KVM: Add support for in-kernel pio handlers
[deliverable/linux.git] / drivers / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <linux/magic.h>
24 #include <asm/processor.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <asm/msr.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <asm/uaccess.h>
32 #include <linux/reboot.h>
33 #include <asm/io.h>
34 #include <linux/debugfs.h>
35 #include <linux/highmem.h>
36 #include <linux/file.h>
37 #include <asm/desc.h>
38 #include <linux/sysdev.h>
39 #include <linux/cpu.h>
40 #include <linux/file.h>
41 #include <linux/fs.h>
42 #include <linux/mount.h>
43 #include <linux/sched.h>
44 #include <linux/cpumask.h>
45 #include <linux/smp.h>
46
47 #include "x86_emulate.h"
48 #include "segment_descriptor.h"
49
50 MODULE_AUTHOR("Qumranet");
51 MODULE_LICENSE("GPL");
52
53 static DEFINE_SPINLOCK(kvm_lock);
54 static LIST_HEAD(vm_list);
55
56 struct kvm_arch_ops *kvm_arch_ops;
57
58 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
59
60 static struct kvm_stats_debugfs_item {
61 const char *name;
62 int offset;
63 struct dentry *dentry;
64 } debugfs_entries[] = {
65 { "pf_fixed", STAT_OFFSET(pf_fixed) },
66 { "pf_guest", STAT_OFFSET(pf_guest) },
67 { "tlb_flush", STAT_OFFSET(tlb_flush) },
68 { "invlpg", STAT_OFFSET(invlpg) },
69 { "exits", STAT_OFFSET(exits) },
70 { "io_exits", STAT_OFFSET(io_exits) },
71 { "mmio_exits", STAT_OFFSET(mmio_exits) },
72 { "signal_exits", STAT_OFFSET(signal_exits) },
73 { "irq_window", STAT_OFFSET(irq_window_exits) },
74 { "halt_exits", STAT_OFFSET(halt_exits) },
75 { "request_irq", STAT_OFFSET(request_irq_exits) },
76 { "irq_exits", STAT_OFFSET(irq_exits) },
77 { "light_exits", STAT_OFFSET(light_exits) },
78 { "efer_reload", STAT_OFFSET(efer_reload) },
79 { NULL }
80 };
81
82 static struct dentry *debugfs_dir;
83
84 struct vfsmount *kvmfs_mnt;
85
86 #define MAX_IO_MSRS 256
87
88 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
89 #define LMSW_GUEST_MASK 0x0eULL
90 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
91 #define CR8_RESEVED_BITS (~0x0fULL)
92 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
93
94 #ifdef CONFIG_X86_64
95 // LDT or TSS descriptor in the GDT. 16 bytes.
96 struct segment_descriptor_64 {
97 struct segment_descriptor s;
98 u32 base_higher;
99 u32 pad_zero;
100 };
101
102 #endif
103
104 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
105 unsigned long arg);
106
107 static struct inode *kvmfs_inode(struct file_operations *fops)
108 {
109 int error = -ENOMEM;
110 struct inode *inode = new_inode(kvmfs_mnt->mnt_sb);
111
112 if (!inode)
113 goto eexit_1;
114
115 inode->i_fop = fops;
116
117 /*
118 * Mark the inode dirty from the very beginning,
119 * that way it will never be moved to the dirty
120 * list because mark_inode_dirty() will think
121 * that it already _is_ on the dirty list.
122 */
123 inode->i_state = I_DIRTY;
124 inode->i_mode = S_IRUSR | S_IWUSR;
125 inode->i_uid = current->fsuid;
126 inode->i_gid = current->fsgid;
127 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
128 return inode;
129
130 eexit_1:
131 return ERR_PTR(error);
132 }
133
134 static struct file *kvmfs_file(struct inode *inode, void *private_data)
135 {
136 struct file *file = get_empty_filp();
137
138 if (!file)
139 return ERR_PTR(-ENFILE);
140
141 file->f_path.mnt = mntget(kvmfs_mnt);
142 file->f_path.dentry = d_alloc_anon(inode);
143 if (!file->f_path.dentry)
144 return ERR_PTR(-ENOMEM);
145 file->f_mapping = inode->i_mapping;
146
147 file->f_pos = 0;
148 file->f_flags = O_RDWR;
149 file->f_op = inode->i_fop;
150 file->f_mode = FMODE_READ | FMODE_WRITE;
151 file->f_version = 0;
152 file->private_data = private_data;
153 return file;
154 }
155
156 unsigned long segment_base(u16 selector)
157 {
158 struct descriptor_table gdt;
159 struct segment_descriptor *d;
160 unsigned long table_base;
161 typedef unsigned long ul;
162 unsigned long v;
163
164 if (selector == 0)
165 return 0;
166
167 asm ("sgdt %0" : "=m"(gdt));
168 table_base = gdt.base;
169
170 if (selector & 4) { /* from ldt */
171 u16 ldt_selector;
172
173 asm ("sldt %0" : "=g"(ldt_selector));
174 table_base = segment_base(ldt_selector);
175 }
176 d = (struct segment_descriptor *)(table_base + (selector & ~7));
177 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
178 #ifdef CONFIG_X86_64
179 if (d->system == 0
180 && (d->type == 2 || d->type == 9 || d->type == 11))
181 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
182 #endif
183 return v;
184 }
185 EXPORT_SYMBOL_GPL(segment_base);
186
187 static inline int valid_vcpu(int n)
188 {
189 return likely(n >= 0 && n < KVM_MAX_VCPUS);
190 }
191
192 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
193 void *dest)
194 {
195 unsigned char *host_buf = dest;
196 unsigned long req_size = size;
197
198 while (size) {
199 hpa_t paddr;
200 unsigned now;
201 unsigned offset;
202 hva_t guest_buf;
203
204 paddr = gva_to_hpa(vcpu, addr);
205
206 if (is_error_hpa(paddr))
207 break;
208
209 guest_buf = (hva_t)kmap_atomic(
210 pfn_to_page(paddr >> PAGE_SHIFT),
211 KM_USER0);
212 offset = addr & ~PAGE_MASK;
213 guest_buf |= offset;
214 now = min(size, PAGE_SIZE - offset);
215 memcpy(host_buf, (void*)guest_buf, now);
216 host_buf += now;
217 addr += now;
218 size -= now;
219 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
220 }
221 return req_size - size;
222 }
223 EXPORT_SYMBOL_GPL(kvm_read_guest);
224
225 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
226 void *data)
227 {
228 unsigned char *host_buf = data;
229 unsigned long req_size = size;
230
231 while (size) {
232 hpa_t paddr;
233 unsigned now;
234 unsigned offset;
235 hva_t guest_buf;
236 gfn_t gfn;
237
238 paddr = gva_to_hpa(vcpu, addr);
239
240 if (is_error_hpa(paddr))
241 break;
242
243 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
244 mark_page_dirty(vcpu->kvm, gfn);
245 guest_buf = (hva_t)kmap_atomic(
246 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
247 offset = addr & ~PAGE_MASK;
248 guest_buf |= offset;
249 now = min(size, PAGE_SIZE - offset);
250 memcpy((void*)guest_buf, host_buf, now);
251 host_buf += now;
252 addr += now;
253 size -= now;
254 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
255 }
256 return req_size - size;
257 }
258 EXPORT_SYMBOL_GPL(kvm_write_guest);
259
260 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
261 {
262 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
263 return;
264
265 vcpu->guest_fpu_loaded = 1;
266 fx_save(vcpu->host_fx_image);
267 fx_restore(vcpu->guest_fx_image);
268 }
269 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
270
271 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
272 {
273 if (!vcpu->guest_fpu_loaded)
274 return;
275
276 vcpu->guest_fpu_loaded = 0;
277 fx_save(vcpu->guest_fx_image);
278 fx_restore(vcpu->host_fx_image);
279 }
280 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
281
282 /*
283 * Switches to specified vcpu, until a matching vcpu_put()
284 */
285 static void vcpu_load(struct kvm_vcpu *vcpu)
286 {
287 mutex_lock(&vcpu->mutex);
288 kvm_arch_ops->vcpu_load(vcpu);
289 }
290
291 /*
292 * Switches to specified vcpu, until a matching vcpu_put(). Will return NULL
293 * if the slot is not populated.
294 */
295 static struct kvm_vcpu *vcpu_load_slot(struct kvm *kvm, int slot)
296 {
297 struct kvm_vcpu *vcpu = &kvm->vcpus[slot];
298
299 mutex_lock(&vcpu->mutex);
300 if (!vcpu->vmcs) {
301 mutex_unlock(&vcpu->mutex);
302 return NULL;
303 }
304 kvm_arch_ops->vcpu_load(vcpu);
305 return vcpu;
306 }
307
308 static void vcpu_put(struct kvm_vcpu *vcpu)
309 {
310 kvm_arch_ops->vcpu_put(vcpu);
311 mutex_unlock(&vcpu->mutex);
312 }
313
314 static void ack_flush(void *_completed)
315 {
316 atomic_t *completed = _completed;
317
318 atomic_inc(completed);
319 }
320
321 void kvm_flush_remote_tlbs(struct kvm *kvm)
322 {
323 int i, cpu, needed;
324 cpumask_t cpus;
325 struct kvm_vcpu *vcpu;
326 atomic_t completed;
327
328 atomic_set(&completed, 0);
329 cpus_clear(cpus);
330 needed = 0;
331 for (i = 0; i < kvm->nvcpus; ++i) {
332 vcpu = &kvm->vcpus[i];
333 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
334 continue;
335 cpu = vcpu->cpu;
336 if (cpu != -1 && cpu != raw_smp_processor_id())
337 if (!cpu_isset(cpu, cpus)) {
338 cpu_set(cpu, cpus);
339 ++needed;
340 }
341 }
342
343 /*
344 * We really want smp_call_function_mask() here. But that's not
345 * available, so ipi all cpus in parallel and wait for them
346 * to complete.
347 */
348 for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
349 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
350 while (atomic_read(&completed) != needed) {
351 cpu_relax();
352 barrier();
353 }
354 }
355
356 static struct kvm *kvm_create_vm(void)
357 {
358 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
359 int i;
360
361 if (!kvm)
362 return ERR_PTR(-ENOMEM);
363
364 kvm_io_bus_init(&kvm->pio_bus);
365 spin_lock_init(&kvm->lock);
366 INIT_LIST_HEAD(&kvm->active_mmu_pages);
367 spin_lock(&kvm_lock);
368 list_add(&kvm->vm_list, &vm_list);
369 spin_unlock(&kvm_lock);
370 kvm_io_bus_init(&kvm->mmio_bus);
371 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
372 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
373
374 mutex_init(&vcpu->mutex);
375 vcpu->cpu = -1;
376 vcpu->kvm = kvm;
377 vcpu->mmu.root_hpa = INVALID_PAGE;
378 }
379 return kvm;
380 }
381
382 static int kvm_dev_open(struct inode *inode, struct file *filp)
383 {
384 return 0;
385 }
386
387 /*
388 * Free any memory in @free but not in @dont.
