ba7f43a4459e8d59dc3c1b9683afbca84c92dc67
[deliverable/linux.git] / drivers / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <linux/magic.h>
24 #include <asm/processor.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <asm/msr.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <asm/uaccess.h>
32 #include <linux/reboot.h>
33 #include <asm/io.h>
34 #include <linux/debugfs.h>
35 #include <linux/highmem.h>
36 #include <linux/file.h>
37 #include <asm/desc.h>
38 #include <linux/sysdev.h>
39 #include <linux/cpu.h>
40 #include <linux/file.h>
41 #include <linux/fs.h>
42 #include <linux/mount.h>
43
44 #include "x86_emulate.h"
45 #include "segment_descriptor.h"
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
52
53 struct kvm_arch_ops *kvm_arch_ops;
54 struct kvm_stat kvm_stat;
55 EXPORT_SYMBOL_GPL(kvm_stat);
56
57 static struct kvm_stats_debugfs_item {
58 const char *name;
59 u32 *data;
60 struct dentry *dentry;
61 } debugfs_entries[] = {
62 { "pf_fixed", &kvm_stat.pf_fixed },
63 { "pf_guest", &kvm_stat.pf_guest },
64 { "tlb_flush", &kvm_stat.tlb_flush },
65 { "invlpg", &kvm_stat.invlpg },
66 { "exits", &kvm_stat.exits },
67 { "io_exits", &kvm_stat.io_exits },
68 { "mmio_exits", &kvm_stat.mmio_exits },
69 { "signal_exits", &kvm_stat.signal_exits },
70 { "irq_window", &kvm_stat.irq_window_exits },
71 { "halt_exits", &kvm_stat.halt_exits },
72 { "request_irq", &kvm_stat.request_irq_exits },
73 { "irq_exits", &kvm_stat.irq_exits },
74 { NULL, NULL }
75 };
76
77 static struct dentry *debugfs_dir;
78
79 struct vfsmount *kvmfs_mnt;
80
81 #define MAX_IO_MSRS 256
82
83 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
84 #define LMSW_GUEST_MASK 0x0eULL
85 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
86 #define CR8_RESEVED_BITS (~0x0fULL)
87 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
88
89 #ifdef CONFIG_X86_64
90 // LDT or TSS descriptor in the GDT. 16 bytes.
91 struct segment_descriptor_64 {
92 struct segment_descriptor s;
93 u32 base_higher;
94 u32 pad_zero;
95 };
96
97 #endif
98
99 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
100 unsigned long arg);
101
102 static struct inode *kvmfs_inode(struct file_operations *fops)
103 {
104 int error = -ENOMEM;
105 struct inode *inode = new_inode(kvmfs_mnt->mnt_sb);
106
107 if (!inode)
108 goto eexit_1;
109
110 inode->i_fop = fops;
111
112 /*
113 * Mark the inode dirty from the very beginning,
114 * that way it will never be moved to the dirty
115 * list because mark_inode_dirty() will think
116 * that it already _is_ on the dirty list.
117 */
118 inode->i_state = I_DIRTY;
119 inode->i_mode = S_IRUSR | S_IWUSR;
120 inode->i_uid = current->fsuid;
121 inode->i_gid = current->fsgid;
122 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
123 return inode;
124
125 eexit_1:
126 return ERR_PTR(error);
127 }
128
129 static struct file *kvmfs_file(struct inode *inode, void *private_data)
130 {
131 struct file *file = get_empty_filp();
132
133 if (!file)
134 return ERR_PTR(-ENFILE);
135
136 file->f_path.mnt = mntget(kvmfs_mnt);
137 file->f_path.dentry = d_alloc_anon(inode);
138 if (!file->f_path.dentry)
139 return ERR_PTR(-ENOMEM);
140 file->f_mapping = inode->i_mapping;
141
142 file->f_pos = 0;
143 file->f_flags = O_RDWR;
144 file->f_op = inode->i_fop;
145 file->f_mode = FMODE_READ | FMODE_WRITE;
146 file->f_version = 0;
147 file->private_data = private_data;
148 return file;
149 }
150
151 unsigned long segment_base(u16 selector)
152 {
153 struct descriptor_table gdt;
154 struct segment_descriptor *d;
155 unsigned long table_base;
156 typedef unsigned long ul;
157 unsigned long v;
158
159 if (selector == 0)
160 return 0;
161
162 asm ("sgdt %0" : "=m"(gdt));
163 table_base = gdt.base;
164
165 if (selector & 4) { /* from ldt */
166 u16 ldt_selector;
167
168 asm ("sldt %0" : "=g"(ldt_selector));
169 table_base = segment_base(ldt_selector);
170 }
171 d = (struct segment_descriptor *)(table_base + (selector & ~7));
172 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
173 #ifdef CONFIG_X86_64
174 if (d->system == 0
175 && (d->type == 2 || d->type == 9 || d->type == 11))
176 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
177 #endif
178 return v;
179 }
180 EXPORT_SYMBOL_GPL(segment_base);
181
182 static inline int valid_vcpu(int n)
183 {
184 return likely(n >= 0 && n < KVM_MAX_VCPUS);
185 }
186
187 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
188 void *dest)
189 {
190 unsigned char *host_buf = dest;
191 unsigned long req_size = size;
192
193 while (size) {
194 hpa_t paddr;
195 unsigned now;
196 unsigned offset;
197 hva_t guest_buf;
198
199 paddr = gva_to_hpa(vcpu, addr);
200
201 if (is_error_hpa(paddr))
202 break;
203
204 guest_buf = (hva_t)kmap_atomic(
205 pfn_to_page(paddr >> PAGE_SHIFT),
206 KM_USER0);
207 offset = addr & ~PAGE_MASK;
208 guest_buf |= offset;
209 now = min(size, PAGE_SIZE - offset);
210 memcpy(host_buf, (void*)guest_buf, now);
211 host_buf += now;
212 addr += now;
213 size -= now;
214 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
215 }
216 return req_size - size;
217 }
218 EXPORT_SYMBOL_GPL(kvm_read_guest);
219
220 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
221 void *data)
222 {
223 unsigned char *host_buf = data;
224 unsigned long req_size = size;
225
226 while (size) {
227 hpa_t paddr;
228 unsigned now;
229 unsigned offset;
230 hva_t guest_buf;
231 gfn_t gfn;
232
233 paddr = gva_to_hpa(vcpu, addr);
234
235 if (is_error_hpa(paddr))
236 break;
237
238 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
239 mark_page_dirty(vcpu->kvm, gfn);
240 guest_buf = (hva_t)kmap_atomic(
241 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
242 offset = addr & ~PAGE_MASK;
243 guest_buf |= offset;
244 now = min(size, PAGE_SIZE - offset);
245 memcpy((void*)guest_buf, host_buf, now);
246 host_buf += now;
247 addr += now;
248 size -= now;
249 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
250 }
251 return req_size - size;
252 }
253 EXPORT_SYMBOL_GPL(kvm_write_guest);
254
255 /*
256 * Switches to specified vcpu, until a matching vcpu_put()
257 */
258 static void vcpu_load(struct kvm_vcpu *vcpu)
259 {
260 mutex_lock(&vcpu->mutex);
261 kvm_arch_ops->vcpu_load(vcpu);
262 }
263
264 /*
265 * Switches to specified vcpu, until a matching vcpu_put(). Will return NULL
266 * if the slot is not populated.
