data = 3;
1513 break;
1514 case MSR_IA32_APICBASE:
1515 data = vcpu->apic_base;
1516 break;
1517 case MSR_IA32_MISC_ENABLE:
1518 data = vcpu->ia32_misc_enable_msr;
1519 break;
1520 #ifdef CONFIG_X86_64
1521 case MSR_EFER:
1522 data = vcpu->shadow_efer;
1523 break;
1524 #endif
1525 default:
1526 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1527 return 1;
1528 }
1529 *pdata = data;
1530 return 0;
1531 }
1532 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1533
1534 /*
1535 * Reads an msr value (of 'msr_index') into 'pdata'.
1536 * Returns 0 on success, non-0 otherwise.
1537 * Assumes vcpu_load() was already called.
1538 */
1539 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1540 {
1541 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1542 }
1543
1544 #ifdef CONFIG_X86_64
1545
1546 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1547 {
1548 if (efer & EFER_RESERVED_BITS) {
1549 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1550 efer);
1551 inject_gp(vcpu);
1552 return;
1553 }
1554
1555 if (is_paging(vcpu)
1556 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1557 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1558 inject_gp(vcpu);
1559 return;
1560 }
1561
1562 kvm_arch_ops->set_efer(vcpu, efer);
1563
1564 efer &= ~EFER_LMA;
1565 efer |= vcpu->shadow_efer & EFER_LMA;
1566
1567 vcpu->shadow_efer = efer;
1568 }
1569
1570 #endif
1571
1572 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1573 {
1574 switch (msr) {
1575 #ifdef CONFIG_X86_64
1576 case MSR_EFER:
1577 set_efer(vcpu, data);
1578 break;
1579 #endif
1580 case MSR_IA32_MC0_STATUS:
1581 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1582 __FUNCTION__, data);
1583 break;
1584 case MSR_IA32_MCG_STATUS:
1585 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1586 __FUNCTION__, data);
1587 break;
1588 case MSR_IA32_UCODE_REV:
1589 case MSR_IA32_UCODE_WRITE:
1590 case 0x200 ... 0x2ff: /* MTRRs */
1591 break;
1592 case MSR_IA32_APICBASE:
1593 vcpu->apic_base = data;
1594 break;
1595 case MSR_IA32_MISC_ENABLE:
1596 vcpu->ia32_misc_enable_msr = data;
1597 break;
1598 /*
1599 * This is the 'probe whether the host is KVM' logic:
1600 */
1601 case MSR_KVM_API_MAGIC:
1602 return vcpu_register_para(vcpu, data);
1603
1604 default:
1605 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1606 return 1;
1607 }
1608 return 0;
1609 }
1610 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1611
1612 /*
1613 * Writes msr value into into the appropriate "register".
1614 * Returns 0 on success, non-0 otherwise.
1615 * Assumes vcpu_load() was already called.
1616 */
1617 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1618 {
1619 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1620 }
1621
1622 void kvm_resched(struct kvm_vcpu *vcpu)
1623 {
1624 if (!need_resched())
1625 return;
1626 vcpu_put(vcpu);
1627 cond_resched();
1628 vcpu_load(vcpu);
1629 }
1630 EXPORT_SYMBOL_GPL(kvm_resched);
1631
1632 void load_msrs(struct vmx_msr_entry *e, int n)
1633 {
1634 int i;
1635
1636 for (i = 0; i < n; ++i)
1637 wrmsrl(e[i].index, e[i].data);
1638 }
1639 EXPORT_SYMBOL_GPL(load_msrs);
1640
1641 void save_msrs(struct vmx_msr_entry *e, int n)
1642 {
1643 int i;
1644
1645 for (i = 0; i < n; ++i)
1646 rdmsrl(e[i].index, e[i].data);
1647 }
1648 EXPORT_SYMBOL_GPL(save_msrs);
1649
1650 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1651 {
1652 int i;
1653 u32 function;
1654 struct kvm_cpuid_entry *e, *best;
1655
1656 kvm_arch_ops->cache_regs(vcpu);
1657 function = vcpu->regs[VCPU_REGS_RAX];
1658 vcpu->regs[VCPU_REGS_RAX] = 0;
1659 vcpu->regs[VCPU_REGS_RBX] = 0;
1660 vcpu->regs[VCPU_REGS_RCX] = 0;
1661 vcpu->regs[VCPU_REGS_RDX] = 0;
1662 best = NULL;
1663 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1664 e = &vcpu->cpuid_entries[i];
1665 if (e->function == function) {
1666 best = e;
1667 break;
1668 }
1669 /*
1670 * Both basic or both extended?
1671 */
1672 if (((e->function ^ function) & 0x80000000) == 0)
1673 if (!best || e->function > best->function)
1674 best = e;
1675 }
1676 if (best) {
1677 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1678 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1679 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1680 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1681 }
1682 kvm_arch_ops->decache_regs(vcpu);
1683 kvm_arch_ops->skip_emulated_instruction(vcpu);
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1686
1687 static int pio_copy_data(struct kvm_vcpu *vcpu)
1688 {
1689 void *p = vcpu->pio_data;
1690 void *q;
1691 unsigned bytes;
1692 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1693
1694 kvm_arch_ops->vcpu_put(vcpu);
1695 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1696 PAGE_KERNEL);
1697 if (!q) {
1698 kvm_arch_ops->vcpu_load(vcpu);
1699 free_pio_guest_pages(vcpu);
1700 return -ENOMEM;
1701 }
1702 q += vcpu->pio.guest_page_offset;
1703 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1704 if (vcpu->pio.in)
1705 memcpy(q, p, bytes);
1706 else
1707 memcpy(p, q, bytes);
1708 q -= vcpu->pio.guest_page_offset;
1709 vunmap(q);
1710 kvm_arch_ops->vcpu_load(vcpu);
1711 free_pio_guest_pages(vcpu);
1712 return 0;
1713 }
1714
1715 static int complete_pio(struct kvm_vcpu *vcpu)
1716 {
1717 struct kvm_pio_request *io = &vcpu->pio;
1718 long delta;
1719 int r;
1720
1721 kvm_arch_ops->cache_regs(vcpu);
1722
1723 if (!io->string) {
1724 if (io->in)
1725 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1726 io->size);
1727 } else {
1728 if (io->in) {
1729 r = pio_copy_data(vcpu);
1730 if (r) {
1731 kvm_arch_ops->cache_regs(vcpu);
1732 return r;
1733 }
1734 }
1735
1736 delta = 1;
1737 if (io->rep) {
1738 delta *= io->cur_count;
1739 /*
1740 * The size of the register should really depend on
1741 * current address size.