389 */
390 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
391 struct kvm_memory_slot *dont)
392 {
393 int i;
394
395 if (!dont || free->phys_mem != dont->phys_mem)
396 if (free->phys_mem) {
397 for (i = 0; i < free->npages; ++i)
398 if (free->phys_mem[i])
399 __free_page(free->phys_mem[i]);
400 vfree(free->phys_mem);
401 }
402
403 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
404 vfree(free->dirty_bitmap);
405
406 free->phys_mem = NULL;
407 free->npages = 0;
408 free->dirty_bitmap = NULL;
409 }
410
411 static void kvm_free_physmem(struct kvm *kvm)
412 {
413 int i;
414
415 for (i = 0; i < kvm->nmemslots; ++i)
416 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
417 }
418
419 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
420 {
421 int i;
422
423 for (i = 0; i < 2; ++i)
424 if (vcpu->pio.guest_pages[i]) {
425 __free_page(vcpu->pio.guest_pages[i]);
426 vcpu->pio.guest_pages[i] = NULL;
427 }
428 }
429
430 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
431 {
432 if (!vcpu->vmcs)
433 return;
434
435 vcpu_load(vcpu);
436 kvm_mmu_unload(vcpu);
437 vcpu_put(vcpu);
438 }
439
440 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
441 {
442 if (!vcpu->vmcs)
443 return;
444
445 vcpu_load(vcpu);
446 kvm_mmu_destroy(vcpu);
447 vcpu_put(vcpu);
448 kvm_arch_ops->vcpu_free(vcpu);
449 free_page((unsigned long)vcpu->run);
450 vcpu->run = NULL;
451 free_page((unsigned long)vcpu->pio_data);
452 vcpu->pio_data = NULL;
453 free_pio_guest_pages(vcpu);
454 }
455
456 static void kvm_free_vcpus(struct kvm *kvm)
457 {
458 unsigned int i;
459
460 /*
461 * Unpin any mmu pages first.
462 */
463 for (i = 0; i < KVM_MAX_VCPUS; ++i)
464 kvm_unload_vcpu_mmu(&kvm->vcpus[i]);
465 for (i = 0; i < KVM_MAX_VCPUS; ++i)
466 kvm_free_vcpu(&kvm->vcpus[i]);
467 }
468
469 static int kvm_dev_release(struct inode *inode, struct file *filp)
470 {
471 return 0;
472 }
473
474 static void kvm_destroy_vm(struct kvm *kvm)
475 {
476 spin_lock(&kvm_lock);
477 list_del(&kvm->vm_list);
478 spin_unlock(&kvm_lock);
479 kvm_io_bus_destroy(&kvm->pio_bus);
480 kvm_io_bus_destroy(&kvm->mmio_bus);
481 kvm_free_vcpus(kvm);
482 kvm_free_physmem(kvm);
483 kfree(kvm);
484 }
485
486 static int kvm_vm_release(struct inode *inode, struct file *filp)
487 {
488 struct kvm *kvm = filp->private_data;
489
490 kvm_destroy_vm(kvm);
491 return 0;
492 }
493
494 static void inject_gp(struct kvm_vcpu *vcpu)
495 {
496 kvm_arch_ops->inject_gp(vcpu, 0);
497 }
498
499 /*
500 * Load the pae pdptrs. Return true is they are all valid.
501 */
502 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
503 {
504 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
505 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
506 int i;
507 u64 pdpte;
508 u64 *pdpt;
509 int ret;
510 struct page *page;
511
512 spin_lock(&vcpu->kvm->lock);
513 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
514 /* FIXME: !page - emulate? 0xff? */
515 pdpt = kmap_atomic(page, KM_USER0);
516
517 ret = 1;
518 for (i = 0; i < 4; ++i) {
519 pdpte = pdpt[offset + i];
520 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
521 ret = 0;
522 goto out;
523 }
524 }
525
526 for (i = 0; i < 4; ++i)
527 vcpu->pdptrs[i] = pdpt[offset + i];
528
529 out:
530 kunmap_atomic(pdpt, KM_USER0);
531 spin_unlock(&vcpu->kvm->lock);
532
533 return ret;
534 }
535
536 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
537 {
538 if (cr0 & CR0_RESEVED_BITS) {
539 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
540 cr0, vcpu->cr0);
541 inject_gp(vcpu);
542 return;
543 }
544
545 if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
546 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
547 inject_gp(vcpu);
548 return;
549 }
550
551 if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
552 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
553 "and a clear PE flag\n");
554 inject_gp(vcpu);
555 return;
556 }
557
558 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
559 #ifdef CONFIG_X86_64
560 if ((vcpu->shadow_efer & EFER_LME)) {
561 int cs_db, cs_l;
562
563 if (!is_pae(vcpu)) {
564 printk(KERN_DEBUG "set_cr0: #GP, start paging "
565 "in long mode while PAE is disabled\n");
566 inject_gp(vcpu);
567 return;
568 }
569 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
570 if (cs_l) {
571 printk(KERN_DEBUG "set_cr0: #GP, start paging "
572 "in long mode while CS.L == 1\n");
573 inject_gp(vcpu);
574 return;
575
576 }
577 } else
578 #endif
579 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
580 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
581 "reserved bits\n");
582 inject_gp(vcpu);
583 return;
584 }
585
586 }
587
588 kvm_arch_ops->set_cr0(vcpu, cr0);
589 vcpu->cr0 = cr0;
590
591 spin_lock(&vcpu->kvm->lock);
592 kvm_mmu_reset_context(vcpu);
593 spin_unlock(&vcpu->kvm->lock);
594 return;
595 }
596 EXPORT_SYMBOL_GPL(set_cr0);
597
598 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
599 {
600 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
601 }
602 EXPORT_SYMBOL_GPL(lmsw);
603
604 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
605 {
606 if (cr4 & CR4_RESEVED_BITS) {
607 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
608 inject_gp(vcpu);
609 return;
610 }
611
612 if (is_long_mode(vcpu)) {
613 if (!(cr4 & CR4_PAE_MASK)) {
614 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
615 "in long mode\n");
616 inject_gp(vcpu);
617 return;
618 }
619 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
620 && !load_pdptrs(vcpu, vcpu->cr3)) {
621 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
622 inject_gp(vcpu);
623 }
624
625 if (cr4 & CR4_VMXE_MASK) {
626 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
627 inject_gp(vcpu);
628 return;
629 }
630 kvm_arch_ops->set_cr4(vcpu, cr4);
631 spin_lock(&vcpu->kvm->lock);
632 kvm_mmu_reset_context(vcpu);
633 spin_unlock(&vcpu->kvm->lock);
634 }
635 EXPORT_SYMBOL_GPL(set_cr4);
636
637 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
638 {
639 if (is_long_mode(vcpu)) {
640 if (cr3 & CR3_L_MODE_RESEVED_BITS) {
641 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
642 inject_gp(vcpu);
643 return;
644 }
645 } else {
646 if (cr3 & CR3_RESEVED_BITS) {
647 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
648 inject_gp(vcpu);
649 return;
650 }
651 if (is_paging(vcpu) && is_pae(vcpu) &&
652 !load_pdptrs(vcpu, cr3)) {
653 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
654 "reserved bits\n");
655 inject_gp(vcpu);
656 return;
657 }
658 }
659
660 vcpu->cr3 = cr3;
661 spin_lock(&vcpu->kvm->lock);
662 /*
663 * Does the new cr3 value map to physical memory? (Note, we
664 * catch an invalid cr3 even in real-mode, because it would
665 * cause trouble later on when we turn on paging anyway.)
666 *
667 * A real CPU would silently accept an invalid cr3 and would
668 * attempt to use it - with largely undefined (and often hard
669 * to debug) behavior on the guest side.
670 */
671 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
672 inject_gp(vcpu);
673 else
674 vcpu->mmu.new_cr3(vcpu);
675 spin_unlock(&vcpu->kvm->lock);
676 }
677 EXPORT_SYMBOL_GPL(set_cr3);
678
679 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
680 {
681 if ( cr8 & CR8_RESEVED_BITS) {
682 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
683 inject_gp(vcpu);
684 return;
685 }
686 vcpu->cr8 = cr8;
687 }
688 EXPORT_SYMBOL_GPL(set_cr8);
689
690 void fx_init(struct kvm_vcpu *vcpu)
691 {
692 struct __attribute__ ((__packed__)) fx_image_s {
693 u16 control; //fcw
694 u16 status; //fsw
695 u16 tag; // ftw
696 u16 opcode; //fop
697 u64 ip; // fpu ip
698 u64 operand;// fpu dp
699 u32 mxcsr;
700 u32 mxcsr_mask;
701
702 } *fx_image;
703
704 fx_save(vcpu->host_fx_image);
705 fpu_init();
706 fx_save(vcpu->guest_fx_image);
707 fx_restore(vcpu->host_fx_image);
708
709 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
710 fx_image->mxcsr = 0x1f80;
711 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
712 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
713 }
714 EXPORT_SYMBOL_GPL(fx_init);
715
716 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
717 {
718 spin_lock(&vcpu->kvm->lock);
719 kvm_mmu_slot_remove_write_access(vcpu, slot);
720 spin_unlock(&vcpu->kvm->lock);
721 }
722
723 /*
724 * Allocate some memory and give it an address in the guest physical address
725 * space.
726 *
727 * Discontiguous memory is allowed, mostly for framebuffers.
728 */
729 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
730 struct kvm_memory_region *mem)
731 {
732 int r;
733 gfn_t base_gfn;
734 unsigned long npages;
735 unsigned long i;
736 struct kvm_memory_slot *memslot;
737 struct kvm_memory_slot old, new;
738 int memory_config_version;
739
740 r = -EINVAL;
741 /* General sanity checks */
742 if (mem->memory_size & (PAGE_SIZE - 1))
743 goto out;
744 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
745 goto out;
746 if (mem->slot >= KVM_MEMORY_SLOTS)
747 goto out;
748 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
749 goto out;
750
751 memslot = &kvm->memslots[mem->slot];
752 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
753 npages = mem->memory_size >> PAGE_SHIFT;
754
755 if (!npages)
756 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
757
758 raced:
759 spin_lock(&kvm->lock);
760
761 memory_config_version = kvm->memory_config_version;
762 new = old = *memslot;
763
764 new.base_gfn = base_gfn;
765 new.npages = npages;
766 new.flags = mem->flags;
767
768 /* Disallow changing a memory slot's size. */
769 r = -EINVAL;
770 if (npages && old.npages && npages != old.npages)
771 goto out_unlock;
772
773 /* Check for overlaps */
774 r = -EEXIST;
775 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
776 struct kvm_memory_slot *s = &kvm->memslots[i];
777
778 if (s == memslot)
779 continue;
780 if (!((base_gfn + npages <= s->base_gfn) ||
781 (base_gfn >= s->base_gfn + s->npages)))
782 goto out_unlock;
783 }
784 /*
785 * Do memory allocations outside lock. memory_config_version will
786 * detect any races.
787 */
788 spin_unlock(&kvm->lock);
789
790 /* Deallocate if slot is being removed */
791 if (!npages)
792 new.phys_mem = NULL;
793
794 /* Free page dirty bitmap if unneeded */
795 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
796 new.dirty_bitmap = NULL;
797
798 r = -ENOMEM;
799
800 /* Allocate if a slot is being created */
801 if (npages && !new.phys_mem) {
802 new.phys_mem = vmalloc(npages * sizeof(struct page *));
803
804 if (!new.phys_mem)
805 goto out_free;
806
807 memset(new.phys_mem, 0, npages * sizeof(struct page *));
808 for (i = 0; i < npages; ++i) {
809 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
810 | __GFP_ZERO);
811 if (!new.phys_mem[i])
812 goto out_free;
813 set_page_private(new.phys_mem[i],0);
814 }
815 }
816
817 /* Allocate page dirty bitmap if needed */
818 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
819 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
820
821 new.dirty_bitmap = vmalloc(dirty_bytes);
822 if (!new.dirty_bitmap)
823 goto out_free;
824 memset(new.dirty_bitmap, 0, dirty_bytes);
825 }
826
827 spin_lock(&kvm->lock);
828
829 if (memory_config_version != kvm->memory_config_version) {
830 spin_unlock(&kvm->lock);
831 kvm_free_physmem_slot(&new, &old);
832 goto raced;
833 }
834
835 r = -EAGAIN;
836 if (kvm->busy)
837 goto out_unlock;
838
839 if (mem->slot >= kvm->nmemslots)
840 kvm->nmemslots = mem->slot + 1;
841
842 *memslot = new;
843 ++kvm->memory_config_version;
844
845 spin_unlock(&kvm->lock);
846
847 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
848 struct kvm_vcpu *vcpu;
849
850 vcpu = vcpu_load_slot(kvm, i);
851 if (!vcpu)
852 continue;
853 if (new.flags & KVM_MEM_LOG_DIRTY_PAGES)
854 do_remove_write_access(vcpu, mem->slot);
855 kvm_mmu_reset_context(vcpu);
856 vcpu_put(vcpu);
857 }
858
859 kvm_free_physmem_slot(&old, &new);
860 return 0;
861
862 out_unlock:
863 spin_unlock(&kvm->lock);
864 out_free:
865 kvm_free_physmem_slot(&new, &old);
866 out:
867 return r;
868 }
869
870 /*
871 * Get (and clear) the dirty memory log for a memory slot.