267 */
268 static struct kvm_vcpu *vcpu_load_slot(struct kvm *kvm, int slot)
269 {
270 struct kvm_vcpu *vcpu = &kvm->vcpus[slot];
271
272 mutex_lock(&vcpu->mutex);
273 if (!vcpu->vmcs) {
274 mutex_unlock(&vcpu->mutex);
275 return NULL;
276 }
277 kvm_arch_ops->vcpu_load(vcpu);
278 return vcpu;
279 }
280
281 static void vcpu_put(struct kvm_vcpu *vcpu)
282 {
283 kvm_arch_ops->vcpu_put(vcpu);
284 mutex_unlock(&vcpu->mutex);
285 }
286
287 static struct kvm *kvm_create_vm(void)
288 {
289 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
290 int i;
291
292 if (!kvm)
293 return ERR_PTR(-ENOMEM);
294
295 spin_lock_init(&kvm->lock);
296 INIT_LIST_HEAD(&kvm->active_mmu_pages);
297 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
298 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
299
300 mutex_init(&vcpu->mutex);
301 vcpu->cpu = -1;
302 vcpu->kvm = kvm;
303 vcpu->mmu.root_hpa = INVALID_PAGE;
304 INIT_LIST_HEAD(&vcpu->free_pages);
305 spin_lock(&kvm_lock);
306 list_add(&kvm->vm_list, &vm_list);
307 spin_unlock(&kvm_lock);
308 }
309 return kvm;
310 }
311
312 static int kvm_dev_open(struct inode *inode, struct file *filp)
313 {
314 return 0;
315 }
316
317 /*
318 * Free any memory in @free but not in @dont.
319 */
320 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
321 struct kvm_memory_slot *dont)
322 {
323 int i;
324
325 if (!dont || free->phys_mem != dont->phys_mem)
326 if (free->phys_mem) {
327 for (i = 0; i < free->npages; ++i)
328 if (free->phys_mem[i])
329 __free_page(free->phys_mem[i]);
330 vfree(free->phys_mem);
331 }
332
333 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
334 vfree(free->dirty_bitmap);
335
336 free->phys_mem = NULL;
337 free->npages = 0;
338 free->dirty_bitmap = NULL;
339 }
340
341 static void kvm_free_physmem(struct kvm *kvm)
342 {
343 int i;
344
345 for (i = 0; i < kvm->nmemslots; ++i)
346 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
347 }
348
349 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
350 {
351 if (!vcpu->vmcs)
352 return;
353
354 vcpu_load(vcpu);
355 kvm_mmu_destroy(vcpu);
356 vcpu_put(vcpu);
357 kvm_arch_ops->vcpu_free(vcpu);
358 free_page((unsigned long)vcpu->run);
359 vcpu->run = NULL;
360 }
361
362 static void kvm_free_vcpus(struct kvm *kvm)
363 {
364 unsigned int i;
365
366 for (i = 0; i < KVM_MAX_VCPUS; ++i)
367 kvm_free_vcpu(&kvm->vcpus[i]);
368 }
369
370 static int kvm_dev_release(struct inode *inode, struct file *filp)
371 {
372 return 0;
373 }
374
375 static void kvm_destroy_vm(struct kvm *kvm)
376 {
377 spin_lock(&kvm_lock);
378 list_del(&kvm->vm_list);
379 spin_unlock(&kvm_lock);
380 kvm_free_vcpus(kvm);
381 kvm_free_physmem(kvm);
382 kfree(kvm);
383 }
384
385 static int kvm_vm_release(struct inode *inode, struct file *filp)
386 {
387 struct kvm *kvm = filp->private_data;
388
389 kvm_destroy_vm(kvm);
390 return 0;
391 }
392
393 static void inject_gp(struct kvm_vcpu *vcpu)
394 {
395 kvm_arch_ops->inject_gp(vcpu, 0);
396 }
397
398 /*
399 * Load the pae pdptrs. Return true is they are all valid.
400 */
401 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
402 {
403 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
404 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
405 int i;
406 u64 pdpte;
407 u64 *pdpt;
408 int ret;
409 struct kvm_memory_slot *memslot;
410
411 spin_lock(&vcpu->kvm->lock);
412 memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
413 /* FIXME: !memslot - emulate? 0xff? */
414 pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
415
416 ret = 1;
417 for (i = 0; i < 4; ++i) {
418 pdpte = pdpt[offset + i];
419 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
420 ret = 0;
421 goto out;
422 }
423 }
424
425 for (i = 0; i < 4; ++i)
426 vcpu->pdptrs[i] = pdpt[offset + i];
427
428 out:
429 kunmap_atomic(pdpt, KM_USER0);
430 spin_unlock(&vcpu->kvm->lock);
431
432 return ret;
433 }
434
435 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
436 {
437 if (cr0 & CR0_RESEVED_BITS) {
438 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
439 cr0, vcpu->cr0);
440 inject_gp(vcpu);
441 return;
442 }
443
444 if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
445 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
446 inject_gp(vcpu);
447 return;
448 }
449
450 if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
451 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
452 "and a clear PE flag\n");
453 inject_gp(vcpu);
454 return;
455 }
456
457 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
458 #ifdef CONFIG_X86_64
459 if ((vcpu->shadow_efer & EFER_LME)) {
460 int cs_db, cs_l;
461
462 if (!is_pae(vcpu)) {
463 printk(KERN_DEBUG "set_cr0: #GP, start paging "
464 "in long mode while PAE is disabled\n");
465 inject_gp(vcpu);
466 return;
467 }
468 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
469 if (cs_l) {
470 printk(KERN_DEBUG "set_cr0: #GP, start paging "
471 "in long mode while CS.L == 1\n");
472 inject_gp(vcpu);
473 return;
474
475 }
476 } else
477 #endif
478 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
479 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
480 "reserved bits\n");
481 inject_gp(vcpu);
482 return;
483 }
484
485 }
486
487 kvm_arch_ops->set_cr0(vcpu, cr0);
488 vcpu->cr0 = cr0;
489
490 spin_lock(&vcpu->kvm->lock);
491 kvm_mmu_reset_context(vcpu);
492 spin_unlock(&vcpu->kvm->lock);
493 return;
494 }
495 EXPORT_SYMBOL_GPL(set_cr0);
496
497 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
498 {
499 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
500 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
501 }
502 EXPORT_SYMBOL_GPL(lmsw);
503
504 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
505 {
506 if (cr4 & CR4_RESEVED_BITS) {
507 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
508 inject_gp(vcpu);
509 return;
510 }
511
512 if (is_long_mode(vcpu)) {
513 if (!(cr4 & CR4_PAE_MASK)) {
514 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
515 "in long mode\n");
516 inject_gp(vcpu);
517 return;
518 }
519 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
520 && !load_pdptrs(vcpu, vcpu->cr3)) {
521 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
522 inject_gp(vcpu);
523 }
524
525 if (cr4 & CR4_VMXE_MASK) {
526 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
527 inject_gp(vcpu);
528 return;
529 }
530 kvm_arch_ops->set_cr4(vcpu, cr4);
531 spin_lock(&vcpu->kvm->lock);
532 kvm_mmu_reset_context(vcpu);
533 spin_unlock(&vcpu->kvm->lock);
534 }
535 EXPORT_SYMBOL_GPL(set_cr4);
536
537 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
538 {
539 if (is_long_mode(vcpu)) {
540 if (cr3 & CR3_L_MODE_RESEVED_BITS) {
541 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
542 inject_gp(vcpu);
543 return;
544 }
545 } else {
546 if (cr3 & CR3_RESEVED_BITS) {
547 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
548 inject_gp(vcpu);
549 return;
550 }
551 if (is_paging(vcpu) && is_pae(vcpu) &&
552 !load_pdptrs(vcpu, cr3)) {
553 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
554 "reserved bits\n");
555 inject_gp(vcpu);
556 return;
557 }
558 }
559
560 vcpu->cr3 = cr3;
561 spin_lock(&vcpu->kvm->lock);
562 /*
563 * Does the new cr3 value map to physical memory? (Note, we
564 * catch an invalid cr3 even in real-mode, because it would
565 * cause trouble later on when we turn on paging anyway.)