1742 */
1743 vcpu->regs[VCPU_REGS_RCX] -= delta;
1744 }
1745 if (io->down)
1746 delta = -delta;
1747 delta *= io->size;
1748 if (io->in)
1749 vcpu->regs[VCPU_REGS_RDI] += delta;
1750 else
1751 vcpu->regs[VCPU_REGS_RSI] += delta;
1752 }
1753
1754 kvm_arch_ops->decache_regs(vcpu);
1755
1756 io->count -= io->cur_count;
1757 io->cur_count = 0;
1758
1759 if (!io->count)
1760 kvm_arch_ops->skip_emulated_instruction(vcpu);
1761 return 0;
1762 }
1763
1764 static void kernel_pio(struct kvm_io_device *pio_dev,
1765 struct kvm_vcpu *vcpu,
1766 void *pd)
1767 {
1768 /* TODO: String I/O for in kernel device */
1769
1770 if (vcpu->pio.in)
1771 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1772 vcpu->pio.size,
1773 pd);
1774 else
1775 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1776 vcpu->pio.size,
1777 pd);
1778 }
1779
1780 static void pio_string_write(struct kvm_io_device *pio_dev,
1781 struct kvm_vcpu *vcpu)
1782 {
1783 struct kvm_pio_request *io = &vcpu->pio;
1784 void *pd = vcpu->pio_data;
1785 int i;
1786
1787 for (i = 0; i < io->cur_count; i++) {
1788 kvm_iodevice_write(pio_dev, io->port,
1789 io->size,
1790 pd);
1791 pd += io->size;
1792 }
1793 }
1794
1795 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1796 int size, unsigned long count, int string, int down,
1797 gva_t address, int rep, unsigned port)
1798 {
1799 unsigned now, in_page;
1800 int i, ret = 0;
1801 int nr_pages = 1;
1802 struct page *page;
1803 struct kvm_io_device *pio_dev;
1804
1805 vcpu->run->exit_reason = KVM_EXIT_IO;
1806 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1807 vcpu->run->io.size = size;
1808 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1809 vcpu->run->io.count = count;
1810 vcpu->run->io.port = port;
1811 vcpu->pio.count = count;
1812 vcpu->pio.cur_count = count;
1813 vcpu->pio.size = size;
1814 vcpu->pio.in = in;
1815 vcpu->pio.port = port;
1816 vcpu->pio.string = string;
1817 vcpu->pio.down = down;
1818 vcpu->pio.guest_page_offset = offset_in_page(address);
1819 vcpu->pio.rep = rep;
1820
1821 pio_dev = vcpu_find_pio_dev(vcpu, port);
1822 if (!string) {
1823 kvm_arch_ops->cache_regs(vcpu);
1824 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1825 kvm_arch_ops->decache_regs(vcpu);
1826 if (pio_dev) {
1827 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1828 complete_pio(vcpu);
1829 return 1;
1830 }
1831 return 0;
1832 }
1833
1834 if (!count) {
1835 kvm_arch_ops->skip_emulated_instruction(vcpu);
1836 return 1;
1837 }
1838
1839 now = min(count, PAGE_SIZE / size);
1840
1841 if (!down)
1842 in_page = PAGE_SIZE - offset_in_page(address);
1843 else
1844 in_page = offset_in_page(address) + size;
1845 now = min(count, (unsigned long)in_page / size);
1846 if (!now) {
1847 /*
1848 * String I/O straddles page boundary. Pin two guest pages
1849 * so that we satisfy atomicity constraints. Do just one
1850 * transaction to avoid complexity.
1851 */
1852 nr_pages = 2;
1853 now = 1;
1854 }
1855 if (down) {
1856 /*
1857 * String I/O in reverse. Yuck. Kill the guest, fix later.
1858 */
1859 printk(KERN_ERR "kvm: guest string pio down\n");
1860 inject_gp(vcpu);
1861 return 1;
1862 }
1863 vcpu->run->io.count = now;
1864 vcpu->pio.cur_count = now;
1865
1866 for (i = 0; i < nr_pages; ++i) {
1867 spin_lock(&vcpu->kvm->lock);
1868 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1869 if (page)
1870 get_page(page);
1871 vcpu->pio.guest_pages[i] = page;
1872 spin_unlock(&vcpu->kvm->lock);
1873 if (!page) {
1874 inject_gp(vcpu);
1875 free_pio_guest_pages(vcpu);
1876 return 1;
1877 }
1878 }
1879
1880 if (!vcpu->pio.in) {
1881 /* string PIO write */
1882 ret = pio_copy_data(vcpu);
1883 if (ret >= 0 && pio_dev) {
1884 pio_string_write(pio_dev, vcpu);
1885 complete_pio(vcpu);
1886 if (vcpu->pio.count == 0)
1887 ret = 1;
1888 }
1889 } else if (pio_dev)
1890 printk(KERN_ERR "no string pio read support yet, "
1891 "port %x size %d count %ld\n",
1892 port, size, count);
1893
1894 return ret;
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1897
1898 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1899 {
1900 int r;
1901 sigset_t sigsaved;
1902
1903 vcpu_load(vcpu);
1904
1905 if (vcpu->sigset_active)
1906 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1907
1908 /* re-sync apic's tpr */
1909 vcpu->cr8 = kvm_run->cr8;
1910
1911 if (vcpu->pio.cur_count) {
1912 r = complete_pio(vcpu);
1913 if (r)
1914 goto out;
1915 }
1916
1917 if (vcpu->mmio_needed) {
1918 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1919 vcpu->mmio_read_completed = 1;
1920 vcpu->mmio_needed = 0;
1921 r = emulate_instruction(vcpu, kvm_run,
1922 vcpu->mmio_fault_cr2, 0);
1923 if (r == EMULATE_DO_MMIO) {
1924 /*
1925 * Read-modify-write. Back to userspace.