872 */
873 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
874 struct kvm_dirty_log *log)
875 {
876 struct kvm_memory_slot *memslot;
877 int r, i;
878 int n;
879 int cleared;
880 unsigned long any = 0;
881
882 spin_lock(&kvm->lock);
883
884 /*
885 * Prevent changes to guest memory configuration even while the lock
886 * is not taken.
887 */
888 ++kvm->busy;
889 spin_unlock(&kvm->lock);
890 r = -EINVAL;
891 if (log->slot >= KVM_MEMORY_SLOTS)
892 goto out;
893
894 memslot = &kvm->memslots[log->slot];
895 r = -ENOENT;
896 if (!memslot->dirty_bitmap)
897 goto out;
898
899 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
900
901 for (i = 0; !any && i < n/sizeof(long); ++i)
902 any = memslot->dirty_bitmap[i];
903
904 r = -EFAULT;
905 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
906 goto out;
907
908 if (any) {
909 cleared = 0;
910 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
911 struct kvm_vcpu *vcpu;
912
913 vcpu = vcpu_load_slot(kvm, i);
914 if (!vcpu)
915 continue;
916 if (!cleared) {
917 do_remove_write_access(vcpu, log->slot);
918 memset(memslot->dirty_bitmap, 0, n);
919 cleared = 1;
920 }
921 kvm_arch_ops->tlb_flush(vcpu);
922 vcpu_put(vcpu);
923 }
924 }
925
926 r = 0;
927
928 out:
929 spin_lock(&kvm->lock);
930 --kvm->busy;
931 spin_unlock(&kvm->lock);
932 return r;
933 }
934
935 /*
936 * Set a new alias region. Aliases map a portion of physical memory into
937 * another portion. This is useful for memory windows, for example the PC
938 * VGA region.
939 */
940 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
941 struct kvm_memory_alias *alias)
942 {
943 int r, n;
944 struct kvm_mem_alias *p;
945
946 r = -EINVAL;
947 /* General sanity checks */
948 if (alias->memory_size & (PAGE_SIZE - 1))
949 goto out;
950 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
951 goto out;
952 if (alias->slot >= KVM_ALIAS_SLOTS)
953 goto out;
954 if (alias->guest_phys_addr + alias->memory_size
955 < alias->guest_phys_addr)
956 goto out;
957 if (alias->target_phys_addr + alias->memory_size
958 < alias->target_phys_addr)
959 goto out;
960
961 spin_lock(&kvm->lock);
962
963 p = &kvm->aliases[alias->slot];
964 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
965 p->npages = alias->memory_size >> PAGE_SHIFT;
966 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
967
968 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
969 if (kvm->aliases[n - 1].npages)
970 break;
971 kvm->naliases = n;
972
973 spin_unlock(&kvm->lock);
974
975 vcpu_load(&kvm->vcpus[0]);
976 spin_lock(&kvm->lock);
977 kvm_mmu_zap_all(&kvm->vcpus[0]);
978 spin_unlock(&kvm->lock);
979 vcpu_put(&kvm->vcpus[0]);
980
981 return 0;
982
983 out:
984 return r;
985 }
986
987 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
988 {
989 int i;
990 struct kvm_mem_alias *alias;
991
992 for (i = 0; i < kvm->naliases; ++i) {
993 alias = &kvm->aliases[i];
994 if (gfn >= alias->base_gfn
995 && gfn < alias->base_gfn + alias->npages)
996 return alias->target_gfn + gfn - alias->base_gfn;
997 }
998 return gfn;
999 }
1000
1001 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1002 {
1003 int i;
1004
1005 for (i = 0; i < kvm->nmemslots; ++i) {
1006 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1007
1008 if (gfn >= memslot->base_gfn
1009 && gfn < memslot->base_gfn + memslot->npages)
1010 return memslot;
1011 }
1012 return NULL;
1013 }
1014
1015 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1016 {
1017 gfn = unalias_gfn(kvm, gfn);
1018 return __gfn_to_memslot(kvm, gfn);
1019 }
1020
1021 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1022 {
1023 struct kvm_memory_slot *slot;
1024
1025 gfn = unalias_gfn(kvm, gfn);
1026 slot = __gfn_to_memslot(kvm, gfn);
1027 if (!slot)
1028 return NULL;
1029 return slot->phys_mem[gfn - slot->base_gfn];
1030 }
1031 EXPORT_SYMBOL_GPL(gfn_to_page);
1032
1033 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1034 {
1035 int i;
1036 struct kvm_memory_slot *memslot;
1037 unsigned long rel_gfn;
1038
1039 for (i = 0; i < kvm->nmemslots; ++i) {
1040 memslot = &kvm->memslots[i];
1041
1042 if (gfn >= memslot->base_gfn
1043 && gfn < memslot->base_gfn + memslot->npages) {
1044
1045 if (!memslot->dirty_bitmap)
1046 return;
1047
1048 rel_gfn = gfn - memslot->base_gfn;
1049
1050 /* avoid RMW */
1051 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1052 set_bit(rel_gfn, memslot->dirty_bitmap);
1053 return;
1054 }
1055 }
1056 }
1057
1058 static int emulator_read_std(unsigned long addr,
1059 void *val,
1060 unsigned int bytes,
1061 struct x86_emulate_ctxt *ctxt)
1062 {
1063 struct kvm_vcpu *vcpu = ctxt->vcpu;
1064 void *data = val;
1065
1066 while (bytes) {
1067 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1068 unsigned offset = addr & (PAGE_SIZE-1);
1069 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1070 unsigned long pfn;
1071 struct page *page;
1072 void *page_virt;
1073
1074 if (gpa == UNMAPPED_GVA)
1075 return X86EMUL_PROPAGATE_FAULT;
1076 pfn = gpa >> PAGE_SHIFT;
1077 page = gfn_to_page(vcpu->kvm, pfn);
1078 if (!page)
1079 return X86EMUL_UNHANDLEABLE;
1080 page_virt = kmap_atomic(page, KM_USER0);
1081
1082 memcpy(data, page_virt + offset, tocopy);
1083
1084 kunmap_atomic(page_virt, KM_USER0);
1085
1086 bytes -= tocopy;
1087 data += tocopy;
1088 addr += tocopy;
1089 }
1090
1091 return X86EMUL_CONTINUE;
1092 }
1093
1094 static int emulator_write_std(unsigned long addr,
1095 const void *val,
1096 unsigned int bytes,
1097 struct x86_emulate_ctxt *ctxt)
1098 {
1099 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
1100 addr, bytes);
1101 return X86EMUL_UNHANDLEABLE;
1102 }
1103
1104 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1105 gpa_t addr)
1106 {
1107 /*
1108 * Note that its important to have this wrapper function because
1109 * in the very near future we will be checking for MMIOs against
1110 * the LAPIC as well as the general MMIO bus
1111 */
1112 return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1113 }
1114
1115 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1116 gpa_t addr)
1117 {
1118 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1119 }
1120
1121 static int emulator_read_emulated(unsigned long addr,
1122 void *val,
1123 unsigned int bytes,
1124 struct x86_emulate_ctxt *ctxt)
1125 {
1126 struct kvm_vcpu *vcpu = ctxt->vcpu;
1127 struct kvm_io_device *mmio_dev;
1128 gpa_t gpa;
1129
1130 if (vcpu->mmio_read_completed) {
1131 memcpy(val, vcpu->mmio_data, bytes);
1132 vcpu->mmio_read_completed = 0;
1133 return X86EMUL_CONTINUE;
1134 } else if (emulator_read_std(addr, val, bytes, ctxt)
1135 == X86EMUL_CONTINUE)
1136 return X86EMUL_CONTINUE;
1137
1138 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1139 if (gpa == UNMAPPED_GVA)
1140 return X86EMUL_PROPAGATE_FAULT;
1141
1142 /*
1143 * Is this MMIO handled locally?
1144 */
1145 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1146 if (mmio_dev) {
1147 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1148 return X86EMUL_CONTINUE;
1149 }
1150
1151 vcpu->mmio_needed = 1;
1152 vcpu->mmio_phys_addr = gpa;
1153 vcpu->mmio_size = bytes;
1154 vcpu->mmio_is_write = 0;
1155
1156 return X86EMUL_UNHANDLEABLE;
1157 }
1158
1159 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1160 const void *val, int bytes)
1161 {
1162 struct page *page;
1163 void *virt;
1164 unsigned offset = offset_in_page(gpa);
1165
1166 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1167 return 0;
1168 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1169 if (!page)
1170 return 0;
1171 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1172 virt = kmap_atomic(page, KM_USER0);
1173 kvm_mmu_pte_write(vcpu, gpa, virt + offset, val, bytes);
1174 memcpy(virt + offset_in_page(gpa), val, bytes);
1175 kunmap_atomic(virt, KM_USER0);
1176 return 1;
1177 }
1178
1179 static int emulator_write_emulated(unsigned long addr,
1180 const void *val,
1181 unsigned int bytes,
1182 struct x86_emulate_ctxt *ctxt)
1183 {
1184 struct kvm_vcpu *vcpu = ctxt->vcpu;
1185 struct kvm_io_device *mmio_dev;
1186 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1187
1188 if (gpa == UNMAPPED_GVA) {
1189 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1190 return X86EMUL_PROPAGATE_FAULT;
1191 }
1192
1193 if (emulator_write_phys(vcpu, gpa, val, bytes))
1194 return X86EMUL_CONTINUE;
1195
1196 /*
1197 * Is this MMIO handled locally?
1198 */
1199 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1200 if (mmio_dev) {
1201 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1202 return X86EMUL_CONTINUE;
1203 }
1204
1205 vcpu->mmio_needed = 1;
1206 vcpu->mmio_phys_addr = gpa;
1207 vcpu->mmio_size = bytes;
1208 vcpu->mmio_is_write = 1;
1209 memcpy(vcpu->mmio_data, val, bytes);
1210
1211 return X86EMUL_CONTINUE;
1212 }
1213
1214 static int emulator_cmpxchg_emulated(unsigned long addr,
1215 const void *old,
1216 const void *new,
1217 unsigned int bytes,
1218 struct x86_emulate_ctxt *ctxt)
1219 {
1220 static int reported;
1221
1222 if (!reported) {
1223 reported = 1;
1224 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1225 }
1226 return emulator_write_emulated(addr, new, bytes, ctxt);
1227 }
1228
1229 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1230 {
1231 return kvm_arch_ops->get_segment_base(vcpu, seg);
1232 }
1233
1234 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1235 {
1236 return X86EMUL_CONTINUE;
1237 }
1238
1239 int emulate_clts(struct kvm_vcpu *vcpu)
1240 {
1241 unsigned long cr0;
1242
1243 cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1244 kvm_arch_ops->set_cr0(vcpu, cr0);
1245 return X86EMUL_CONTINUE;
1246 }
1247
1248 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1249 {
1250 struct kvm_vcpu *vcpu = ctxt->vcpu;
1251
1252 switch (dr) {
1253 case 0 ... 3:
1254 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1255 return X86EMUL_CONTINUE;
1256 default:
1257 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1258 __FUNCTION__, dr);
1259 return X86EMUL_UNHANDLEABLE;
1260 }
1261 }
1262
1263 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1264 {
1265 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1266 int exception;
1267
1268 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1269 if (exception) {
1270 /* FIXME: better handling */
1271 return X86EMUL_UNHANDLEABLE;
1272 }
1273 return X86EMUL_CONTINUE;
1274 }
1275
1276 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1277 {
1278 static int reported;
1279 u8 opcodes[4];
1280 unsigned long rip = ctxt->vcpu->rip;
1281 unsigned long rip_linear;
1282
1283 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1284
1285 if (reported)
1286 return;
1287
1288 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1289
1290 printk(KERN_ERR "emulation failed but !mmio_needed?"