566 *
567 * A real CPU would silently accept an invalid cr3 and would
568 * attempt to use it - with largely undefined (and often hard
569 * to debug) behavior on the guest side.
570 */
571 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
572 inject_gp(vcpu);
573 else
574 vcpu->mmu.new_cr3(vcpu);
575 spin_unlock(&vcpu->kvm->lock);
576 }
577 EXPORT_SYMBOL_GPL(set_cr3);
578
579 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
580 {
581 if ( cr8 & CR8_RESEVED_BITS) {
582 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
583 inject_gp(vcpu);
584 return;
585 }
586 vcpu->cr8 = cr8;
587 }
588 EXPORT_SYMBOL_GPL(set_cr8);
589
590 void fx_init(struct kvm_vcpu *vcpu)
591 {
592 struct __attribute__ ((__packed__)) fx_image_s {
593 u16 control; //fcw
594 u16 status; //fsw
595 u16 tag; // ftw
596 u16 opcode; //fop
597 u64 ip; // fpu ip
598 u64 operand;// fpu dp
599 u32 mxcsr;
600 u32 mxcsr_mask;
601
602 } *fx_image;
603
604 fx_save(vcpu->host_fx_image);
605 fpu_init();
606 fx_save(vcpu->guest_fx_image);
607 fx_restore(vcpu->host_fx_image);
608
609 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
610 fx_image->mxcsr = 0x1f80;
611 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
612 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
613 }
614 EXPORT_SYMBOL_GPL(fx_init);
615
616 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
617 {
618 spin_lock(&vcpu->kvm->lock);
619 kvm_mmu_slot_remove_write_access(vcpu, slot);
620 spin_unlock(&vcpu->kvm->lock);
621 }
622
623 /*
624 * Allocate some memory and give it an address in the guest physical address
625 * space.
626 *
627 * Discontiguous memory is allowed, mostly for framebuffers.
628 */
629 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
630 struct kvm_memory_region *mem)
631 {
632 int r;
633 gfn_t base_gfn;
634 unsigned long npages;
635 unsigned long i;
636 struct kvm_memory_slot *memslot;
637 struct kvm_memory_slot old, new;
638 int memory_config_version;
639
640 r = -EINVAL;
641 /* General sanity checks */
642 if (mem->memory_size & (PAGE_SIZE - 1))
643 goto out;
644 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
645 goto out;
646 if (mem->slot >= KVM_MEMORY_SLOTS)
647 goto out;
648 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
649 goto out;
650
651 memslot = &kvm->memslots[mem->slot];
652 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
653 npages = mem->memory_size >> PAGE_SHIFT;
654
655 if (!npages)
656 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
657
658 raced:
659 spin_lock(&kvm->lock);
660
661 memory_config_version = kvm->memory_config_version;
662 new = old = *memslot;
663
664 new.base_gfn = base_gfn;
665 new.npages = npages;
666 new.flags = mem->flags;
667
668 /* Disallow changing a memory slot's size. */
669 r = -EINVAL;
670 if (npages && old.npages && npages != old.npages)
671 goto out_unlock;
672
673 /* Check for overlaps */
674 r = -EEXIST;
675 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
676 struct kvm_memory_slot *s = &kvm->memslots[i];
677
678 if (s == memslot)
679 continue;
680 if (!((base_gfn + npages <= s->base_gfn) ||
681 (base_gfn >= s->base_gfn + s->npages)))
682 goto out_unlock;
683 }
684 /*
685 * Do memory allocations outside lock. memory_config_version will
686 * detect any races.
687 */
688 spin_unlock(&kvm->lock);
689
690 /* Deallocate if slot is being removed */
691 if (!npages)
692 new.phys_mem = NULL;
693
694 /* Free page dirty bitmap if unneeded */
695 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
696 new.dirty_bitmap = NULL;
697
698 r = -ENOMEM;
699
700 /* Allocate if a slot is being created */
701 if (npages && !new.phys_mem) {
702 new.phys_mem = vmalloc(npages * sizeof(struct page *));
703
704 if (!new.phys_mem)
705 goto out_free;
706
707 memset(new.phys_mem, 0, npages * sizeof(struct page *));
708 for (i = 0; i < npages; ++i) {
709 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
710 | __GFP_ZERO);
711 if (!new.phys_mem[i])
712 goto out_free;
713 set_page_private(new.phys_mem[i],0);
714 }
715 }
716
717 /* Allocate page dirty bitmap if needed */
718 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
719 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
720
721 new.dirty_bitmap = vmalloc(dirty_bytes);
722 if (!new.dirty_bitmap)
723 goto out_free;
724 memset(new.dirty_bitmap, 0, dirty_bytes);
725 }
726
727 spin_lock(&kvm->lock);
728
729 if (memory_config_version != kvm->memory_config_version) {
730 spin_unlock(&kvm->lock);
731 kvm_free_physmem_slot(&new, &old);
732 goto raced;
733 }
734
735 r = -EAGAIN;
736 if (kvm->busy)
737 goto out_unlock;
738
739 if (mem->slot >= kvm->nmemslots)
740 kvm->nmemslots = mem->slot + 1;
741
742 *memslot = new;
743 ++kvm->memory_config_version;
744
745 spin_unlock(&kvm->lock);
746
747 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
748 struct kvm_vcpu *vcpu;
749
750 vcpu = vcpu_load_slot(kvm, i);
751 if (!vcpu)
752 continue;
753 if (new.flags & KVM_MEM_LOG_DIRTY_PAGES)
754 do_remove_write_access(vcpu, mem->slot);
755 kvm_mmu_reset_context(vcpu);
756 vcpu_put(vcpu);
757 }
758
759 kvm_free_physmem_slot(&old, &new);
760 return 0;
761
762 out_unlock:
763 spin_unlock(&kvm->lock);
764 out_free:
765 kvm_free_physmem_slot(&new, &old);
766 out:
767 return r;
768 }
769
770 /*
771 * Get (and clear) the dirty memory log for a memory slot.
772 */
773 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
774 struct kvm_dirty_log *log)
775 {
776 struct kvm_memory_slot *memslot;
777 int r, i;
778 int n;
779 int cleared;
780 unsigned long any = 0;
781
782 spin_lock(&kvm->lock);
783
784 /*
785 * Prevent changes to guest memory configuration even while the lock
786 * is not taken.