1926 */
1927 kvm_run->exit_reason = KVM_EXIT_MMIO;
1928 r = 0;
1929 goto out;
1930 }
1931 }
1932
1933 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1934 kvm_arch_ops->cache_regs(vcpu);
1935 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1936 kvm_arch_ops->decache_regs(vcpu);
1937 }
1938
1939 r = kvm_arch_ops->run(vcpu, kvm_run);
1940
1941 out:
1942 if (vcpu->sigset_active)
1943 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1944
1945 vcpu_put(vcpu);
1946 return r;
1947 }
1948
1949 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1950 struct kvm_regs *regs)
1951 {
1952 vcpu_load(vcpu);
1953
1954 kvm_arch_ops->cache_regs(vcpu);
1955
1956 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1957 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1958 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1959 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1960 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1961 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1962 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1963 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1964 #ifdef CONFIG_X86_64
1965 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1966 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1967 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1968 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1969 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1970 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1971 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1972 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1973 #endif
1974
1975 regs->rip = vcpu->rip;
1976 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1977
1978 /*
1979 * Don't leak debug flags in case they were set for guest debugging
1980 */
1981 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1982 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1983
1984 vcpu_put(vcpu);
1985
1986 return 0;
1987 }
1988
1989 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1990 struct kvm_regs *regs)
1991 {
1992 vcpu_load(vcpu);
1993
1994 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1995 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1996 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1997 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1998 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1999 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2000 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2001 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2002 #ifdef CONFIG_X86_64
2003 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2004 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2005 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2006 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2007 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2008 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2009 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2010 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2011 #endif
2012
2013 vcpu->rip = regs->rip;
2014 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
2015
2016 kvm_arch_ops->decache_regs(vcpu);
2017
2018 vcpu_put(vcpu);
2019
2020 return 0;
2021 }
2022
2023 static void get_segment(struct kvm_vcpu *vcpu,
2024 struct kvm_segment *var, int seg)
2025 {
2026 return kvm_arch_ops->get_segment(vcpu, var, seg);
2027 }
2028
2029 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2030 struct kvm_sregs *sregs)
2031 {
2032 struct descriptor_table dt;
2033
2034 vcpu_load(vcpu);
2035
2036 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2037 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2038 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2039 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2040 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2041 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2042
2043 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2044 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2045
2046 kvm_arch_ops->get_idt(vcpu, &dt);
2047 sregs->idt.limit = dt.limit;
2048 sregs->idt.base = dt.base;
2049 kvm_arch_ops->get_gdt(vcpu, &dt);
2050 sregs->gdt.limit = dt.limit;
2051 sregs->gdt.base = dt.base;
2052
2053 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2054 sregs->cr0 = vcpu->cr0;
2055 sregs->cr2 = vcpu->cr2;
2056 sregs->cr3 = vcpu->cr3;
2057 sregs->cr4 = vcpu->cr4;
2058 sregs->cr8 = vcpu->cr8;
2059 sregs->efer = vcpu->shadow_efer;
2060 sregs->apic_base = vcpu->apic_base;
2061
2062 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2063 sizeof sregs->interrupt_bitmap);
2064
2065 vcpu_put(vcpu);
2066
2067 return 0;
2068 }
2069
2070 static void set_segment(struct kvm_vcpu *vcpu,
2071 struct kvm_segment *var, int seg)
2072 {
2073 return kvm_arch_ops->set_segment(vcpu, var, seg);
2074 }
2075
2076 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2077 struct kvm_sregs *sregs)
2078 {
2079 int mmu_reset_needed = 0;
2080 int i;
2081 struct descriptor_table dt;
2082
2083 vcpu_load(vcpu);
2084
2085 dt.limit = sregs->idt.limit;
2086 dt.base = sregs->idt.base;
2087 kvm_arch_ops->set_idt(vcpu, &dt);
2088 dt.limit = sregs->gdt.limit;
2089 dt.base = sregs->gdt.base;
2090 kvm_arch_ops->set_gdt(vcpu, &dt);
2091
2092 vcpu->cr2 = sregs->cr2;
2093 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2094 vcpu->cr3 = sregs->cr3;
2095
2096 vcpu->cr8 = sregs->cr8;
2097
2098 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2099 #ifdef CONFIG_X86_64
2100 kvm_arch_ops->set_efer(vcpu, sregs->efer);
2101 #endif
2102 vcpu->apic_base = sregs->apic_base;
2103
2104 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2105
2106 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2107 kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2108
2109 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2110 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2111 if (!is_long_mode(vcpu) && is_pae(vcpu))
2112 load_pdptrs(vcpu, vcpu->cr3);
2113
2114 if (mmu_reset_needed)
2115 kvm_mmu_reset_context(vcpu);
2116
2117 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2118 sizeof vcpu->irq_pending);
2119 vcpu->irq_summary = 0;
2120 for (i = 0; i < NR_IRQ_WORDS; ++i)
2121 if (vcpu->irq_pending[i])
2122 __set_bit(i, &vcpu->irq_summary);
2123
2124 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2125 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2126 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2127 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2128 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2129 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2130
2131 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2132 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2133
2134 vcpu_put(vcpu);
2135
2136 return 0;
2137 }
2138
2139 /*
2140 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2141 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2142 *
2143 * This list is modified at module load time to reflect the
2144 * capabilities of the host cpu.