1291 " rip %lx %02x %02x %02x %02x\n",
1292 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1293 reported = 1;
1294 }
1295
1296 struct x86_emulate_ops emulate_ops = {
1297 .read_std = emulator_read_std,
1298 .write_std = emulator_write_std,
1299 .read_emulated = emulator_read_emulated,
1300 .write_emulated = emulator_write_emulated,
1301 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1302 };
1303
1304 int emulate_instruction(struct kvm_vcpu *vcpu,
1305 struct kvm_run *run,
1306 unsigned long cr2,
1307 u16 error_code)
1308 {
1309 struct x86_emulate_ctxt emulate_ctxt;
1310 int r;
1311 int cs_db, cs_l;
1312
1313 vcpu->mmio_fault_cr2 = cr2;
1314 kvm_arch_ops->cache_regs(vcpu);
1315
1316 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1317
1318 emulate_ctxt.vcpu = vcpu;
1319 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1320 emulate_ctxt.cr2 = cr2;
1321 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1322 ? X86EMUL_MODE_REAL : cs_l
1323 ? X86EMUL_MODE_PROT64 : cs_db
1324 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1325
1326 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1327 emulate_ctxt.cs_base = 0;
1328 emulate_ctxt.ds_base = 0;
1329 emulate_ctxt.es_base = 0;
1330 emulate_ctxt.ss_base = 0;
1331 } else {
1332 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1333 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1334 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1335 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1336 }
1337
1338 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1339 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1340
1341 vcpu->mmio_is_write = 0;
1342 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1343
1344 if ((r || vcpu->mmio_is_write) && run) {
1345 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1346 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1347 run->mmio.len = vcpu->mmio_size;
1348 run->mmio.is_write = vcpu->mmio_is_write;
1349 }
1350
1351 if (r) {
1352 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1353 return EMULATE_DONE;
1354 if (!vcpu->mmio_needed) {
1355 report_emulation_failure(&emulate_ctxt);
1356 return EMULATE_FAIL;
1357 }
1358 return EMULATE_DO_MMIO;
1359 }
1360
1361 kvm_arch_ops->decache_regs(vcpu);
1362 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1363
1364 if (vcpu->mmio_is_write) {
1365 vcpu->mmio_needed = 0;
1366 return EMULATE_DO_MMIO;
1367 }
1368
1369 return EMULATE_DONE;
1370 }
1371 EXPORT_SYMBOL_GPL(emulate_instruction);
1372
1373 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1374 {
1375 if (vcpu->irq_summary)
1376 return 1;
1377
1378 vcpu->run->exit_reason = KVM_EXIT_HLT;
1379 ++vcpu->stat.halt_exits;
1380 return 0;
1381 }
1382 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1383
1384 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1385 {
1386 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1387
1388 kvm_arch_ops->cache_regs(vcpu);
1389 ret = -KVM_EINVAL;
1390 #ifdef CONFIG_X86_64
1391 if (is_long_mode(vcpu)) {
1392 nr = vcpu->regs[VCPU_REGS_RAX];
1393 a0 = vcpu->regs[VCPU_REGS_RDI];
1394 a1 = vcpu->regs[VCPU_REGS_RSI];
1395 a2 = vcpu->regs[VCPU_REGS_RDX];
1396 a3 = vcpu->regs[VCPU_REGS_RCX];
1397 a4 = vcpu->regs[VCPU_REGS_R8];
1398 a5 = vcpu->regs[VCPU_REGS_R9];
1399 } else
1400 #endif
1401 {
1402 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1403 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1404 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1405 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1406 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1407 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1408 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1409 }
1410 switch (nr) {
1411 default:
1412 run->hypercall.args[0] = a0;
1413 run->hypercall.args[1] = a1;
1414 run->hypercall.args[2] = a2;
1415 run->hypercall.args[3] = a3;
1416 run->hypercall.args[4] = a4;
1417 run->hypercall.args[5] = a5;
1418 run->hypercall.ret = ret;
1419 run->hypercall.longmode = is_long_mode(vcpu);
1420 kvm_arch_ops->decache_regs(vcpu);
1421 return 0;
1422 }
1423 vcpu->regs[VCPU_REGS_RAX] = ret;
1424 kvm_arch_ops->decache_regs(vcpu);
1425 return 1;
1426 }
1427 EXPORT_SYMBOL_GPL(kvm_hypercall);
1428
1429 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1430 {
1431 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1432 }
1433
1434 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1435 {
1436 struct descriptor_table dt = { limit, base };
1437
1438 kvm_arch_ops->set_gdt(vcpu, &dt);
1439 }
1440
1441 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1442 {
1443 struct descriptor_table dt = { limit, base };
1444
1445 kvm_arch_ops->set_idt(vcpu, &dt);
1446 }
1447
1448 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1449 unsigned long *rflags)
1450 {
1451 lmsw(vcpu, msw);
1452 *rflags = kvm_arch_ops->get_rflags(vcpu);
1453 }
1454
1455 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1456 {
1457 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1458 switch (cr) {
1459 case 0:
1460 return vcpu->cr0;
1461 case 2:
1462 return vcpu->cr2;
1463 case 3:
1464 return vcpu->cr3;
1465 case 4:
1466 return vcpu->cr4;
1467 default:
1468 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1469 return 0;
1470 }
1471 }
1472
1473 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1474 unsigned long *rflags)
1475 {
1476 switch (cr) {
1477 case 0:
1478 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1479 *rflags = kvm_arch_ops->get_rflags(vcpu);
1480 break;
1481 case 2:
1482 vcpu->cr2 = val;
1483 break;
1484 case 3:
1485 set_cr3(vcpu, val);
1486 break;
1487 case 4:
1488 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1489 break;
1490 default:
1491 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1492 }
1493 }
1494
1495 /*
1496 * Register the para guest with the host:
1497 */
1498 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1499 {
1500 struct kvm_vcpu_para_state *para_state;
1501 hpa_t para_state_hpa, hypercall_hpa;
1502 struct page *para_state_page;
1503 unsigned char *hypercall;
1504 gpa_t hypercall_gpa;
1505
1506 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1507 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1508
1509 /*
1510 * Needs to be page aligned:
1511 */
1512 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1513 goto err_gp;
1514
1515 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1516 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1517 if (is_error_hpa(para_state_hpa))
1518 goto err_gp;
1519
1520 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1521 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1522 para_state = kmap_atomic(para_state_page, KM_USER0);
1523
1524 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1525 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1526
1527 para_state->host_version = KVM_PARA_API_VERSION;
1528 /*
1529 * We cannot support guests that try to register themselves
1530 * with a newer API version than the host supports:
1531 */
1532 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1533 para_state->ret = -KVM_EINVAL;
1534 goto err_kunmap_skip;
1535 }
1536
1537 hypercall_gpa = para_state->hypercall_gpa;
1538 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1539 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1540 if (is_error_hpa(hypercall_hpa)) {
1541 para_state->ret = -KVM_EINVAL;
1542 goto err_kunmap_skip;
1543 }
1544
1545 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1546 vcpu->para_state_page = para_state_page;
1547 vcpu->para_state_gpa = para_state_gpa;
1548 vcpu->hypercall_gpa = hypercall_gpa;
1549
1550 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1551 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1552 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1553 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1554 kunmap_atomic(hypercall, KM_USER1);
1555
1556 para_state->ret = 0;
1557 err_kunmap_skip:
1558 kunmap_atomic(para_state, KM_USER0);
1559 return 0;
1560 err_gp:
1561 return 1;
1562 }
1563
1564 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1565 {
1566 u64 data;
1567
1568 switch (msr) {
1569 case 0xc0010010: /* SYSCFG */
1570 case 0xc0010015: /* HWCR */
1571 case MSR_IA32_PLATFORM_ID:
1572 case MSR_IA32_P5_MC_ADDR:
1573 case MSR_IA32_P5_MC_TYPE:
1574 case MSR_IA32_MC0_CTL:
1575 case MSR_IA32_MCG_STATUS:
1576 case MSR_IA32_MCG_CAP:
1577 case MSR_IA32_MC0_MISC:
1578 case MSR_IA32_MC0_MISC+4:
1579 case MSR_IA32_MC0_MISC+8:
1580 case MSR_IA32_MC0_MISC+12:
1581 case MSR_IA32_MC0_MISC+16:
1582 case MSR_IA32_UCODE_REV:
1583 case MSR_IA32_PERF_STATUS:
1584 case MSR_IA32_EBL_CR_POWERON:
1585 /* MTRR registers */
1586 case 0xfe:
1587 case 0x200 ... 0x2ff:
1588 data = 0;
1589 break;
1590 case 0xcd: /* fsb frequency */
1591 data = 3;
1592 break;
1593 case MSR_IA32_APICBASE:
1594 data = vcpu->apic_base;
1595 break;
1596 case MSR_IA32_MISC_ENABLE:
1597 data = vcpu->ia32_misc_enable_msr;
1598 break;
1599 #ifdef CONFIG_X86_64
1600 case MSR_EFER:
1601 data = vcpu->shadow_efer;
1602 break;
1603 #endif
1604 default:
1605 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1606 return 1;
1607 }
1608 *pdata = data;
1609 return 0;
1610 }
1611 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1612
1613 /*
1614 * Reads an msr value (of 'msr_index') into 'pdata'.
1615 * Returns 0 on success, non-0 otherwise.
1616 * Assumes vcpu_load() was already called.
1617 */
1618 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1619 {
1620 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1621 }
1622
1623 #ifdef CONFIG_X86_64
1624
1625 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1626 {
1627 if (efer & EFER_RESERVED_BITS) {
1628 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1629 efer);
1630 inject_gp(vcpu);
1631 return;
1632 }
1633
1634 if (is_paging(vcpu)
1635 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1636 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1637 inject_gp(vcpu);
1638 return;
1639 }
1640
1641 kvm_arch_ops->set_efer(vcpu, efer);
1642
1643 efer &= ~EFER_LMA;
1644 efer |= vcpu->shadow_efer & EFER_LMA;
1645
1646 vcpu->shadow_efer = efer;
1647 }
1648
1649 #endif
1650
1651 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1652 {
1653 switch (msr) {
1654 #ifdef CONFIG_X86_64
1655 case MSR_EFER:
1656 set_efer(vcpu, data);
1657 break;
1658 #endif
1659 case MSR_IA32_MC0_STATUS:
1660 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1661 __FUNCTION__, data);
1662 break;
1663 case MSR_IA32_MCG_STATUS:
1664 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1665 __FUNCTION__, data);
1666 break;
1667 case MSR_IA32_UCODE_REV:
1668 case MSR_IA32_UCODE_WRITE:
1669 case 0x200 ... 0x2ff: /* MTRRs */
1670 break;
1671 case MSR_IA32_APICBASE:
1672 vcpu->apic_base = data;
1673 break;
1674 case MSR_IA32_MISC_ENABLE:
1675 vcpu->ia32_misc_enable_msr = data;
1676 break;
1677 /*
1678 * This is the 'probe whether the host is KVM' logic:
1679 */
1680 case MSR_KVM_API_MAGIC:
1681 return vcpu_register_para(vcpu, data);
1682
1683 default:
1684 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1685 return 1;
1686 }
1687 return 0;
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1690
1691 /*
1692 * Writes msr value into into the appropriate "register".