787 */
788 ++kvm->busy;
789 spin_unlock(&kvm->lock);
790 r = -EINVAL;
791 if (log->slot >= KVM_MEMORY_SLOTS)
792 goto out;
793
794 memslot = &kvm->memslots[log->slot];
795 r = -ENOENT;
796 if (!memslot->dirty_bitmap)
797 goto out;
798
799 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
800
801 for (i = 0; !any && i < n/sizeof(long); ++i)
802 any = memslot->dirty_bitmap[i];
803
804 r = -EFAULT;
805 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
806 goto out;
807
808 if (any) {
809 cleared = 0;
810 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
811 struct kvm_vcpu *vcpu;
812
813 vcpu = vcpu_load_slot(kvm, i);
814 if (!vcpu)
815 continue;
816 if (!cleared) {
817 do_remove_write_access(vcpu, log->slot);
818 memset(memslot->dirty_bitmap, 0, n);
819 cleared = 1;
820 }
821 kvm_arch_ops->tlb_flush(vcpu);
822 vcpu_put(vcpu);
823 }
824 }
825
826 r = 0;
827
828 out:
829 spin_lock(&kvm->lock);
830 --kvm->busy;
831 spin_unlock(&kvm->lock);
832 return r;
833 }
834
835 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
836 {
837 int i;
838
839 for (i = 0; i < kvm->nmemslots; ++i) {
840 struct kvm_memory_slot *memslot = &kvm->memslots[i];
841
842 if (gfn >= memslot->base_gfn
843 && gfn < memslot->base_gfn + memslot->npages)
844 return memslot;
845 }
846 return NULL;
847 }
848 EXPORT_SYMBOL_GPL(gfn_to_memslot);
849
850 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
851 {
852 int i;
853 struct kvm_memory_slot *memslot = NULL;
854 unsigned long rel_gfn;
855
856 for (i = 0; i < kvm->nmemslots; ++i) {
857 memslot = &kvm->memslots[i];
858
859 if (gfn >= memslot->base_gfn
860 && gfn < memslot->base_gfn + memslot->npages) {
861
862 if (!memslot || !memslot->dirty_bitmap)
863 return;
864
865 rel_gfn = gfn - memslot->base_gfn;
866
867 /* avoid RMW */
868 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
869 set_bit(rel_gfn, memslot->dirty_bitmap);
870 return;
871 }
872 }
873 }
874
875 static int emulator_read_std(unsigned long addr,
876 unsigned long *val,
877 unsigned int bytes,
878 struct x86_emulate_ctxt *ctxt)
879 {
880 struct kvm_vcpu *vcpu = ctxt->vcpu;
881 void *data = val;
882
883 while (bytes) {
884 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
885 unsigned offset = addr & (PAGE_SIZE-1);
886 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
887 unsigned long pfn;
888 struct kvm_memory_slot *memslot;
889 void *page;
890
891 if (gpa == UNMAPPED_GVA)
892 return X86EMUL_PROPAGATE_FAULT;
893 pfn = gpa >> PAGE_SHIFT;
894 memslot = gfn_to_memslot(vcpu->kvm, pfn);
895 if (!memslot)
896 return X86EMUL_UNHANDLEABLE;
897 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
898
899 memcpy(data, page + offset, tocopy);
900
901 kunmap_atomic(page, KM_USER0);
902
903 bytes -= tocopy;
904 data += tocopy;
905 addr += tocopy;
906 }
907
908 return X86EMUL_CONTINUE;
909 }
910
911 static int emulator_write_std(unsigned long addr,
912 unsigned long val,
913 unsigned int bytes,
914 struct x86_emulate_ctxt *ctxt)
915 {
916 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
917 addr, bytes);
918 return X86EMUL_UNHANDLEABLE;
919 }
920
921 static int emulator_read_emulated(unsigned long addr,
922 unsigned long *val,
923 unsigned int bytes,
924 struct x86_emulate_ctxt *ctxt)
925 {
926 struct kvm_vcpu *vcpu = ctxt->vcpu;
927
928 if (vcpu->mmio_read_completed) {
929 memcpy(val, vcpu->mmio_data, bytes);
930 vcpu->mmio_read_completed = 0;
931 return X86EMUL_CONTINUE;
932 } else if (emulator_read_std(addr, val, bytes, ctxt)
933 == X86EMUL_CONTINUE)
934 return X86EMUL_CONTINUE;
935 else {
936 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
937
938 if (gpa == UNMAPPED_GVA)
939 return X86EMUL_PROPAGATE_FAULT;
940 vcpu->mmio_needed = 1;
941 vcpu->mmio_phys_addr = gpa;
942 vcpu->mmio_size = bytes;
943 vcpu->mmio_is_write = 0;
944
945 return X86EMUL_UNHANDLEABLE;
946 }
947 }
948
949 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
950 unsigned long val, int bytes)
951 {
952 struct kvm_memory_slot *m;
953 struct page *page;
954 void *virt;
955
956 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
957 return 0;
958 m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
959 if (!m)
960 return 0;
961 page = gfn_to_page(m, gpa >> PAGE_SHIFT);
962 kvm_mmu_pre_write(vcpu, gpa, bytes);
963 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
964 virt = kmap_atomic(page, KM_USER0);
965 memcpy(virt + offset_in_page(gpa), &val, bytes);
966 kunmap_atomic(virt, KM_USER0);
967 kvm_mmu_post_write(vcpu, gpa, bytes);
968 return 1;
969 }
970
971 static int emulator_write_emulated(unsigned long addr,
972 unsigned long val,
973 unsigned int bytes,
974 struct x86_emulate_ctxt *ctxt)
975 {
976 struct kvm_vcpu *vcpu = ctxt->vcpu;
977 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
978
979 if (gpa == UNMAPPED_GVA)
980 return X86EMUL_PROPAGATE_FAULT;
981
982 if (emulator_write_phys(vcpu, gpa, val, bytes))
983 return X86EMUL_CONTINUE;
984
985 vcpu->mmio_needed = 1;
986 vcpu->mmio_phys_addr = gpa;
987 vcpu->mmio_size = bytes;
988 vcpu->mmio_is_write = 1;
989 memcpy(vcpu->mmio_data, &val, bytes);
990
991 return X86EMUL_CONTINUE;
992 }
993
994 static int emulator_cmpxchg_emulated(unsigned long addr,
995 unsigned long old,
996 unsigned long new,
997 unsigned int bytes,
998 struct x86_emulate_ctxt *ctxt)
999 {
1000 static int reported;
1001
1002 if (!reported) {
1003 reported = 1;
1004 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1005 }
1006 return emulator_write_emulated(addr, new, bytes, ctxt);
1007 }
1008
1009 #ifdef CONFIG_X86_32
1010
1011 static int emulator_cmpxchg8b_emulated(unsigned long addr,
1012 unsigned long old_lo,
1013 unsigned long old_hi,
1014 unsigned long new_lo,
1015 unsigned long new_hi,
1016 struct x86_emulate_ctxt *ctxt)
1017 {
1018 static int reported;
1019 int r;
1020
1021 if (!reported) {
1022 reported = 1;
1023 printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
1024 }
1025 r = emulator_write_emulated(addr, new_lo, 4, ctxt);
1026 if (r != X86EMUL_CONTINUE)
1027 return r;
1028 return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
1029 }
1030
1031 #endif
1032
1033 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1034 {
1035 return kvm_arch_ops->get_segment_base(vcpu, seg);
1036 }
1037
1038 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1039 {
1040 return X86EMUL_CONTINUE;
1041 }
1042
1043 int emulate_clts(struct kvm_vcpu *vcpu)
1044 {
1045 unsigned long cr0;
1046
1047 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1048 cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1049 kvm_arch_ops->set_cr0(vcpu, cr0);
1050 return X86EMUL_CONTINUE;
1051 }
1052
1053 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1054 {
1055 struct kvm_vcpu *vcpu = ctxt->vcpu;
1056
1057 switch (dr) {
1058 case 0 ... 3:
1059 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1060 return X86EMUL_CONTINUE;
1061 default:
1062 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1063 __FUNCTION__, dr);
1064 return X86EMUL_UNHANDLEABLE;
1065 }
1066 }
1067
1068 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1069 {
1070 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1071 int exception;
1072
1073 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1074 if (exception) {
1075 /* FIXME: better handling */
1076 return X86EMUL_UNHANDLEABLE;
1077 }
1078 return X86EMUL_CONTINUE;
1079 }
1080
1081 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1082 {
1083 static int reported;
1084 u8 opcodes[4];
1085 unsigned long rip = ctxt->vcpu->rip;
1086 unsigned long rip_linear;
1087
1088 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1089
1090 if (reported)
1091 return;
1092
1093 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1094
1095 printk(KERN_ERR "emulation failed but !mmio_needed?"