2145 */
2146 static u32 msrs_to_save[] = {
2147 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2148 MSR_K6_STAR,
2149 #ifdef CONFIG_X86_64
2150 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2151 #endif
2152 MSR_IA32_TIME_STAMP_COUNTER,
2153 };
2154
2155 static unsigned num_msrs_to_save;
2156
2157 static u32 emulated_msrs[] = {
2158 MSR_IA32_MISC_ENABLE,
2159 };
2160
2161 static __init void kvm_init_msr_list(void)
2162 {
2163 u32 dummy[2];
2164 unsigned i, j;
2165
2166 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2167 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2168 continue;
2169 if (j < i)
2170 msrs_to_save[j] = msrs_to_save[i];
2171 j++;
2172 }
2173 num_msrs_to_save = j;
2174 }
2175
2176 /*
2177 * Adapt set_msr() to msr_io()'s calling convention
2178 */
2179 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2180 {
2181 return kvm_set_msr(vcpu, index, *data);
2182 }
2183
2184 /*
2185 * Read or write a bunch of msrs. All parameters are kernel addresses.
2186 *
2187 * @return number of msrs set successfully.
2188 */
2189 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2190 struct kvm_msr_entry *entries,
2191 int (*do_msr)(struct kvm_vcpu *vcpu,
2192 unsigned index, u64 *data))
2193 {
2194 int i;
2195
2196 vcpu_load(vcpu);
2197
2198 for (i = 0; i < msrs->nmsrs; ++i)
2199 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2200 break;
2201
2202 vcpu_put(vcpu);
2203
2204 return i;
2205 }
2206
2207 /*
2208 * Read or write a bunch of msrs. Parameters are user addresses.
2209 *
2210 * @return number of msrs set successfully.
2211 */
2212 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2213 int (*do_msr)(struct kvm_vcpu *vcpu,
2214 unsigned index, u64 *data),
2215 int writeback)
2216 {
2217 struct kvm_msrs msrs;
2218 struct kvm_msr_entry *entries;
2219 int r, n;
2220 unsigned size;
2221
2222 r = -EFAULT;
2223 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2224 goto out;
2225
2226 r = -E2BIG;
2227 if (msrs.nmsrs >= MAX_IO_MSRS)
2228 goto out;
2229
2230 r = -ENOMEM;
2231 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2232 entries = vmalloc(size);
2233 if (!entries)
2234 goto out;
2235
2236 r = -EFAULT;
2237 if (copy_from_user(entries, user_msrs->entries, size))
2238 goto out_free;
2239
2240 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2241 if (r < 0)
2242 goto out_free;
2243
2244 r = -EFAULT;
2245 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2246 goto out_free;
2247
2248 r = n;
2249
2250 out_free:
2251 vfree(entries);
2252 out:
2253 return r;
2254 }
2255
2256 /*
2257 * Translate a guest virtual address to a guest physical address.
2258 */
2259 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2260 struct kvm_translation *tr)
2261 {
2262 unsigned long vaddr = tr->linear_address;
2263 gpa_t gpa;
2264
2265 vcpu_load(vcpu);
2266 spin_lock(&vcpu->kvm->lock);
2267 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2268 tr->physical_address = gpa;
2269 tr->valid = gpa != UNMAPPED_GVA;
2270 tr->writeable = 1;
2271 tr->usermode = 0;
2272 spin_unlock(&vcpu->kvm->lock);
2273 vcpu_put(vcpu);
2274
2275 return 0;
2276 }
2277
2278 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2279 struct kvm_interrupt *irq)
2280 {
2281 if (irq->irq < 0 || irq->irq >= 256)
2282 return -EINVAL;
2283 vcpu_load(vcpu);
2284
2285 set_bit(irq->irq, vcpu->irq_pending);
2286 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2287
2288 vcpu_put(vcpu);
2289
2290 return 0;
2291 }
2292
2293 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2294 struct kvm_debug_guest *dbg)
2295 {
2296 int r;
2297
2298 vcpu_load(vcpu);
2299
2300 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2301
2302 vcpu_put(vcpu);
2303
2304 return r;
2305 }
2306
2307 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2308 unsigned long address,
2309 int *type)
2310 {
2311 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2312 unsigned long pgoff;
2313 struct page *page;
2314
2315 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2316 if (pgoff == 0)
2317 page = virt_to_page(vcpu->run);
2318 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2319 page = virt_to_page(vcpu->pio_data);
2320 else
2321 return NOPAGE_SIGBUS;
2322 get_page(page);
2323 if (type != NULL)
2324 *type = VM_FAULT_MINOR;
2325
2326 return page;
2327 }
2328
2329 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2330 .nopage = kvm_vcpu_nopage,
2331 };
2332
2333 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2334 {
2335 vma->vm_ops = &kvm_vcpu_vm_ops;
2336 return 0;
2337 }
2338
2339 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2340 {
2341 struct kvm_vcpu *vcpu = filp->private_data;
2342
2343 fput(vcpu->kvm->filp);
2344 return 0;
2345 }
2346
2347 static struct file_operations kvm_vcpu_fops = {
2348 .release = kvm_vcpu_release,
2349 .unlocked_ioctl = kvm_vcpu_ioctl,
2350 .compat_ioctl = kvm_vcpu_ioctl,
2351 .mmap = kvm_vcpu_mmap,
2352 };
2353
2354 /*
2355 * Allocates an inode for the vcpu.
2356 */
2357 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2358 {
2359 int fd, r;
2360 struct inode *inode;
2361 struct file *file;
2362
2363 r = anon_inode_getfd(&fd, &inode, &file,
2364 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2365 if (r)
2366 return r;
2367 atomic_inc(&vcpu->kvm->filp->f_count);
2368 return fd;
2369 }
2370
2371 /*
2372 * Creates some virtual cpus. Good luck creating more than one.