1693 * Returns 0 on success, non-0 otherwise.
1694 * Assumes vcpu_load() was already called.
1695 */
1696 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1697 {
1698 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1699 }
1700
1701 void kvm_resched(struct kvm_vcpu *vcpu)
1702 {
1703 if (!need_resched())
1704 return;
1705 vcpu_put(vcpu);
1706 cond_resched();
1707 vcpu_load(vcpu);
1708 }
1709 EXPORT_SYMBOL_GPL(kvm_resched);
1710
1711 void load_msrs(struct vmx_msr_entry *e, int n)
1712 {
1713 int i;
1714
1715 for (i = 0; i < n; ++i)
1716 wrmsrl(e[i].index, e[i].data);
1717 }
1718 EXPORT_SYMBOL_GPL(load_msrs);
1719
1720 void save_msrs(struct vmx_msr_entry *e, int n)
1721 {
1722 int i;
1723
1724 for (i = 0; i < n; ++i)
1725 rdmsrl(e[i].index, e[i].data);
1726 }
1727 EXPORT_SYMBOL_GPL(save_msrs);
1728
1729 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1730 {
1731 int i;
1732 u32 function;
1733 struct kvm_cpuid_entry *e, *best;
1734
1735 kvm_arch_ops->cache_regs(vcpu);
1736 function = vcpu->regs[VCPU_REGS_RAX];
1737 vcpu->regs[VCPU_REGS_RAX] = 0;
1738 vcpu->regs[VCPU_REGS_RBX] = 0;
1739 vcpu->regs[VCPU_REGS_RCX] = 0;
1740 vcpu->regs[VCPU_REGS_RDX] = 0;
1741 best = NULL;
1742 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1743 e = &vcpu->cpuid_entries[i];
1744 if (e->function == function) {
1745 best = e;
1746 break;
1747 }
1748 /*
1749 * Both basic or both extended?
1750 */
1751 if (((e->function ^ function) & 0x80000000) == 0)
1752 if (!best || e->function > best->function)
1753 best = e;
1754 }
1755 if (best) {
1756 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1757 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1758 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1759 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1760 }
1761 kvm_arch_ops->decache_regs(vcpu);
1762 kvm_arch_ops->skip_emulated_instruction(vcpu);
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1765
1766 static int pio_copy_data(struct kvm_vcpu *vcpu)
1767 {
1768 void *p = vcpu->pio_data;
1769 void *q;
1770 unsigned bytes;
1771 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1772
1773 kvm_arch_ops->vcpu_put(vcpu);
1774 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1775 PAGE_KERNEL);
1776 if (!q) {
1777 kvm_arch_ops->vcpu_load(vcpu);
1778 free_pio_guest_pages(vcpu);
1779 return -ENOMEM;
1780 }
1781 q += vcpu->pio.guest_page_offset;
1782 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1783 if (vcpu->pio.in)
1784 memcpy(q, p, bytes);
1785 else
1786 memcpy(p, q, bytes);
1787 q -= vcpu->pio.guest_page_offset;
1788 vunmap(q);
1789 kvm_arch_ops->vcpu_load(vcpu);
1790 free_pio_guest_pages(vcpu);
1791 return 0;
1792 }
1793
1794 static int complete_pio(struct kvm_vcpu *vcpu)
1795 {
1796 struct kvm_pio_request *io = &vcpu->pio;
1797 long delta;
1798 int r;
1799
1800 kvm_arch_ops->cache_regs(vcpu);
1801
1802 if (!io->string) {
1803 if (io->in)
1804 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1805 io->size);
1806 } else {
1807 if (io->in) {
1808 r = pio_copy_data(vcpu);
1809 if (r) {
1810 kvm_arch_ops->cache_regs(vcpu);
1811 return r;
1812 }
1813 }
1814
1815 delta = 1;
1816 if (io->rep) {
1817 delta *= io->cur_count;
1818 /*
1819 * The size of the register should really depend on
1820 * current address size.
1821 */
1822 vcpu->regs[VCPU_REGS_RCX] -= delta;
1823 }
1824 if (io->down)
1825 delta = -delta;
1826 delta *= io->size;
1827 if (io->in)
1828 vcpu->regs[VCPU_REGS_RDI] += delta;
1829 else
1830 vcpu->regs[VCPU_REGS_RSI] += delta;
1831 }
1832
1833 kvm_arch_ops->decache_regs(vcpu);
1834
1835 io->count -= io->cur_count;
1836 io->cur_count = 0;
1837
1838 if (!io->count)
1839 kvm_arch_ops->skip_emulated_instruction(vcpu);
1840 return 0;
1841 }
1842
1843 void kernel_pio(struct kvm_io_device *pio_dev, struct kvm_vcpu *vcpu)
1844 {
1845 /* TODO: String I/O for in kernel device */
1846
1847 if (vcpu->pio.in)
1848 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1849 vcpu->pio.size,
1850 vcpu->pio_data);
1851 else
1852 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1853 vcpu->pio.size,
1854 vcpu->pio_data);
1855 }
1856
1857 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1858 int size, unsigned long count, int string, int down,
1859 gva_t address, int rep, unsigned port)
1860 {
1861 unsigned now, in_page;
1862 int i;
1863 int nr_pages = 1;
1864 struct page *page;
1865 struct kvm_io_device *pio_dev;
1866
1867 vcpu->run->exit_reason = KVM_EXIT_IO;
1868 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1869 vcpu->run->io.size = size;
1870 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1871 vcpu->run->io.count = count;
1872 vcpu->run->io.port = port;
1873 vcpu->pio.count = count;
1874 vcpu->pio.cur_count = count;
1875 vcpu->pio.size = size;
1876 vcpu->pio.in = in;
1877 vcpu->pio.port = port;
1878 vcpu->pio.string = string;
1879 vcpu->pio.down = down;
1880 vcpu->pio.guest_page_offset = offset_in_page(address);
1881 vcpu->pio.rep = rep;
1882
1883 pio_dev = vcpu_find_pio_dev(vcpu, port);
1884 if (!string) {
1885 kvm_arch_ops->cache_regs(vcpu);
1886 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1887 kvm_arch_ops->decache_regs(vcpu);
1888 if (pio_dev) {
1889 kernel_pio(pio_dev, vcpu);
1890 complete_pio(vcpu);
1891 return 1;
1892 }
1893 return 0;
1894 }
1895 /* TODO: String I/O for in kernel device */
1896 if (pio_dev)
1897 printk(KERN_ERR "kvm_setup_pio: no string io support\n");
1898
1899 if (!count) {
1900 kvm_arch_ops->skip_emulated_instruction(vcpu);
1901 return 1;
1902 }
1903
1904 now = min(count, PAGE_SIZE / size);
1905
1906 if (!down)
1907 in_page = PAGE_SIZE - offset_in_page(address);
1908 else
1909 in_page = offset_in_page(address) + size;
1910 now = min(count, (unsigned long)in_page / size);
1911 if (!now) {
1912 /*
1913 * String I/O straddles page boundary. Pin two guest pages
1914 * so that we satisfy atomicity constraints. Do just one
1915 * transaction to avoid complexity.
1916 */
1917 nr_pages = 2;
1918 now = 1;
1919 }
1920 if (down) {
1921 /*
1922 * String I/O in reverse. Yuck. Kill the guest, fix later.
1923 */
1924 printk(KERN_ERR "kvm: guest string pio down\n");
1925 inject_gp(vcpu);
1926 return 1;
1927 }
1928 vcpu->run->io.count = now;
1929 vcpu->pio.cur_count = now;
1930
1931 for (i = 0; i < nr_pages; ++i) {
1932 spin_lock(&vcpu->kvm->lock);
1933 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1934 if (page)
1935 get_page(page);
1936 vcpu->pio.guest_pages[i] = page;
1937 spin_unlock(&vcpu->kvm->lock);
1938 if (!page) {
1939 inject_gp(vcpu);
1940 free_pio_guest_pages(vcpu);
1941 return 1;
1942 }
1943 }
1944
1945 if (!vcpu->pio.in)
1946 return pio_copy_data(vcpu);
1947 return 0;
1948 }
1949 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1950
1951 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1952 {
1953 int r;
1954 sigset_t sigsaved;
1955
1956 vcpu_load(vcpu);
1957
1958 if (vcpu->sigset_active)
1959 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1960
1961 /* re-sync apic's tpr */
1962 vcpu->cr8 = kvm_run->cr8;
1963
1964 if (vcpu->pio.cur_count) {
1965 r = complete_pio(vcpu);
1966 if (r)
1967 goto out;
1968 }
1969
1970 if (vcpu->mmio_needed) {
1971 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1972 vcpu->mmio_read_completed = 1;
1973 vcpu->mmio_needed = 0;
1974 r = emulate_instruction(vcpu, kvm_run,
1975 vcpu->mmio_fault_cr2, 0);
1976 if (r == EMULATE_DO_MMIO) {
1977 /*
1978 * Read-modify-write. Back to userspace.