1096 " rip %lx %02x %02x %02x %02x\n",
1097 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1098 reported = 1;
1099 }
1100
1101 struct x86_emulate_ops emulate_ops = {
1102 .read_std = emulator_read_std,
1103 .write_std = emulator_write_std,
1104 .read_emulated = emulator_read_emulated,
1105 .write_emulated = emulator_write_emulated,
1106 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1107 #ifdef CONFIG_X86_32
1108 .cmpxchg8b_emulated = emulator_cmpxchg8b_emulated,
1109 #endif
1110 };
1111
1112 int emulate_instruction(struct kvm_vcpu *vcpu,
1113 struct kvm_run *run,
1114 unsigned long cr2,
1115 u16 error_code)
1116 {
1117 struct x86_emulate_ctxt emulate_ctxt;
1118 int r;
1119 int cs_db, cs_l;
1120
1121 kvm_arch_ops->cache_regs(vcpu);
1122
1123 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1124
1125 emulate_ctxt.vcpu = vcpu;
1126 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1127 emulate_ctxt.cr2 = cr2;
1128 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1129 ? X86EMUL_MODE_REAL : cs_l
1130 ? X86EMUL_MODE_PROT64 : cs_db
1131 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1132
1133 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1134 emulate_ctxt.cs_base = 0;
1135 emulate_ctxt.ds_base = 0;
1136 emulate_ctxt.es_base = 0;
1137 emulate_ctxt.ss_base = 0;
1138 } else {
1139 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1140 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1141 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1142 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1143 }
1144
1145 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1146 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1147
1148 vcpu->mmio_is_write = 0;
1149 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1150
1151 if ((r || vcpu->mmio_is_write) && run) {
1152 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1153 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1154 run->mmio.len = vcpu->mmio_size;
1155 run->mmio.is_write = vcpu->mmio_is_write;
1156 }
1157
1158 if (r) {
1159 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1160 return EMULATE_DONE;
1161 if (!vcpu->mmio_needed) {
1162 report_emulation_failure(&emulate_ctxt);
1163 return EMULATE_FAIL;
1164 }
1165 return EMULATE_DO_MMIO;
1166 }
1167
1168 kvm_arch_ops->decache_regs(vcpu);
1169 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1170
1171 if (vcpu->mmio_is_write)
1172 return EMULATE_DO_MMIO;
1173
1174 return EMULATE_DONE;
1175 }
1176 EXPORT_SYMBOL_GPL(emulate_instruction);
1177
1178 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1179 {
1180 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1181
1182 kvm_arch_ops->cache_regs(vcpu);
1183 ret = -KVM_EINVAL;
1184 #ifdef CONFIG_X86_64
1185 if (is_long_mode(vcpu)) {
1186 nr = vcpu->regs[VCPU_REGS_RAX];
1187 a0 = vcpu->regs[VCPU_REGS_RDI];
1188 a1 = vcpu->regs[VCPU_REGS_RSI];
1189 a2 = vcpu->regs[VCPU_REGS_RDX];
1190 a3 = vcpu->regs[VCPU_REGS_RCX];
1191 a4 = vcpu->regs[VCPU_REGS_R8];
1192 a5 = vcpu->regs[VCPU_REGS_R9];
1193 } else
1194 #endif
1195 {
1196 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1197 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1198 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1199 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1200 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1201 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1202 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1203 }
1204 switch (nr) {
1205 default:
1206 run->hypercall.args[0] = a0;
1207 run->hypercall.args[1] = a1;
1208 run->hypercall.args[2] = a2;
1209 run->hypercall.args[3] = a3;
1210 run->hypercall.args[4] = a4;
1211 run->hypercall.args[5] = a5;
1212 run->hypercall.ret = ret;
1213 run->hypercall.longmode = is_long_mode(vcpu);
1214 kvm_arch_ops->decache_regs(vcpu);
1215 return 0;
1216 }
1217 vcpu->regs[VCPU_REGS_RAX] = ret;
1218 kvm_arch_ops->decache_regs(vcpu);
1219 return 1;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_hypercall);
1222
1223 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1224 {
1225 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1226 }
1227
1228 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1229 {
1230 struct descriptor_table dt = { limit, base };
1231
1232 kvm_arch_ops->set_gdt(vcpu, &dt);
1233 }
1234
1235 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1236 {
1237 struct descriptor_table dt = { limit, base };
1238
1239 kvm_arch_ops->set_idt(vcpu, &dt);
1240 }
1241
1242 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1243 unsigned long *rflags)
1244 {
1245 lmsw(vcpu, msw);
1246 *rflags = kvm_arch_ops->get_rflags(vcpu);
1247 }
1248
1249 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1250 {
1251 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1252 switch (cr) {
1253 case 0:
1254 return vcpu->cr0;
1255 case 2:
1256 return vcpu->cr2;
1257 case 3:
1258 return vcpu->cr3;
1259 case 4:
1260 return vcpu->cr4;
1261 default:
1262 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1263 return 0;
1264 }
1265 }
1266
1267 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1268 unsigned long *rflags)
1269 {
1270 switch (cr) {
1271 case 0:
1272 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1273 *rflags = kvm_arch_ops->get_rflags(vcpu);
1274 break;
1275 case 2:
1276 vcpu->cr2 = val;
1277 break;
1278 case 3:
1279 set_cr3(vcpu, val);
1280 break;
1281 case 4:
1282 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1283 break;
1284 default:
1285 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1286 }
1287 }
1288
1289 /*
1290 * Register the para guest with the host:
1291 */
1292 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1293 {
1294 struct kvm_vcpu_para_state *para_state;
1295 hpa_t para_state_hpa, hypercall_hpa;
1296 struct page *para_state_page;
1297 unsigned char *hypercall;
1298 gpa_t hypercall_gpa;
1299
1300 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1301 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1302
1303 /*
1304 * Needs to be page aligned:
1305 */
1306 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1307 goto err_gp;
1308
1309 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1310 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1311 if (is_error_hpa(para_state_hpa))
1312 goto err_gp;
1313
1314 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1315 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1316 para_state = kmap_atomic(para_state_page, KM_USER0);
1317
1318 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1319 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1320
1321 para_state->host_version = KVM_PARA_API_VERSION;
1322 /*
1323 * We cannot support guests that try to register themselves
1324 * with a newer API version than the host supports:
1325 */
1326 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1327 para_state->ret = -KVM_EINVAL;
1328 goto err_kunmap_skip;
1329 }
1330
1331 hypercall_gpa = para_state->hypercall_gpa;
1332 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1333 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1334 if (is_error_hpa(hypercall_hpa)) {
1335 para_state->ret = -KVM_EINVAL;
1336 goto err_kunmap_skip;
1337 }
1338
1339 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1340 vcpu->para_state_page = para_state_page;
1341 vcpu->para_state_gpa = para_state_gpa;
1342 vcpu->hypercall_gpa = hypercall_gpa;
1343
1344 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1345 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1346 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1347 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1348 kunmap_atomic(hypercall, KM_USER1);
1349
1350 para_state->ret = 0;
1351 err_kunmap_skip:
1352 kunmap_atomic(para_state, KM_USER0);
1353 return 0;
1354 err_gp:
1355 return 1;
1356 }
1357
1358 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1359 {
1360 u64 data;
1361
1362 switch (msr) {
1363 case 0xc0010010: /* SYSCFG */
1364 case 0xc0010015: /* HWCR */
1365 case MSR_IA32_PLATFORM_ID:
1366 case MSR_IA32_P5_MC_ADDR:
1367 case MSR_IA32_P5_MC_TYPE:
1368 case MSR_IA32_MC0_CTL:
1369 case MSR_IA32_MCG_STATUS:
1370 case MSR_IA32_MCG_CAP:
1371 case MSR_IA32_MC0_MISC:
1372 case MSR_IA32_MC0_MISC+4:
1373 case MSR_IA32_MC0_MISC+8:
1374 case MSR_IA32_MC0_MISC+12:
1375 case MSR_IA32_MC0_MISC+16:
1376 case MSR_IA32_UCODE_REV:
1377 case MSR_IA32_PERF_STATUS:
1378 /* MTRR registers */
1379 case 0xfe:
1380 case 0x200 ... 0x2ff:
1381 data = 0;
1382 break;
1383 case 0xcd: /* fsb frequency */
1384 data = 3;
1385 break;
1386 case MSR_IA32_APICBASE:
1387 data = vcpu->apic_base;
1388 break;
1389 case MSR_IA32_MISC_ENABLE:
1390 data = vcpu->ia32_misc_enable_msr;
1391 break;
1392 #ifdef CONFIG_X86_64
1393 case MSR_EFER:
1394 data = vcpu->shadow_efer;
1395 break;
1396 #endif
1397 default:
1398 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1399 return 1;
1400 }
1401 *pdata = data;
1402 return 0;
1403 }
1404 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1405
1406 /*
1407 * Reads an msr value (of 'msr_index') into 'pdata'.