2373 */
2374 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2375 {
2376 int r;
2377 struct kvm_vcpu *vcpu;
2378 struct page *page;
2379
2380 r = -EINVAL;
2381 if (!valid_vcpu(n))
2382 goto out;
2383
2384 vcpu = &kvm->vcpus[n];
2385 vcpu->vcpu_id = n;
2386
2387 mutex_lock(&vcpu->mutex);
2388
2389 if (vcpu->vmcs) {
2390 mutex_unlock(&vcpu->mutex);
2391 return -EEXIST;
2392 }
2393
2394 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2395 r = -ENOMEM;
2396 if (!page)
2397 goto out_unlock;
2398 vcpu->run = page_address(page);
2399
2400 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2401 r = -ENOMEM;
2402 if (!page)
2403 goto out_free_run;
2404 vcpu->pio_data = page_address(page);
2405
2406 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
2407 FX_IMAGE_ALIGN);
2408 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
2409 vcpu->cr0 = 0x10;
2410
2411 r = kvm_arch_ops->vcpu_create(vcpu);
2412 if (r < 0)
2413 goto out_free_vcpus;
2414
2415 r = kvm_mmu_create(vcpu);
2416 if (r < 0)
2417 goto out_free_vcpus;
2418
2419 kvm_arch_ops->vcpu_load(vcpu);
2420 r = kvm_mmu_setup(vcpu);
2421 if (r >= 0)
2422 r = kvm_arch_ops->vcpu_setup(vcpu);
2423 vcpu_put(vcpu);
2424
2425 if (r < 0)
2426 goto out_free_vcpus;
2427
2428 r = create_vcpu_fd(vcpu);
2429 if (r < 0)
2430 goto out_free_vcpus;
2431
2432 spin_lock(&kvm_lock);
2433 if (n >= kvm->nvcpus)
2434 kvm->nvcpus = n + 1;
2435 spin_unlock(&kvm_lock);
2436
2437 return r;
2438
2439 out_free_vcpus:
2440 kvm_free_vcpu(vcpu);
2441 out_free_run:
2442 free_page((unsigned long)vcpu->run);
2443 vcpu->run = NULL;
2444 out_unlock:
2445 mutex_unlock(&vcpu->mutex);
2446 out:
2447 return r;
2448 }
2449
2450 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2451 {
2452 u64 efer;
2453 int i;
2454 struct kvm_cpuid_entry *e, *entry;
2455
2456 rdmsrl(MSR_EFER, efer);
2457 entry = NULL;
2458 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2459 e = &vcpu->cpuid_entries[i];
2460 if (e->function == 0x80000001) {
2461 entry = e;
2462 break;
2463 }
2464 }
2465 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2466 entry->edx &= ~(1 << 20);
2467 printk(KERN_INFO "kvm: guest NX capability removed\n");
2468 }
2469 }
2470
2471 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2472 struct kvm_cpuid *cpuid,
2473 struct kvm_cpuid_entry __user *entries)
2474 {
2475 int r;
2476
2477 r = -E2BIG;
2478 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2479 goto out;
2480 r = -EFAULT;
2481 if (copy_from_user(&vcpu->cpuid_entries, entries,
2482 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2483 goto out;
2484 vcpu->cpuid_nent = cpuid->nent;
2485 cpuid_fix_nx_cap(vcpu);
2486 return 0;
2487
2488 out:
2489 return r;
2490 }
2491
2492 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2493 {
2494 if (sigset) {
2495 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2496 vcpu->sigset_active = 1;
2497 vcpu->sigset = *sigset;
2498 } else
2499 vcpu->sigset_active = 0;
2500 return 0;
2501 }
2502
2503 /*
2504 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2505 * we have asm/x86/processor.h
2506 */
2507 struct fxsave {
2508 u16 cwd;
2509 u16 swd;
2510 u16 twd;
2511 u16 fop;
2512 u64 rip;
2513 u64 rdp;
2514 u32 mxcsr;
2515 u32 mxcsr_mask;
2516 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2517 #ifdef CONFIG_X86_64
2518 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2519 #else
2520 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2521 #endif
2522 };
2523
2524 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2525 {
2526 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2527
2528 vcpu_load(vcpu);
2529
2530 memcpy(fpu->fpr, fxsave->st_space, 128);
2531 fpu->fcw = fxsave->cwd;
2532 fpu->fsw = fxsave->swd;
2533 fpu->ftwx = fxsave->twd;
2534 fpu->last_opcode = fxsave->fop;
2535 fpu->last_ip = fxsave->rip;
2536 fpu->last_dp = fxsave->rdp;
2537 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2538
2539 vcpu_put(vcpu);
2540
2541 return 0;
2542 }
2543
2544 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2545 {
2546 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2547
2548 vcpu_load(vcpu);
2549
2550 memcpy(fxsave->st_space, fpu->fpr, 128);
2551 fxsave->cwd = fpu->fcw;
2552 fxsave->swd = fpu->fsw;
2553 fxsave->twd = fpu->ftwx;
2554 fxsave->fop = fpu->last_opcode;
2555 fxsave->rip = fpu->last_ip;
2556 fxsave->rdp = fpu->last_dp;
2557 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2558
2559 vcpu_put(vcpu);
2560
2561 return 0;
2562 }
2563
2564 static long kvm_vcpu_ioctl(struct file *filp,
2565 unsigned int ioctl, unsigned long arg)
2566 {
2567 struct kvm_vcpu *vcpu = filp->private_data;
2568 void __user *argp = (void __user *)arg;
2569 int r = -EINVAL;
2570
2571 switch (ioctl) {
2572 case KVM_RUN:
2573 r = -EINVAL;
2574 if (arg)
2575 goto out;
2576 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2577 break;
2578 case KVM_GET_REGS: {
2579 struct kvm_regs kvm_regs;
2580
2581 memset(&kvm_regs, 0, sizeof kvm_regs);
2582 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2583 if (r)
2584 goto out;
2585 r = -EFAULT;
2586 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2587 goto out;
2588 r = 0;
2589 break;
2590 }
2591 case KVM_SET_REGS: {
2592 struct kvm_regs kvm_regs;
2593
2594 r = -EFAULT;
2595 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2596 goto out;
2597 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2598 if (r)
2599 goto out;
2600 r = 0;
2601 break;
2602 }
2603 case KVM_GET_SREGS: {
2604 struct kvm_sregs kvm_sregs;
2605
2606 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2607 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2608 if (r)
2609 goto out;
2610 r = -EFAULT;
2611 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2612 goto out;
2613 r = 0;
2614 break;
2615 }
2616 case KVM_SET_SREGS: {
2617 struct kvm_sregs kvm_sregs;
2618
2619 r = -EFAULT;
2620 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2621 goto out;
2622 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2623 if (r)
2624 goto out;
2625 r = 0;
2626 break;
2627 }
2628 case KVM_TRANSLATE: {
2629 struct kvm_translation tr;
2630
2631 r = -EFAULT;
2632 if (copy_from_user(&tr, argp, sizeof tr))
2633 goto out;