1979 */
1980 kvm_run->exit_reason = KVM_EXIT_MMIO;
1981 r = 0;
1982 goto out;
1983 }
1984 }
1985
1986 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1987 kvm_arch_ops->cache_regs(vcpu);
1988 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1989 kvm_arch_ops->decache_regs(vcpu);
1990 }
1991
1992 r = kvm_arch_ops->run(vcpu, kvm_run);
1993
1994 out:
1995 if (vcpu->sigset_active)
1996 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1997
1998 vcpu_put(vcpu);
1999 return r;
2000 }
2001
2002 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
2003 struct kvm_regs *regs)
2004 {
2005 vcpu_load(vcpu);
2006
2007 kvm_arch_ops->cache_regs(vcpu);
2008
2009 regs->rax = vcpu->regs[VCPU_REGS_RAX];
2010 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
2011 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
2012 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
2013 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
2014 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
2015 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
2016 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
2017 #ifdef CONFIG_X86_64
2018 regs->r8 = vcpu->regs[VCPU_REGS_R8];
2019 regs->r9 = vcpu->regs[VCPU_REGS_R9];
2020 regs->r10 = vcpu->regs[VCPU_REGS_R10];
2021 regs->r11 = vcpu->regs[VCPU_REGS_R11];
2022 regs->r12 = vcpu->regs[VCPU_REGS_R12];
2023 regs->r13 = vcpu->regs[VCPU_REGS_R13];
2024 regs->r14 = vcpu->regs[VCPU_REGS_R14];
2025 regs->r15 = vcpu->regs[VCPU_REGS_R15];
2026 #endif
2027
2028 regs->rip = vcpu->rip;
2029 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
2030
2031 /*
2032 * Don't leak debug flags in case they were set for guest debugging
2033 */
2034 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2035 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2036
2037 vcpu_put(vcpu);
2038
2039 return 0;
2040 }
2041
2042 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2043 struct kvm_regs *regs)
2044 {
2045 vcpu_load(vcpu);
2046
2047 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2048 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2049 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2050 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2051 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2052 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2053 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2054 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2055 #ifdef CONFIG_X86_64
2056 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2057 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2058 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2059 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2060 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2061 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2062 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2063 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2064 #endif
2065
2066 vcpu->rip = regs->rip;
2067 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
2068
2069 kvm_arch_ops->decache_regs(vcpu);
2070
2071 vcpu_put(vcpu);
2072
2073 return 0;
2074 }
2075
2076 static void get_segment(struct kvm_vcpu *vcpu,
2077 struct kvm_segment *var, int seg)
2078 {
2079 return kvm_arch_ops->get_segment(vcpu, var, seg);
2080 }
2081
2082 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2083 struct kvm_sregs *sregs)
2084 {
2085 struct descriptor_table dt;
2086
2087 vcpu_load(vcpu);
2088
2089 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2090 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2091 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2092 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2093 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2094 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2095
2096 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2097 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2098
2099 kvm_arch_ops->get_idt(vcpu, &dt);
2100 sregs->idt.limit = dt.limit;
2101 sregs->idt.base = dt.base;
2102 kvm_arch_ops->get_gdt(vcpu, &dt);
2103 sregs->gdt.limit = dt.limit;
2104 sregs->gdt.base = dt.base;
2105
2106 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2107 sregs->cr0 = vcpu->cr0;
2108 sregs->cr2 = vcpu->cr2;
2109 sregs->cr3 = vcpu->cr3;
2110 sregs->cr4 = vcpu->cr4;
2111 sregs->cr8 = vcpu->cr8;
2112 sregs->efer = vcpu->shadow_efer;
2113 sregs->apic_base = vcpu->apic_base;
2114
2115 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2116 sizeof sregs->interrupt_bitmap);
2117
2118 vcpu_put(vcpu);
2119
2120 return 0;
2121 }
2122
2123 static void set_segment(struct kvm_vcpu *vcpu,
2124 struct kvm_segment *var, int seg)
2125 {
2126 return kvm_arch_ops->set_segment(vcpu, var, seg);
2127 }
2128
2129 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2130 struct kvm_sregs *sregs)
2131 {
2132 int mmu_reset_needed = 0;
2133 int i;
2134 struct descriptor_table dt;
2135
2136 vcpu_load(vcpu);
2137
2138 dt.limit = sregs->idt.limit;
2139 dt.base = sregs->idt.base;
2140 kvm_arch_ops->set_idt(vcpu, &dt);
2141 dt.limit = sregs->gdt.limit;
2142 dt.base = sregs->gdt.base;
2143 kvm_arch_ops->set_gdt(vcpu, &dt);
2144
2145 vcpu->cr2 = sregs->cr2;
2146 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2147 vcpu->cr3 = sregs->cr3;
2148
2149 vcpu->cr8 = sregs->cr8;
2150
2151 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2152 #ifdef CONFIG_X86_64
2153 kvm_arch_ops->set_efer(vcpu, sregs->efer);
2154 #endif
2155 vcpu->apic_base = sregs->apic_base;
2156
2157 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2158
2159 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2160 kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2161
2162 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2163 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2164 if (!is_long_mode(vcpu) && is_pae(vcpu))
2165 load_pdptrs(vcpu, vcpu->cr3);
2166
2167 if (mmu_reset_needed)
2168 kvm_mmu_reset_context(vcpu);
2169
2170 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2171 sizeof vcpu->irq_pending);
2172 vcpu->irq_summary = 0;
2173 for (i = 0; i < NR_IRQ_WORDS; ++i)
2174 if (vcpu->irq_pending[i])
2175 __set_bit(i, &vcpu->irq_summary);
2176
2177 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2178 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2179 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2180 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2181 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2182 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2183
2184 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2185 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2186
2187 vcpu_put(vcpu);
2188
2189 return 0;
2190 }
2191
2192 /*
2193 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2194 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2195 *
2196 * This list is modified at module load time to reflect the
2197 * capabilities of the host cpu.
2198 */
2199 static u32 msrs_to_save[] = {
2200 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2201 MSR_K6_STAR,
2202 #ifdef CONFIG_X86_64
2203 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2204 #endif
2205 MSR_IA32_TIME_STAMP_COUNTER,
2206 };
2207
2208 static unsigned num_msrs_to_save;
2209
2210 static u32 emulated_msrs[] = {
2211 MSR_IA32_MISC_ENABLE,
2212 };
2213
2214 static __init void kvm_init_msr_list(void)
2215 {
2216 u32 dummy[2];
2217 unsigned i, j;
2218
2219 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2220 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2221 continue;
2222 if (j < i)
2223 msrs_to_save[j] = msrs_to_save[i];
2224 j++;
2225 }
2226 num_msrs_to_save = j;
2227 }
2228
2229 /*
2230 * Adapt set_msr() to msr_io()'s calling convention
2231 */
2232 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2233 {
2234 return set_msr(vcpu, index, *data);
2235 }
2236
2237 /*
2238 * Read or write a bunch of msrs. All parameters are kernel addresses.
2239 *
2240 * @return number of msrs set successfully.
2241 */
2242 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2243 struct kvm_msr_entry *entries,
2244 int (*do_msr)(struct kvm_vcpu *vcpu,
2245 unsigned index, u64 *data))
2246 {
2247 int i;
2248
2249 vcpu_load(vcpu);
2250
2251 for (i = 0; i < msrs->nmsrs; ++i)
2252 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2253 break;
2254
2255 vcpu_put(vcpu);
2256
2257 return i;
2258 }
2259
2260 /*
2261 * Read or write a bunch of msrs. Parameters are user addresses.
2262 *
2263 * @return number of msrs set successfully.
2264 */
2265 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2266 int (*do_msr)(struct kvm_vcpu *vcpu,
2267 unsigned index, u64 *data),
2268 int writeback)
2269 {
2270 struct kvm_msrs msrs;
2271 struct kvm_msr_entry *entries;
2272 int r, n;
2273 unsigned size;
2274
2275 r = -EFAULT;
2276 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2277 goto out;
2278
2279 r = -E2BIG;
2280 if (msrs.nmsrs >= MAX_IO_MSRS)
2281 goto out;
2282
2283 r = -ENOMEM;
2284 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2285 entries = vmalloc(size);
2286 if (!entries)
2287 goto out;
2288
2289 r = -EFAULT;
2290 if (copy_from_user(entries, user_msrs->entries, size))
2291 goto out_free;
2292
2293 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2294 if (r < 0)
2295 goto out_free;
2296
2297 r = -EFAULT;
2298 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2299 goto out_free;
2300
2301 r = n;
2302
2303 out_free:
2304 vfree(entries);
2305 out:
2306 return r;
2307 }
2308
2309 /*
2310 * Translate a guest virtual address to a guest physical address.
2311 */
2312 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2313 struct kvm_translation *tr)
2314 {
2315 unsigned long vaddr = tr->linear_address;
2316 gpa_t gpa;
2317
2318 vcpu_load(vcpu);
2319 spin_lock(&vcpu->kvm->lock);
2320 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2321 tr->physical_address = gpa;
2322 tr->valid = gpa != UNMAPPED_GVA;
2323 tr->writeable = 1;
2324 tr->usermode = 0;
2325 spin_unlock(&vcpu->kvm->lock);
2326 vcpu_put(vcpu);
2327
2328 return 0;
2329 }
2330
2331 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2332 struct kvm_interrupt *irq)
2333 {
2334 if (irq->irq < 0 || irq->irq >= 256)
2335 return -EINVAL;
2336 vcpu_load(vcpu);
2337
2338 set_bit(irq->irq, vcpu->irq_pending);
2339 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2340
2341 vcpu_put(vcpu);
2342
2343 return 0;
2344 }
2345
2346 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2347 struct kvm_debug_guest *dbg)
2348 {
2349 int r;
2350
2351 vcpu_load(vcpu);
2352
2353 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2354
2355 vcpu_put(vcpu);
2356
2357 return r;
2358 }
2359
2360 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2361 unsigned long address,
2362 int *type)
2363 {
2364 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2365 unsigned long pgoff;
2366 struct page *page;
2367
2368 *type = VM_FAULT_MINOR;
2369 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2370 if (pgoff == 0)
2371 page = virt_to_page(vcpu->run);
2372 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2373 page = virt_to_page(vcpu->pio_data);
2374 else
2375 return NOPAGE_SIGBUS;
2376 get_page(page);
2377 return page;
2378 }
2379
2380 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2381 .nopage = kvm_vcpu_nopage,
2382 };
2383
2384 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2385 {
2386 vma->vm_ops = &kvm_vcpu_vm_ops;
2387 return 0;
2388 }
2389
2390 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2391 {
2392 struct kvm_vcpu *vcpu = filp->private_data;
2393
2394 fput(vcpu->kvm->filp);
2395 return 0;
2396 }
2397
2398 static struct file_operations kvm_vcpu_fops = {
2399 .release = kvm_vcpu_release,
2400 .unlocked_ioctl = kvm_vcpu_ioctl,
2401 .compat_ioctl = kvm_vcpu_ioctl,
2402 .mmap = kvm_vcpu_mmap,
2403 };
2404
2405 /*
2406 * Allocates an inode for the vcpu.
2407 */
2408 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2409 {
2410 int fd, r;
2411 struct inode *inode;
2412 struct file *file;
2413
2414 atomic_inc(&vcpu->kvm->filp->f_count);
2415 inode = kvmfs_inode(&kvm_vcpu_fops);
2416 if (IS_ERR(inode)) {
2417 r = PTR_ERR(inode);
2418 goto out1;
2419 }
2420
2421 file = kvmfs_file(inode, vcpu);
2422 if (IS_ERR(file)) {
2423 r = PTR_ERR(file);
2424 goto out2;
2425 }
2426
2427 r = get_unused_fd();
2428 if (r < 0)
2429 goto out3;
2430 fd = r;
2431 fd_install(fd, file);
2432
2433 return fd;
2434
2435 out3:
2436 fput(file);
2437 out2:
2438 iput(inode);
2439 out1:
2440 fput(vcpu->kvm->filp);
2441 return r;
2442 }
2443
2444 /*
2445 * Creates some virtual cpus. Good luck creating more than one.