1408 * Returns 0 on success, non-0 otherwise.
1409 * Assumes vcpu_load() was already called.
1410 */
1411 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1412 {
1413 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1414 }
1415
1416 #ifdef CONFIG_X86_64
1417
1418 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1419 {
1420 if (efer & EFER_RESERVED_BITS) {
1421 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1422 efer);
1423 inject_gp(vcpu);
1424 return;
1425 }
1426
1427 if (is_paging(vcpu)
1428 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1429 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1430 inject_gp(vcpu);
1431 return;
1432 }
1433
1434 kvm_arch_ops->set_efer(vcpu, efer);
1435
1436 efer &= ~EFER_LMA;
1437 efer |= vcpu->shadow_efer & EFER_LMA;
1438
1439 vcpu->shadow_efer = efer;
1440 }
1441
1442 #endif
1443
1444 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1445 {
1446 switch (msr) {
1447 #ifdef CONFIG_X86_64
1448 case MSR_EFER:
1449 set_efer(vcpu, data);
1450 break;
1451 #endif
1452 case MSR_IA32_MC0_STATUS:
1453 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1454 __FUNCTION__, data);
1455 break;
1456 case MSR_IA32_UCODE_REV:
1457 case MSR_IA32_UCODE_WRITE:
1458 case 0x200 ... 0x2ff: /* MTRRs */
1459 break;
1460 case MSR_IA32_APICBASE:
1461 vcpu->apic_base = data;
1462 break;
1463 case MSR_IA32_MISC_ENABLE:
1464 vcpu->ia32_misc_enable_msr = data;
1465 break;
1466 /*
1467 * This is the 'probe whether the host is KVM' logic:
1468 */
1469 case MSR_KVM_API_MAGIC:
1470 return vcpu_register_para(vcpu, data);
1471
1472 default:
1473 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1474 return 1;
1475 }
1476 return 0;
1477 }
1478 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1479
1480 /*
1481 * Writes msr value into into the appropriate "register".
1482 * Returns 0 on success, non-0 otherwise.
1483 * Assumes vcpu_load() was already called.
1484 */
1485 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1486 {
1487 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1488 }
1489
1490 void kvm_resched(struct kvm_vcpu *vcpu)
1491 {
1492 vcpu_put(vcpu);
1493 cond_resched();
1494 vcpu_load(vcpu);
1495 }
1496 EXPORT_SYMBOL_GPL(kvm_resched);
1497
1498 void load_msrs(struct vmx_msr_entry *e, int n)
1499 {
1500 int i;
1501
1502 for (i = 0; i < n; ++i)
1503 wrmsrl(e[i].index, e[i].data);
1504 }
1505 EXPORT_SYMBOL_GPL(load_msrs);
1506
1507 void save_msrs(struct vmx_msr_entry *e, int n)
1508 {
1509 int i;
1510
1511 for (i = 0; i < n; ++i)
1512 rdmsrl(e[i].index, e[i].data);
1513 }
1514 EXPORT_SYMBOL_GPL(save_msrs);
1515
1516 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1517 {
1518 int i;
1519 u32 function;
1520 struct kvm_cpuid_entry *e, *best;
1521
1522 kvm_arch_ops->cache_regs(vcpu);
1523 function = vcpu->regs[VCPU_REGS_RAX];
1524 vcpu->regs[VCPU_REGS_RAX] = 0;
1525 vcpu->regs[VCPU_REGS_RBX] = 0;
1526 vcpu->regs[VCPU_REGS_RCX] = 0;
1527 vcpu->regs[VCPU_REGS_RDX] = 0;
1528 best = NULL;
1529 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1530 e = &vcpu->cpuid_entries[i];
1531 if (e->function == function) {
1532 best = e;
1533 break;
1534 }
1535 /*
1536 * Both basic or both extended?
1537 */
1538 if (((e->function ^ function) & 0x80000000) == 0)
1539 if (!best || e->function > best->function)
1540 best = e;
1541 }
1542 if (best) {
1543 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1544 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1545 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1546 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1547 }
1548 kvm_arch_ops->decache_regs(vcpu);
1549 kvm_arch_ops->skip_emulated_instruction(vcpu);
1550 }
1551 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1552
1553 static void complete_pio(struct kvm_vcpu *vcpu)
1554 {
1555 struct kvm_io *io = &vcpu->run->io;
1556 long delta;
1557
1558 kvm_arch_ops->cache_regs(vcpu);
1559
1560 if (!io->string) {
1561 if (io->direction == KVM_EXIT_IO_IN)
1562 memcpy(&vcpu->regs[VCPU_REGS_RAX], &io->value,
1563 io->size);
1564 } else {
1565 delta = 1;
1566 if (io->rep) {
1567 delta *= io->count;
1568 /*
1569 * The size of the register should really depend on
1570 * current address size.