2634 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2635 if (r)
2636 goto out;
2637 r = -EFAULT;
2638 if (copy_to_user(argp, &tr, sizeof tr))
2639 goto out;
2640 r = 0;
2641 break;
2642 }
2643 case KVM_INTERRUPT: {
2644 struct kvm_interrupt irq;
2645
2646 r = -EFAULT;
2647 if (copy_from_user(&irq, argp, sizeof irq))
2648 goto out;
2649 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2650 if (r)
2651 goto out;
2652 r = 0;
2653 break;
2654 }
2655 case KVM_DEBUG_GUEST: {
2656 struct kvm_debug_guest dbg;
2657
2658 r = -EFAULT;
2659 if (copy_from_user(&dbg, argp, sizeof dbg))
2660 goto out;
2661 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2662 if (r)
2663 goto out;
2664 r = 0;
2665 break;
2666 }
2667 case KVM_GET_MSRS:
2668 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2669 break;
2670 case KVM_SET_MSRS:
2671 r = msr_io(vcpu, argp, do_set_msr, 0);
2672 break;
2673 case KVM_SET_CPUID: {
2674 struct kvm_cpuid __user *cpuid_arg = argp;
2675 struct kvm_cpuid cpuid;
2676
2677 r = -EFAULT;
2678 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2679 goto out;
2680 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2681 if (r)
2682 goto out;
2683 break;
2684 }
2685 case KVM_SET_SIGNAL_MASK: {
2686 struct kvm_signal_mask __user *sigmask_arg = argp;
2687 struct kvm_signal_mask kvm_sigmask;
2688 sigset_t sigset, *p;
2689
2690 p = NULL;
2691 if (argp) {
2692 r = -EFAULT;
2693 if (copy_from_user(&kvm_sigmask, argp,
2694 sizeof kvm_sigmask))
2695 goto out;
2696 r = -EINVAL;
2697 if (kvm_sigmask.len != sizeof sigset)
2698 goto out;
2699 r = -EFAULT;
2700 if (copy_from_user(&sigset, sigmask_arg->sigset,
2701 sizeof sigset))
2702 goto out;
2703 p = &sigset;
2704 }
2705 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2706 break;
2707 }
2708 case KVM_GET_FPU: {
2709 struct kvm_fpu fpu;
2710
2711 memset(&fpu, 0, sizeof fpu);
2712 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2713 if (r)
2714 goto out;
2715 r = -EFAULT;
2716 if (copy_to_user(argp, &fpu, sizeof fpu))
2717 goto out;
2718 r = 0;
2719 break;
2720 }
2721 case KVM_SET_FPU: {
2722 struct kvm_fpu fpu;
2723
2724 r = -EFAULT;
2725 if (copy_from_user(&fpu, argp, sizeof fpu))
2726 goto out;
2727 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2728 if (r)
2729 goto out;
2730 r = 0;
2731 break;
2732 }
2733 default:
2734 ;
2735 }
2736 out:
2737 return r;
2738 }
2739
2740 static long kvm_vm_ioctl(struct file *filp,
2741 unsigned int ioctl, unsigned long arg)
2742 {
2743 struct kvm *kvm = filp->private_data;
2744 void __user *argp = (void __user *)arg;
2745 int r = -EINVAL;
2746
2747 switch (ioctl) {
2748 case KVM_CREATE_VCPU:
2749 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2750 if (r < 0)
2751 goto out;
2752 break;
2753 case KVM_SET_MEMORY_REGION: {
2754 struct kvm_memory_region kvm_mem;
2755
2756 r = -EFAULT;
2757 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2758 goto out;
2759 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2760 if (r)
2761 goto out;
2762 break;
2763 }
2764 case KVM_GET_DIRTY_LOG: {
2765 struct kvm_dirty_log log;
2766
2767 r = -EFAULT;
2768 if (copy_from_user(&log, argp, sizeof log))
2769 goto out;
2770 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2771 if (r)
2772 goto out;
2773 break;
2774 }
2775 case KVM_SET_MEMORY_ALIAS: {
2776 struct kvm_memory_alias alias;
2777
2778 r = -EFAULT;
2779 if (copy_from_user(&alias, argp, sizeof alias))
2780 goto out;
2781 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2782 if (r)
2783 goto out;
2784 break;
2785 }
2786 default:
2787 ;
2788 }
2789 out:
2790 return r;
2791 }
2792
2793 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2794 unsigned long address,
2795 int *type)
2796 {
2797 struct kvm *kvm = vma->vm_file->private_data;
2798 unsigned long pgoff;
2799 struct page *page;
2800
2801 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2802 page = gfn_to_page(kvm, pgoff);
2803 if (!page)
2804 return NOPAGE_SIGBUS;
2805 get_page(page);
2806 if (type != NULL)
2807 *type = VM_FAULT_MINOR;
2808
2809 return page;
2810 }
2811
2812 static struct vm_operations_struct kvm_vm_vm_ops = {
2813 .nopage = kvm_vm_nopage,
2814 };
2815
2816 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2817 {
2818 vma->vm_ops = &kvm_vm_vm_ops;
2819 return 0;
2820 }
2821
2822 static struct file_operations kvm_vm_fops = {
2823 .release = kvm_vm_release,
2824 .unlocked_ioctl = kvm_vm_ioctl,
2825 .compat_ioctl = kvm_vm_ioctl,
2826 .mmap = kvm_vm_mmap,
2827 };
2828
2829 static int kvm_dev_ioctl_create_vm(void)
2830 {
2831 int fd, r;
2832 struct inode *inode;
2833 struct file *file;
2834 struct kvm *kvm;
2835
2836 kvm = kvm_create_vm();
2837 if (IS_ERR(kvm))
2838 return PTR_ERR(kvm);
2839 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2840 if (r) {
2841 kvm_destroy_vm(kvm);
2842 return r;
2843 }
2844
2845 kvm->filp = file;
2846
2847 return fd;
2848 }
2849
2850 static long kvm_dev_ioctl(struct file *filp,
2851 unsigned int ioctl, unsigned long arg)
2852 {
2853 void __user *argp = (void __user *)arg;
2854 long r = -EINVAL;
2855
2856 switch (ioctl) {
2857 case KVM_GET_API_VERSION:
2858 r = -EINVAL;
2859 if (arg)
2860 goto out;
2861 r = KVM_API_VERSION;
2862 break;
2863 case KVM_CREATE_VM:
2864 r = -EINVAL;
2865 if (arg)
2866 goto out;
2867 r = kvm_dev_ioctl_create_vm();
2868 break;
2869 case KVM_GET_MSR_INDEX_LIST: {
2870 struct kvm_msr_list __user *user_msr_list = argp;
2871 struct kvm_msr_list msr_list;
2872 unsigned n;
2873
2874 r = -EFAULT;
2875 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2876 goto out;
2877 n = msr_list.nmsrs;
2878 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2879 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2880 goto out;
2881 r = -E2BIG;
2882 if (n < num_msrs_to_save)
2883 goto out;
2884 r = -EFAULT;
2885 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2886 num_msrs_to_save * sizeof(u32)))
2887 goto out;
2888 if (copy_to_user(user_msr_list->indices
2889 + num_msrs_to_save * sizeof(u32),
2890 &emulated_msrs,
2891 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2892 goto out;
2893 r = 0;
2894 break;
2895 }
2896 case KVM_CHECK_EXTENSION:
2897 /*
2898 * No extensions defined at present.