2446 */
2447 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2448 {
2449 int r;
2450 struct kvm_vcpu *vcpu;
2451 struct page *page;
2452
2453 r = -EINVAL;
2454 if (!valid_vcpu(n))
2455 goto out;
2456
2457 vcpu = &kvm->vcpus[n];
2458
2459 mutex_lock(&vcpu->mutex);
2460
2461 if (vcpu->vmcs) {
2462 mutex_unlock(&vcpu->mutex);
2463 return -EEXIST;
2464 }
2465
2466 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2467 r = -ENOMEM;
2468 if (!page)
2469 goto out_unlock;
2470 vcpu->run = page_address(page);
2471
2472 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2473 r = -ENOMEM;
2474 if (!page)
2475 goto out_free_run;
2476 vcpu->pio_data = page_address(page);
2477
2478 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
2479 FX_IMAGE_ALIGN);
2480 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
2481 vcpu->cr0 = 0x10;
2482
2483 r = kvm_arch_ops->vcpu_create(vcpu);
2484 if (r < 0)
2485 goto out_free_vcpus;
2486
2487 r = kvm_mmu_create(vcpu);
2488 if (r < 0)
2489 goto out_free_vcpus;
2490
2491 kvm_arch_ops->vcpu_load(vcpu);
2492 r = kvm_mmu_setup(vcpu);
2493 if (r >= 0)
2494 r = kvm_arch_ops->vcpu_setup(vcpu);
2495 vcpu_put(vcpu);
2496
2497 if (r < 0)
2498 goto out_free_vcpus;
2499
2500 r = create_vcpu_fd(vcpu);
2501 if (r < 0)
2502 goto out_free_vcpus;
2503
2504 spin_lock(&kvm_lock);
2505 if (n >= kvm->nvcpus)
2506 kvm->nvcpus = n + 1;
2507 spin_unlock(&kvm_lock);
2508
2509 return r;
2510
2511 out_free_vcpus:
2512 kvm_free_vcpu(vcpu);
2513 out_free_run:
2514 free_page((unsigned long)vcpu->run);
2515 vcpu->run = NULL;
2516 out_unlock:
2517 mutex_unlock(&vcpu->mutex);
2518 out:
2519 return r;
2520 }
2521
2522 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2523 {
2524 u64 efer;
2525 int i;
2526 struct kvm_cpuid_entry *e, *entry;
2527
2528 rdmsrl(MSR_EFER, efer);
2529 entry = NULL;
2530 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2531 e = &vcpu->cpuid_entries[i];
2532 if (e->function == 0x80000001) {
2533 entry = e;
2534 break;
2535 }
2536 }
2537 if (entry && (entry->edx & EFER_NX) && !(efer & EFER_NX)) {
2538 entry->edx &= ~(1 << 20);
2539 printk(KERN_INFO ": guest NX capability removed\n");
2540 }
2541 }
2542
2543 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2544 struct kvm_cpuid *cpuid,
2545 struct kvm_cpuid_entry __user *entries)
2546 {
2547 int r;
2548
2549 r = -E2BIG;
2550 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2551 goto out;
2552 r = -EFAULT;
2553 if (copy_from_user(&vcpu->cpuid_entries, entries,
2554 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2555 goto out;
2556 vcpu->cpuid_nent = cpuid->nent;
2557 cpuid_fix_nx_cap(vcpu);
2558 return 0;
2559
2560 out:
2561 return r;
2562 }
2563
2564 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2565 {
2566 if (sigset) {
2567 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2568 vcpu->sigset_active = 1;
2569 vcpu->sigset = *sigset;
2570 } else
2571 vcpu->sigset_active = 0;
2572 return 0;
2573 }
2574
2575 /*
2576 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2577 * we have asm/x86/processor.h
2578 */
2579 struct fxsave {
2580 u16 cwd;
2581 u16 swd;
2582 u16 twd;
2583 u16 fop;
2584 u64 rip;
2585 u64 rdp;
2586 u32 mxcsr;
2587 u32 mxcsr_mask;
2588 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2589 #ifdef CONFIG_X86_64
2590 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2591 #else
2592 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2593 #endif
2594 };
2595
2596 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2597 {
2598 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2599
2600 vcpu_load(vcpu);
2601
2602 memcpy(fpu->fpr, fxsave->st_space, 128);
2603 fpu->fcw = fxsave->cwd;
2604 fpu->fsw = fxsave->swd;
2605 fpu->ftwx = fxsave->twd;
2606 fpu->last_opcode = fxsave->fop;
2607 fpu->last_ip = fxsave->rip;
2608 fpu->last_dp = fxsave->rdp;
2609 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2610
2611 vcpu_put(vcpu);
2612
2613 return 0;
2614 }
2615
2616 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2617 {
2618 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2619
2620 vcpu_load(vcpu);
2621
2622 memcpy(fxsave->st_space, fpu->fpr, 128);
2623 fxsave->cwd = fpu->fcw;
2624 fxsave->swd = fpu->fsw;
2625 fxsave->twd = fpu->ftwx;
2626 fxsave->fop = fpu->last_opcode;
2627 fxsave->rip = fpu->last_ip;
2628 fxsave->rdp = fpu->last_dp;
2629 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2630
2631 vcpu_put(vcpu);
2632
2633 return 0;
2634 }
2635
2636 static long kvm_vcpu_ioctl(struct file *filp,
2637 unsigned int ioctl, unsigned long arg)
2638 {
2639 struct kvm_vcpu *vcpu = filp->private_data;
2640 void __user *argp = (void __user *)arg;
2641 int r = -EINVAL;
2642
2643 switch (ioctl) {
2644 case KVM_RUN:
2645 r = -EINVAL;
2646 if (arg)
2647 goto out;
2648 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2649 break;
2650 case KVM_GET_REGS: {
2651 struct kvm_regs kvm_regs;
2652
2653 memset(&kvm_regs, 0, sizeof kvm_regs);
2654 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2655 if (r)
2656 goto out;
2657 r = -EFAULT;
2658 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2659 goto out;
2660 r = 0;
2661 break;
2662 }
2663 case KVM_SET_REGS: {
2664 struct kvm_regs kvm_regs;
2665
2666 r = -EFAULT;
2667 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2668 goto out;
2669 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2670 if (r)
2671 goto out;
2672 r = 0;
2673 break;
2674 }
2675 case KVM_GET_SREGS: {
2676 struct kvm_sregs kvm_sregs;
2677
2678 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2679 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2680 if (r)
2681 goto out;
2682 r = -EFAULT;
2683 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2684 goto out;
2685 r = 0;
2686 break;
2687 }
2688 case KVM_SET_SREGS: {
2689 struct kvm_sregs kvm_sregs;
2690
2691 r = -EFAULT;
2692 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2693 goto out;
2694 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2695 if (r)
2696 goto out;
2697 r = 0;
2698 break;
2699 }
2700 case KVM_TRANSLATE: {
2701 struct kvm_translation tr;
2702
2703 r = -EFAULT;
2704 if (copy_from_user(&tr, argp, sizeof tr))
2705 goto out;
2706 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2707 if (r)
2708 goto out;
2709 r = -EFAULT;
2710 if (copy_to_user(argp, &tr, sizeof tr))
2711 goto out;
2712 r = 0;
2713 break;
2714 }
2715 case KVM_INTERRUPT: {
2716 struct kvm_interrupt irq;
2717
2718 r = -EFAULT;
2719 if (copy_from_user(&irq, argp, sizeof irq))
2720 goto out;
2721 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2722 if (r)
2723 goto out;
2724 r = 0;
2725 break;
2726 }
2727 case KVM_DEBUG_GUEST: {
2728 struct kvm_debug_guest dbg;
2729
2730 r = -EFAULT;
2731 if (copy_from_user(&dbg, argp, sizeof dbg))
2732 goto out;
2733 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2734 if (r)
2735 goto out;
2736 r = 0;
2737 break;
2738 }
2739 case KVM_GET_MSRS:
2740 r = msr_io(vcpu, argp, get_msr, 1);
2741 break;
2742 case KVM_SET_MSRS:
2743 r = msr_io(vcpu, argp, do_set_msr, 0);
2744 break;
2745 case KVM_SET_CPUID: {
2746 struct kvm_cpuid __user *cpuid_arg = argp;
2747 struct kvm_cpuid cpuid;
2748
2749 r = -EFAULT;
2750 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2751 goto out;
2752 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2753 if (r)
2754 goto out;
2755 break;
2756 }
2757 case KVM_SET_SIGNAL_MASK: {
2758 struct kvm_signal_mask __user *sigmask_arg = argp;
2759 struct kvm_signal_mask kvm_sigmask;
2760 sigset_t sigset, *p;
2761
2762 p = NULL;
2763 if (argp) {
2764 r = -EFAULT;
2765 if (copy_from_user(&kvm_sigmask, argp,
2766 sizeof kvm_sigmask))
2767 goto out;
2768 r = -EINVAL;
2769 if (kvm_sigmask.len != sizeof sigset)
2770 goto out;
2771 r = -EFAULT;
2772 if (copy_from_user(&sigset, sigmask_arg->sigset,
2773 sizeof sigset))
2774 goto out;
2775 p = &sigset;
2776 }
2777 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2778 break;
2779 }
2780 case KVM_GET_FPU: {
2781 struct kvm_fpu fpu;
2782
2783 memset(&fpu, 0, sizeof fpu);
2784 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2785 if (r)
2786 goto out;
2787 r = -EFAULT;
2788 if (copy_to_user(argp, &fpu, sizeof fpu))
2789 goto out;
2790 r = 0;
2791 break;
2792 }
2793 case KVM_SET_FPU: {
2794 struct kvm_fpu fpu;
2795
2796 r = -EFAULT;
2797 if (copy_from_user(&fpu, argp, sizeof fpu))
2798 goto out;
2799 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2800 if (r)
2801 goto out;
2802 r = 0;
2803 break;
2804 }
2805 default:
2806 ;
2807 }
2808 out:
2809 return r;
2810 }
2811
2812 static long kvm_vm_ioctl(struct file *filp,
2813 unsigned int ioctl, unsigned long arg)
2814 {
2815 struct kvm *kvm = filp->private_data;
2816 void __user *argp = (void __user *)arg;
2817 int r = -EINVAL;
2818
2819 switch (ioctl) {
2820 case KVM_CREATE_VCPU:
2821 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2822 if (r < 0)
2823 goto out;
2824 break;
2825 case KVM_SET_MEMORY_REGION: {
2826 struct kvm_memory_region kvm_mem;
2827
2828 r = -EFAULT;
2829 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2830 goto out;
2831 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2832 if (r)
2833 goto out;
2834 break;
2835 }
2836 case KVM_GET_DIRTY_LOG: {
2837 struct kvm_dirty_log log;
2838
2839 r = -EFAULT;
2840 if (copy_from_user(&log, argp, sizeof log))
2841 goto out;
2842 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2843 if (r)
2844 goto out;
2845 break;
2846 }
2847 case KVM_SET_MEMORY_ALIAS: {
2848 struct kvm_memory_alias alias;
2849
2850 r = -EFAULT;
2851 if (copy_from_user(&alias, argp, sizeof alias))
2852 goto out;
2853 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2854 if (r)
2855 goto out;
2856 break;
2857 }
2858 default:
2859 ;
2860 }
2861 out:
2862 return r;
2863 }
2864
2865 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2866 unsigned long address,
2867 int *type)
2868 {
2869 struct kvm *kvm = vma->vm_file->private_data;
2870 unsigned long pgoff;
2871 struct page *page;
2872
2873 *type = VM_FAULT_MINOR;
2874 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2875 page = gfn_to_page(kvm, pgoff);
2876 if (!page)
2877 return NOPAGE_SIGBUS;
2878 get_page(page);
2879 return page;
2880 }
2881
2882 static struct vm_operations_struct kvm_vm_vm_ops = {
2883 .nopage = kvm_vm_nopage,
2884 };
2885
2886 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2887 {
2888 vma->vm_ops = &kvm_vm_vm_ops;
2889 return 0;
2890 }
2891
2892 static struct file_operations kvm_vm_fops = {
2893 .release = kvm_vm_release,
2894 .unlocked_ioctl = kvm_vm_ioctl,
2895 .compat_ioctl = kvm_vm_ioctl,
2896 .mmap = kvm_vm_mmap,
2897 };
2898
2899 static int kvm_dev_ioctl_create_vm(void)
2900 {
2901 int fd, r;
2902 struct inode *inode;
2903 struct file *file;
2904 struct kvm *kvm;
2905
2906 inode = kvmfs_inode(&kvm_vm_fops);
2907 if (IS_ERR(inode)) {
2908 r = PTR_ERR(inode);
2909 goto out1;
2910 }
2911
2912 kvm = kvm_create_vm();
2913 if (IS_ERR(kvm)) {
2914 r = PTR_ERR(kvm);
2915 goto out2;
2916 }
2917
2918 file = kvmfs_file(inode, kvm);
2919 if (IS_ERR(file)) {
2920 r = PTR_ERR(file);
2921 goto out3;
2922 }
2923 kvm->filp = file;
2924
2925 r = get_unused_fd();
2926 if (r < 0)
2927 goto out4;
2928 fd = r;
2929 fd_install(fd, file);
2930
2931 return fd;
2932
2933 out4:
2934 fput(file);
2935 out3:
2936 kvm_destroy_vm(kvm);
2937 out2:
2938 iput(inode);
2939 out1:
2940 return r;
2941 }
2942
2943 static long kvm_dev_ioctl(struct file *filp,
2944 unsigned int ioctl, unsigned long arg)
2945 {
2946 void __user *argp = (void __user *)arg;
2947 long r = -EINVAL;
2948
2949 switch (ioctl) {
2950 case KVM_GET_API_VERSION:
2951 r = -EINVAL;
2952 if (arg)
2953 goto out;
2954 r = KVM_API_VERSION;
2955 break;
2956 case KVM_CREATE_VM:
2957 r = -EINVAL;
2958 if (arg)
2959 goto out;
2960 r = kvm_dev_ioctl_create_vm();
2961 break;
2962 case KVM_GET_MSR_INDEX_LIST: {
2963 struct kvm_msr_list __user *user_msr_list = argp;
2964 struct kvm_msr_list msr_list;
2965 unsigned n;
2966
2967 r = -EFAULT;
2968 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2969 goto out;
2970 n = msr_list.nmsrs;
2971 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2972 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2973 goto out;
2974 r = -E2BIG;
2975 if (n < num_msrs_to_save)
2976 goto out;
2977 r = -EFAULT;
2978 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2979 num_msrs_to_save * sizeof(u32)))
2980 goto out;
2981 if (copy_to_user(user_msr_list->indices
2982 + num_msrs_to_save * sizeof(u32),
2983 &emulated_msrs,
2984 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2985 goto out;
2986 r = 0;
2987 break;
2988 }
2989 case KVM_CHECK_EXTENSION:
2990 /*
2991 * No extensions defined at present.