1571 */
1572 vcpu->regs[VCPU_REGS_RCX] -= delta;
1573 }
1574 if (io->string_down)
1575 delta = -delta;
1576 delta *= io->size;
1577 if (io->direction == KVM_EXIT_IO_IN)
1578 vcpu->regs[VCPU_REGS_RDI] += delta;
1579 else
1580 vcpu->regs[VCPU_REGS_RSI] += delta;
1581 }
1582
1583 vcpu->pio_pending = 0;
1584 vcpu->run->io_completed = 0;
1585
1586 kvm_arch_ops->decache_regs(vcpu);
1587
1588 kvm_arch_ops->skip_emulated_instruction(vcpu);
1589 }
1590
1591 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1592 {
1593 int r;
1594 sigset_t sigsaved;
1595
1596 vcpu_load(vcpu);
1597
1598 if (vcpu->sigset_active)
1599 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1600
1601 /* re-sync apic's tpr */
1602 vcpu->cr8 = kvm_run->cr8;
1603
1604 if (kvm_run->io_completed) {
1605 if (vcpu->pio_pending)
1606 complete_pio(vcpu);
1607 else {
1608 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1609 vcpu->mmio_read_completed = 1;
1610 }
1611 }
1612
1613 vcpu->mmio_needed = 0;
1614
1615 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1616 kvm_arch_ops->cache_regs(vcpu);
1617 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1618 kvm_arch_ops->decache_regs(vcpu);
1619 }
1620
1621 r = kvm_arch_ops->run(vcpu, kvm_run);
1622
1623 if (vcpu->sigset_active)
1624 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1625
1626 vcpu_put(vcpu);
1627 return r;
1628 }
1629
1630 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1631 struct kvm_regs *regs)
1632 {
1633 vcpu_load(vcpu);
1634
1635 kvm_arch_ops->cache_regs(vcpu);
1636
1637 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1638 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1639 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1640 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1641 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1642 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1643 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1644 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1645 #ifdef CONFIG_X86_64
1646 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1647 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1648 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1649 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1650 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1651 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1652 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1653 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1654 #endif
1655
1656 regs->rip = vcpu->rip;
1657 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1658
1659 /*
1660 * Don't leak debug flags in case they were set for guest debugging
1661 */
1662 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1663 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1664
1665 vcpu_put(vcpu);
1666
1667 return 0;
1668 }
1669
1670 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1671 struct kvm_regs *regs)
1672 {
1673 vcpu_load(vcpu);
1674
1675 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1676 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1677 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1678 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1679 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1680 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1681 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1682 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1683 #ifdef CONFIG_X86_64
1684 vcpu->regs[VCPU_REGS_R8] = regs->r8;
1685 vcpu->regs[VCPU_REGS_R9] = regs->r9;
1686 vcpu->regs[VCPU_REGS_R10] = regs->r10;
1687 vcpu->regs[VCPU_REGS_R11] = regs->r11;
1688 vcpu->regs[VCPU_REGS_R12] = regs->r12;
1689 vcpu->regs[VCPU_REGS_R13] = regs->r13;
1690 vcpu->regs[VCPU_REGS_R14] = regs->r14;
1691 vcpu->regs[VCPU_REGS_R15] = regs->r15;
1692 #endif
1693
1694 vcpu->rip = regs->rip;
1695 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1696
1697 kvm_arch_ops->decache_regs(vcpu);
1698
1699 vcpu_put(vcpu);
1700
1701 return 0;
1702 }
1703
1704 static void get_segment(struct kvm_vcpu *vcpu,
1705 struct kvm_segment *var, int seg)
1706 {
1707 return kvm_arch_ops->get_segment(vcpu, var, seg);
1708 }
1709
1710 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1711 struct kvm_sregs *sregs)
1712 {
1713 struct descriptor_table dt;
1714
1715 vcpu_load(vcpu);
1716
1717 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1718 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1719 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1720 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1721 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1722 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1723
1724 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1725 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1726
1727 kvm_arch_ops->get_idt(vcpu, &dt);
1728 sregs->idt.limit = dt.limit;
1729 sregs->idt.base = dt.base;
1730 kvm_arch_ops->get_gdt(vcpu, &dt);
1731 sregs->gdt.limit = dt.limit;
1732 sregs->gdt.base = dt.base;
1733
1734 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1735 sregs->cr0 = vcpu->cr0;
1736 sregs->cr2 = vcpu->cr2;
1737 sregs->cr3 = vcpu->cr3;
1738 sregs->cr4 = vcpu->cr4;
1739 sregs->cr8 = vcpu->cr8;
1740 sregs->efer = vcpu->shadow_efer;
1741 sregs->apic_base = vcpu->apic_base;
1742
1743 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1744 sizeof sregs->interrupt_bitmap);
1745
1746 vcpu_put(vcpu);
1747
1748 return 0;
1749 }
1750
1751 static void set_segment(struct kvm_vcpu *vcpu,
1752 struct kvm_segment *var, int seg)
1753 {
1754 return kvm_arch_ops->set_segment(vcpu, var, seg);
1755 }
1756
1757 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1758 struct kvm_sregs *sregs)
1759 {
1760 int mmu_reset_needed = 0;
1761 int i;
1762 struct descriptor_table dt;
1763
1764 vcpu_load(vcpu);
1765
1766 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1767 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1768 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1769 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1770 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1771 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1772
1773 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1774 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1775
1776 dt.limit = sregs->idt.limit;
1777 dt.base = sregs->idt.base;
1778 kvm_arch_ops->set_idt(vcpu, &dt);
1779 dt.limit = sregs->gdt.limit;
1780 dt.base = sregs->gdt.base;
1781 kvm_arch_ops->set_gdt(vcpu, &dt);
1782
1783 vcpu->cr2 = sregs->cr2;
1784 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1785 vcpu->cr3 = sregs->cr3;
1786
1787 vcpu->cr8 = sregs->cr8;
1788
1789 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1790 #ifdef CONFIG_X86_64
1791 kvm_arch_ops->set_efer(vcpu, sregs->efer);
1792 #endif
1793 vcpu->apic_base = sregs->apic_base;
1794
1795 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1796
1797 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1798 kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1799
1800 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1801 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1802 if (!is_long_mode(vcpu) && is_pae(vcpu))
1803 load_pdptrs(vcpu, vcpu->cr3);
1804
1805 if (mmu_reset_needed)
1806 kvm_mmu_reset_context(vcpu);
1807
1808 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1809 sizeof vcpu->irq_pending);
1810 vcpu->irq_summary = 0;
1811 for (i = 0; i < NR_IRQ_WORDS; ++i)
1812 if (vcpu->irq_pending[i])
1813 __set_bit(i, &vcpu->irq_summary);
1814
1815 vcpu_put(vcpu);
1816
1817 return 0;
1818 }
1819
1820 /*
1821 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1822 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1823 *
1824 * This list is modified at module load time to reflect the
1825 * capabilities of the host cpu.
1826 */
1827 static u32 msrs_to_save[] = {
1828 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1829 MSR_K6_STAR,
1830 #ifdef CONFIG_X86_64
1831 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1832 #endif
1833 MSR_IA32_TIME_STAMP_COUNTER,
1834 };
1835
1836 static unsigned num_msrs_to_save;
1837
1838 static u32 emulated_msrs[] = {
1839 MSR_IA32_MISC_ENABLE,
1840 };
1841
1842 static __init void kvm_init_msr_list(void)
1843 {
1844 u32 dummy[2];
1845 unsigned i, j;
1846
1847 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1848 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1849 continue;
1850 if (j < i)
1851 msrs_to_save[j] = msrs_to_save[i];
1852 j++;
1853 }
1854 num_msrs_to_save = j;
1855 }
1856
1857 /*
1858 * Adapt set_msr() to msr_io()'s calling convention
1859 */
1860 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1861 {
1862 return set_msr(vcpu, index, *data);
1863 }
1864
1865 /*
1866 * Read or write a bunch of msrs. All parameters are kernel addresses.
1867 *
1868 * @return number of msrs set successfully.
1869 */
1870 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1871 struct kvm_msr_entry *entries,
1872 int (*do_msr)(struct kvm_vcpu *vcpu,
1873 unsigned index, u64 *data))
1874 {
1875 int i;
1876
1877 vcpu_load(vcpu);
1878
1879 for (i = 0; i < msrs->nmsrs; ++i)
1880 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1881 break;
1882
1883 vcpu_put(vcpu);
1884
1885 return i;
1886 }
1887
1888 /*
1889 * Read or write a bunch of msrs. Parameters are user addresses.
1890 *
1891 * @return number of msrs set successfully.
1892 */
1893 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1894 int (*do_msr)(struct kvm_vcpu *vcpu,
1895 unsigned index, u64 *data),
1896 int writeback)
1897 {
1898 struct kvm_msrs msrs;
1899 struct kvm_msr_entry *entries;
1900 int r, n;
1901 unsigned size;
1902
1903 r = -EFAULT;
1904 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1905 goto out;
1906
1907 r = -E2BIG;
1908 if (msrs.nmsrs >= MAX_IO_MSRS)
1909 goto out;
1910
1911 r = -ENOMEM;
1912 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1913 entries = vmalloc(size);
1914 if (!entries)
1915 goto out;
1916
1917 r = -EFAULT;
1918 if (copy_from_user(entries, user_msrs->entries, size))
1919 goto out_free;
1920
1921 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1922 if (r < 0)
1923 goto out_free;
1924
1925 r = -EFAULT;
1926 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1927 goto out_free;
1928
1929 r = n;
1930
1931 out_free:
1932 vfree(entries);
1933 out:
1934 return r;
1935 }
1936
1937 /*
1938 * Translate a guest virtual address to a guest physical address.