2899 */
2900 r = 0;
2901 break;
2902 case KVM_GET_VCPU_MMAP_SIZE:
2903 r = -EINVAL;
2904 if (arg)
2905 goto out;
2906 r = 2 * PAGE_SIZE;
2907 break;
2908 default:
2909 ;
2910 }
2911 out:
2912 return r;
2913 }
2914
2915 static struct file_operations kvm_chardev_ops = {
2916 .open = kvm_dev_open,
2917 .release = kvm_dev_release,
2918 .unlocked_ioctl = kvm_dev_ioctl,
2919 .compat_ioctl = kvm_dev_ioctl,
2920 };
2921
2922 static struct miscdevice kvm_dev = {
2923 KVM_MINOR,
2924 "kvm",
2925 &kvm_chardev_ops,
2926 };
2927
2928 /*
2929 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2930 * cached on it.
2931 */
2932 static void decache_vcpus_on_cpu(int cpu)
2933 {
2934 struct kvm *vm;
2935 struct kvm_vcpu *vcpu;
2936 int i;
2937
2938 spin_lock(&kvm_lock);
2939 list_for_each_entry(vm, &vm_list, vm_list)
2940 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2941 vcpu = &vm->vcpus[i];
2942 /*
2943 * If the vcpu is locked, then it is running on some
2944 * other cpu and therefore it is not cached on the
2945 * cpu in question.
2946 *
2947 * If it's not locked, check the last cpu it executed
2948 * on.
2949 */
2950 if (mutex_trylock(&vcpu->mutex)) {
2951 if (vcpu->cpu == cpu) {
2952 kvm_arch_ops->vcpu_decache(vcpu);
2953 vcpu->cpu = -1;
2954 }
2955 mutex_unlock(&vcpu->mutex);
2956 }
2957 }
2958 spin_unlock(&kvm_lock);
2959 }
2960
2961 static void hardware_enable(void *junk)
2962 {
2963 int cpu = raw_smp_processor_id();
2964
2965 if (cpu_isset(cpu, cpus_hardware_enabled))
2966 return;
2967 cpu_set(cpu, cpus_hardware_enabled);
2968 kvm_arch_ops->hardware_enable(NULL);
2969 }
2970
2971 static void hardware_disable(void *junk)
2972 {
2973 int cpu = raw_smp_processor_id();
2974
2975 if (!cpu_isset(cpu, cpus_hardware_enabled))
2976 return;
2977 cpu_clear(cpu, cpus_hardware_enabled);
2978 decache_vcpus_on_cpu(cpu);
2979 kvm_arch_ops->hardware_disable(NULL);
2980 }
2981
2982 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2983 void *v)
2984 {
2985 int cpu = (long)v;
2986
2987 switch (val) {
2988 case CPU_DYING:
2989 case CPU_DYING_FROZEN:
2990 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2991 cpu);
2992 hardware_disable(NULL);
2993 break;
2994 case CPU_UP_CANCELED:
2995 case CPU_UP_CANCELED_FROZEN:
2996 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2997 cpu);
2998 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
2999 break;
3000 case CPU_ONLINE:
3001 case CPU_ONLINE_FROZEN:
3002 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3003 cpu);
3004 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3005 break;
3006 }
3007 return NOTIFY_OK;
3008 }
3009
3010 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3011 void *v)
3012 {
3013 if (val == SYS_RESTART) {
3014 /*
3015 * Some (well, at least mine) BIOSes hang on reboot if
3016 * in vmx root mode.