2992 */
2993 r = 0;
2994 break;
2995 case KVM_GET_VCPU_MMAP_SIZE:
2996 r = -EINVAL;
2997 if (arg)
2998 goto out;
2999 r = 2 * PAGE_SIZE;
3000 break;
3001 default:
3002 ;
3003 }
3004 out:
3005 return r;
3006 }
3007
3008 static struct file_operations kvm_chardev_ops = {
3009 .open = kvm_dev_open,
3010 .release = kvm_dev_release,
3011 .unlocked_ioctl = kvm_dev_ioctl,
3012 .compat_ioctl = kvm_dev_ioctl,
3013 };
3014
3015 static struct miscdevice kvm_dev = {
3016 KVM_MINOR,
3017 "kvm",
3018 &kvm_chardev_ops,
3019 };
3020
3021 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3022 void *v)
3023 {
3024 if (val == SYS_RESTART) {
3025 /*
3026 * Some (well, at least mine) BIOSes hang on reboot if
3027 * in vmx root mode.
3028 */
3029 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3030 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
3031 }
3032 return NOTIFY_OK;
3033 }
3034
3035 static struct notifier_block kvm_reboot_notifier = {
3036 .notifier_call = kvm_reboot,
3037 .priority = 0,
3038 };
3039
3040 /*
3041 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
3042 * cached on it.
3043 */
3044 static void decache_vcpus_on_cpu(int cpu)
3045 {
3046 struct kvm *vm;
3047 struct kvm_vcpu *vcpu;
3048 int i;
3049
3050 spin_lock(&kvm_lock);
3051 list_for_each_entry(vm, &vm_list, vm_list)
3052 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3053 vcpu = &vm->vcpus[i];
3054 /*
3055 * If the vcpu is locked, then it is running on some
3056 * other cpu and therefore it is not cached on the
3057 * cpu in question.
3058 *
3059 * If it's not locked, check the last cpu it executed
3060 * on.
3061 */
3062 if (mutex_trylock(&vcpu->mutex)) {
3063 if (vcpu->cpu == cpu) {
3064 kvm_arch_ops->vcpu_decache(vcpu);
3065 vcpu->cpu = -1;
3066 }
3067 mutex_unlock(&vcpu->mutex);
3068 }
3069 }
3070 spin_unlock(&kvm_lock);
3071 }
3072
3073 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3074 void *v)
3075 {
3076 int cpu = (long)v;
3077
3078 switch (val) {
3079 case CPU_DOWN_PREPARE:
3080 case CPU_DOWN_PREPARE_FROZEN:
3081 case CPU_UP_CANCELED:
3082 case CPU_UP_CANCELED_FROZEN:
3083 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3084 cpu);
3085 decache_vcpus_on_cpu(cpu);
3086 smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
3087 NULL, 0, 1);
3088 break;
3089 case CPU_ONLINE:
3090 case CPU_ONLINE_FROZEN:
3091 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3092 cpu);
3093 smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
3094 NULL, 0, 1);
3095 break;
3096 }
3097 return NOTIFY_OK;
3098 }
3099
3100 void kvm_io_bus_init(struct kvm_io_bus *bus)
3101 {
3102 memset(bus, 0, sizeof(*bus));
3103 }
3104
3105 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3106 {
3107 int i;
3108
3109 for (i = 0; i < bus->dev_count; i++) {
3110 struct kvm_io_device *pos = bus->devs[i];
3111
3112 kvm_iodevice_destructor(pos);
3113 }
3114 }
3115
3116 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3117 {
3118 int i;
3119
3120 for (i = 0; i < bus->dev_count; i++) {
3121 struct kvm_io_device *pos = bus->devs[i];
3122
3123 if (pos->in_range(pos, addr))
3124 return pos;
3125 }
3126
3127 return NULL;
3128 }
3129
3130 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3131 {
3132 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3133
3134 bus->devs[bus->dev_count++] = dev;
3135 }
3136
3137 static struct notifier_block kvm_cpu_notifier = {
3138 .notifier_call = kvm_cpu_hotplug,
3139 .priority = 20, /* must be > scheduler priority */
3140 };
3141
3142 static u64 stat_get(void *_offset)
3143 {
3144 unsigned offset = (long)_offset;
3145 u64 total = 0;
3146 struct kvm *kvm;
3147 struct kvm_vcpu *vcpu;
3148 int i;
3149
3150 spin_lock(&kvm_lock);
3151 list_for_each_entry(kvm, &vm_list, vm_list)
3152 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3153 vcpu = &kvm->vcpus[i];
3154 total += *(u32 *)((void *)vcpu + offset);
3155 }
3156 spin_unlock(&kvm_lock);
3157 return total;
3158 }
3159
3160 static void stat_set(void *offset, u64 val)
3161 {
3162 }
3163
3164 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
3165
3166 static __init void kvm_init_debug(void)
3167 {
3168 struct kvm_stats_debugfs_item *p;
3169
3170 debugfs_dir = debugfs_create_dir("kvm", NULL);
3171 for (p = debugfs_entries; p->name; ++p)
3172 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3173 (void *)(long)p->offset,
3174 &stat_fops);
3175 }
3176
3177 static void kvm_exit_debug(void)
3178 {
3179 struct kvm_stats_debugfs_item *p;
3180
3181 for (p = debugfs_entries; p->name; ++p)
3182 debugfs_remove(p->dentry);
3183 debugfs_remove(debugfs_dir);
3184 }
3185
3186 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3187 {
3188 decache_vcpus_on_cpu(raw_smp_processor_id());
3189 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
3190 return 0;
3191 }
3192
3193 static int kvm_resume(struct sys_device *dev)
3194 {
3195 on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
3196 return 0;
3197 }
3198
3199 static struct sysdev_class kvm_sysdev_class = {
3200 set_kset_name("kvm"),
3201 .suspend = kvm_suspend,
3202 .resume = kvm_resume,
3203 };
3204
3205 static struct sys_device kvm_sysdev = {
3206 .id = 0,
3207 .cls = &kvm_sysdev_class,
3208 };
3209
3210 hpa_t bad_page_address;
3211
3212 static int kvmfs_get_sb(struct file_system_type *fs_type, int flags,
3213 const char *dev_name, void *data, struct vfsmount *mnt)
3214 {
3215 return get_sb_pseudo(fs_type, "kvm:", NULL, KVMFS_SUPER_MAGIC, mnt);
3216 }
3217
3218 static struct file_system_type kvm_fs_type = {
3219 .name = "kvmfs",
3220 .get_sb = kvmfs_get_sb,
3221 .kill_sb = kill_anon_super,
3222 };
3223
3224 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
3225 {
3226 int r;
3227
3228 if (kvm_arch_ops) {
3229 printk(KERN_ERR "kvm: already loaded the other module\n");
3230 return -EEXIST;
3231 }
3232
3233 if (!ops->cpu_has_kvm_support()) {
3234 printk(KERN_ERR "kvm: no hardware support\n");
3235 return -EOPNOTSUPP;
3236 }
3237 if (ops->disabled_by_bios()) {
3238 printk(KERN_ERR "kvm: disabled by bios\n");
3239 return -EOPNOTSUPP;
3240 }
3241
3242 kvm_arch_ops = ops;
3243
3244 r = kvm_arch_ops->hardware_setup();
3245 if (r < 0)
3246 goto out;
3247
3248 on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
3249 r = register_cpu_notifier(&kvm_cpu_notifier);
3250 if (r)
3251 goto out_free_1;
3252 register_reboot_notifier(&kvm_reboot_notifier);
3253
3254 r = sysdev_class_register(&kvm_sysdev_class);
3255 if (r)
3256 goto out_free_2;
3257
3258 r = sysdev_register(&kvm_sysdev);
3259 if (r)
3260 goto out_free_3;
3261
3262 kvm_chardev_ops.owner = module;
3263
3264 r = misc_register(&kvm_dev);
3265 if (r) {
3266 printk (KERN_ERR "kvm: misc device register failed\n");
3267 goto out_free;
3268 }
3269
3270 return r;
3271
3272 out_free:
3273 sysdev_unregister(&kvm_sysdev);
3274 out_free_3:
3275 sysdev_class_unregister(&kvm_sysdev_class);
3276 out_free_2:
3277 unregister_reboot_notifier(&kvm_reboot_notifier);
3278 unregister_cpu_notifier(&kvm_cpu_notifier);
3279 out_free_1:
3280 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
3281 kvm_arch_ops->hardware_unsetup();
3282 out:
3283 kvm_arch_ops = NULL;
3284 return r;
3285 }
3286
3287 void kvm_exit_arch(void)
3288 {
3289 misc_deregister(&kvm_dev);
3290 sysdev_unregister(&kvm_sysdev);
3291 sysdev_class_unregister(&kvm_sysdev_class);
3292 unregister_reboot_notifier(&kvm_reboot_notifier);
3293 unregister_cpu_notifier(&kvm_cpu_notifier);
3294 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
3295 kvm_arch_ops->hardware_unsetup();
3296 kvm_arch_ops = NULL;
3297 }
3298
3299 static __init int kvm_init(void)
3300 {
3301 static struct page *bad_page;
3302 int r;
3303
3304 r = kvm_mmu_module_init();
3305 if (r)
3306 goto out4;
3307
3308 r = register_filesystem(&kvm_fs_type);
3309 if (r)
3310 goto out3;
3311
3312 kvmfs_mnt = kern_mount(&kvm_fs_type);
3313 r = PTR_ERR(kvmfs_mnt);
3314 if (IS_ERR(kvmfs_mnt))
3315 goto out2;
3316 kvm_init_debug();
3317
3318 kvm_init_msr_list();
3319
3320 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3321 r = -ENOMEM;
3322 goto out;
3323 }
3324
3325 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3326 memset(__va(bad_page_address), 0, PAGE_SIZE);
3327
3328 return 0;
3329
3330 out:
3331 kvm_exit_debug();
3332 mntput(kvmfs_mnt);
3333 out2:
3334 unregister_filesystem(&kvm_fs_type);
3335 out3:
3336 kvm_mmu_module_exit();
3337 out4:
3338 return r;
3339 }
3340
3341 static __exit void kvm_exit(void)
3342 {
3343 kvm_exit_debug();
3344 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3345 mntput(kvmfs_mnt);
3346 unregister_filesystem(&kvm_fs_type);
3347 kvm_mmu_module_exit();
3348 }
3349
3350 module_init(kvm_init)
3351 module_exit(kvm_exit)
3352
3353 EXPORT_SYMBOL_GPL(kvm_init_arch);
3354 EXPORT_SYMBOL_GPL(kvm_exit_arch);
This page took 0.099486 seconds and 5 git commands to generate.