3017 */
3018 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3019 on_each_cpu(hardware_disable, NULL, 0, 1);
3020 }
3021 return NOTIFY_OK;
3022 }
3023
3024 static struct notifier_block kvm_reboot_notifier = {
3025 .notifier_call = kvm_reboot,
3026 .priority = 0,
3027 };
3028
3029 void kvm_io_bus_init(struct kvm_io_bus *bus)
3030 {
3031 memset(bus, 0, sizeof(*bus));
3032 }
3033
3034 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3035 {
3036 int i;
3037
3038 for (i = 0; i < bus->dev_count; i++) {
3039 struct kvm_io_device *pos = bus->devs[i];
3040
3041 kvm_iodevice_destructor(pos);
3042 }
3043 }
3044
3045 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3046 {
3047 int i;
3048
3049 for (i = 0; i < bus->dev_count; i++) {
3050 struct kvm_io_device *pos = bus->devs[i];
3051
3052 if (pos->in_range(pos, addr))
3053 return pos;
3054 }
3055
3056 return NULL;
3057 }
3058
3059 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3060 {
3061 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3062
3063 bus->devs[bus->dev_count++] = dev;
3064 }
3065
3066 static struct notifier_block kvm_cpu_notifier = {
3067 .notifier_call = kvm_cpu_hotplug,
3068 .priority = 20, /* must be > scheduler priority */
3069 };
3070
3071 static u64 stat_get(void *_offset)
3072 {
3073 unsigned offset = (long)_offset;
3074 u64 total = 0;
3075 struct kvm *kvm;
3076 struct kvm_vcpu *vcpu;
3077 int i;
3078
3079 spin_lock(&kvm_lock);
3080 list_for_each_entry(kvm, &vm_list, vm_list)
3081 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3082 vcpu = &kvm->vcpus[i];
3083 total += *(u32 *)((void *)vcpu + offset);
3084 }
3085 spin_unlock(&kvm_lock);
3086 return total;
3087 }
3088
3089 static void stat_set(void *offset, u64 val)
3090 {
3091 }
3092
3093 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
3094
3095 static __init void kvm_init_debug(void)
3096 {
3097 struct kvm_stats_debugfs_item *p;
3098
3099 debugfs_dir = debugfs_create_dir("kvm", NULL);
3100 for (p = debugfs_entries; p->name; ++p)
3101 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3102 (void *)(long)p->offset,
3103 &stat_fops);
3104 }
3105
3106 static void kvm_exit_debug(void)
3107 {
3108 struct kvm_stats_debugfs_item *p;
3109
3110 for (p = debugfs_entries; p->name; ++p)
3111 debugfs_remove(p->dentry);
3112 debugfs_remove(debugfs_dir);
3113 }
3114
3115 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3116 {
3117 hardware_disable(NULL);
3118 return 0;
3119 }
3120
3121 static int kvm_resume(struct sys_device *dev)
3122 {
3123 hardware_enable(NULL);
3124 return 0;
3125 }
3126
3127 static struct sysdev_class kvm_sysdev_class = {
3128 set_kset_name("kvm"),
3129 .suspend = kvm_suspend,
3130 .resume = kvm_resume,
3131 };
3132
3133 static struct sys_device kvm_sysdev = {
3134 .id = 0,
3135 .cls = &kvm_sysdev_class,
3136 };
3137
3138 hpa_t bad_page_address;
3139
3140 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
3141 {
3142 int r;
3143
3144 if (kvm_arch_ops) {
3145 printk(KERN_ERR "kvm: already loaded the other module\n");
3146 return -EEXIST;
3147 }
3148
3149 if (!ops->cpu_has_kvm_support()) {
3150 printk(KERN_ERR "kvm: no hardware support\n");
3151 return -EOPNOTSUPP;
3152 }
3153 if (ops->disabled_by_bios()) {
3154 printk(KERN_ERR "kvm: disabled by bios\n");
3155 return -EOPNOTSUPP;
3156 }
3157
3158 kvm_arch_ops = ops;
3159
3160 r = kvm_arch_ops->hardware_setup();
3161 if (r < 0)
3162 goto out;
3163
3164 on_each_cpu(hardware_enable, NULL, 0, 1);
3165 r = register_cpu_notifier(&kvm_cpu_notifier);
3166 if (r)
3167 goto out_free_1;
3168 register_reboot_notifier(&kvm_reboot_notifier);
3169
3170 r = sysdev_class_register(&kvm_sysdev_class);
3171 if (r)
3172 goto out_free_2;
3173
3174 r = sysdev_register(&kvm_sysdev);
3175 if (r)
3176 goto out_free_3;
3177
3178 kvm_chardev_ops.owner = module;
3179
3180 r = misc_register(&kvm_dev);
3181 if (r) {
3182 printk (KERN_ERR "kvm: misc device register failed\n");
3183 goto out_free;
3184 }
3185
3186 return r;
3187
3188 out_free:
3189 sysdev_unregister(&kvm_sysdev);
3190 out_free_3:
3191 sysdev_class_unregister(&kvm_sysdev_class);
3192 out_free_2:
3193 unregister_reboot_notifier(&kvm_reboot_notifier);
3194 unregister_cpu_notifier(&kvm_cpu_notifier);
3195 out_free_1:
3196 on_each_cpu(hardware_disable, NULL, 0, 1);
3197 kvm_arch_ops->hardware_unsetup();
3198 out:
3199 kvm_arch_ops = NULL;
3200 return r;
3201 }
3202
3203 void kvm_exit_arch(void)
3204 {
3205 misc_deregister(&kvm_dev);
3206 sysdev_unregister(&kvm_sysdev);
3207 sysdev_class_unregister(&kvm_sysdev_class);
3208 unregister_reboot_notifier(&kvm_reboot_notifier);
3209 unregister_cpu_notifier(&kvm_cpu_notifier);
3210 on_each_cpu(hardware_disable, NULL, 0, 1);
3211 kvm_arch_ops->hardware_unsetup();
3212 kvm_arch_ops = NULL;
3213 }
3214
3215 static __init int kvm_init(void)
3216 {
3217 static struct page *bad_page;
3218 int r;
3219
3220 r = kvm_mmu_module_init();
3221 if (r)
3222 goto out4;
3223
3224 kvm_init_debug();
3225
3226 kvm_init_msr_list();
3227
3228 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3229 r = -ENOMEM;
3230 goto out;
3231 }
3232
3233 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3234 memset(__va(bad_page_address), 0, PAGE_SIZE);
3235
3236 return 0;
3237
3238 out:
3239 kvm_exit_debug();
3240 kvm_mmu_module_exit();
3241 out4:
3242 return r;
3243 }
3244
3245 static __exit void kvm_exit(void)
3246 {
3247 kvm_exit_debug();
3248 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3249 kvm_mmu_module_exit();
3250 }
3251
3252 module_init(kvm_init)
3253 module_exit(kvm_exit)
3254
3255 EXPORT_SYMBOL_GPL(kvm_init_arch);
3256 EXPORT_SYMBOL_GPL(kvm_exit_arch);
This page took 0.149572 seconds and 5 git commands to generate.