1939 */
1940 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1941 struct kvm_translation *tr)
1942 {
1943 unsigned long vaddr = tr->linear_address;
1944 gpa_t gpa;
1945
1946 vcpu_load(vcpu);
1947 spin_lock(&vcpu->kvm->lock);
1948 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1949 tr->physical_address = gpa;
1950 tr->valid = gpa != UNMAPPED_GVA;
1951 tr->writeable = 1;
1952 tr->usermode = 0;
1953 spin_unlock(&vcpu->kvm->lock);
1954 vcpu_put(vcpu);
1955
1956 return 0;
1957 }
1958
1959 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1960 struct kvm_interrupt *irq)
1961 {
1962 if (irq->irq < 0 || irq->irq >= 256)
1963 return -EINVAL;
1964 vcpu_load(vcpu);
1965
1966 set_bit(irq->irq, vcpu->irq_pending);
1967 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1968
1969 vcpu_put(vcpu);
1970
1971 return 0;
1972 }
1973
1974 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
1975 struct kvm_debug_guest *dbg)
1976 {
1977 int r;
1978
1979 vcpu_load(vcpu);
1980
1981 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1982
1983 vcpu_put(vcpu);
1984
1985 return r;
1986 }
1987
1988 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
1989 unsigned long address,
1990 int *type)
1991 {
1992 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1993 unsigned long pgoff;
1994 struct page *page;
1995
1996 *type = VM_FAULT_MINOR;
1997 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1998 if (pgoff != 0)
1999 return NOPAGE_SIGBUS;
2000 page = virt_to_page(vcpu->run);
2001 get_page(page);
2002 return page;
2003 }
2004
2005 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2006 .nopage = kvm_vcpu_nopage,
2007 };
2008
2009 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2010 {
2011 vma->vm_ops = &kvm_vcpu_vm_ops;
2012 return 0;
2013 }
2014
2015 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2016 {
2017 struct kvm_vcpu *vcpu = filp->private_data;
2018
2019 fput(vcpu->kvm->filp);
2020 return 0;
2021 }
2022
2023 static struct file_operations kvm_vcpu_fops = {
2024 .release = kvm_vcpu_release,
2025 .unlocked_ioctl = kvm_vcpu_ioctl,
2026 .compat_ioctl = kvm_vcpu_ioctl,
2027 .mmap = kvm_vcpu_mmap,
2028 };
2029
2030 /*
2031 * Allocates an inode for the vcpu.
2032 */
2033 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2034 {
2035 int fd, r;
2036 struct inode *inode;
2037 struct file *file;
2038
2039 atomic_inc(&vcpu->kvm->filp->f_count);
2040 inode = kvmfs_inode(&kvm_vcpu_fops);
2041 if (IS_ERR(inode)) {
2042 r = PTR_ERR(inode);
2043 goto out1;
2044 }
2045
2046 file = kvmfs_file(inode, vcpu);
2047 if (IS_ERR(file)) {
2048 r = PTR_ERR(file);
2049 goto out2;
2050 }
2051
2052 r = get_unused_fd();
2053 if (r < 0)
2054 goto out3;
2055 fd = r;
2056 fd_install(fd, file);
2057
2058 return fd;
2059
2060 out3:
2061 fput(file);
2062 out2:
2063 iput(inode);
2064 out1:
2065 fput(vcpu->kvm->filp);
2066 return r;
2067 }
2068
2069 /*
2070 * Creates some virtual cpus. Good luck creating more than one.
2071 */
2072 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2073 {
2074 int r;
2075 struct kvm_vcpu *vcpu;
2076 struct page *page;
2077
2078 r = -EINVAL;
2079 if (!valid_vcpu(n))
2080 goto out;
2081
2082 vcpu = &kvm->vcpus[n];
2083
2084 mutex_lock(&vcpu->mutex);
2085
2086 if (vcpu->vmcs) {
2087 mutex_unlock(&vcpu->mutex);
2088 return -EEXIST;
2089 }
2090
2091 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2092 r = -ENOMEM;
2093 if (!page)
2094 goto out_unlock;
2095 vcpu->run = page_address(page);
2096
2097 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
2098 FX_IMAGE_ALIGN);
2099 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
2100
2101 r = kvm_arch_ops->vcpu_create(vcpu);
2102 if (r < 0)
2103 goto out_free_vcpus;
2104
2105 r = kvm_mmu_create(vcpu);
2106 if (r < 0)
2107 goto out_free_vcpus;
2108
2109 kvm_arch_ops->vcpu_load(vcpu);
2110 r = kvm_mmu_setup(vcpu);
2111 if (r >= 0)
2112 r = kvm_arch_ops->vcpu_setup(vcpu);
2113 vcpu_put(vcpu);
2114
2115 if (r < 0)
2116 goto out_free_vcpus;
2117
2118 r = create_vcpu_fd(vcpu);
2119 if (r < 0)
2120 goto out_free_vcpus;
2121
2122 return r;
2123
2124 out_free_vcpus:
2125 kvm_free_vcpu(vcpu);
2126 out_unlock:
2127 mutex_unlock(&vcpu->mutex);
2128 out:
2129 return r;
2130 }
2131
2132 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2133 struct kvm_cpuid *cpuid,
2134 struct kvm_cpuid_entry __user *entries)
2135 {
2136 int r;
2137
2138 r = -E2BIG;
2139 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2140 goto out;
2141 r = -EFAULT;
2142 if (copy_from_user(&vcpu->cpuid_entries, entries,
2143 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2144 goto out;
2145 vcpu->cpuid_nent = cpuid->nent;
2146 return 0;
2147
2148 out:
2149 return r;
2150 }
2151
2152 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2153 {
2154 if (sigset) {
2155 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2156 vcpu->sigset_active = 1;
2157 vcpu->sigset = *sigset;
2158 } else
2159 vcpu->sigset_active = 0;
2160 return 0;
2161 }
2162
2163 static long kvm_vcpu_ioctl(struct file *filp,
2164 unsigned int ioctl, unsigned long arg)
2165 {
2166 struct kvm_vcpu *vcpu = filp->private_data;
2167 void __user *argp = (void __user *)arg;
2168 int r = -EINVAL;
2169
2170 switch (ioctl) {
2171 case KVM_RUN:
2172 r = -EINVAL;
2173 if (arg)
2174 goto out;
2175 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2176 break;
2177 case KVM_GET_REGS: {
2178 struct kvm_regs kvm_regs;
2179
2180 memset(&kvm_regs, 0, sizeof kvm_regs);
2181 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2182 if (r)
2183 goto out;
2184 r = -EFAULT;
2185 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2186 goto out;
2187 r = 0;
2188 break;
2189 }
2190 case KVM_SET_REGS: {
2191 struct kvm_regs kvm_regs;
2192
2193 r = -EFAULT;
2194 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2195 goto out;
2196 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2197 if (r)
2198 goto out;
2199 r = 0;
2200 break;
2201 }
2202 case KVM_GET_SREGS: {
2203 struct kvm_sregs kvm_sregs;
2204
2205 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2206 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2207 if (r)
2208 goto out;
2209 r = -EFAULT;
2210 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2211 goto out;
2212 r = 0;
2213 break;
2214 }
2215 case KVM_SET_SREGS: {
2216 struct kvm_sregs kvm_sregs;
2217
2218 r = -EFAULT;
2219 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2220 goto out;
2221 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2222 if (r)
2223 goto out;
2224 r = 0;
2225 break;
2226 }
2227 case KVM_TRANSLATE: {
2228 struct kvm_translation tr;
2229
2230 r = -EFAULT;
2231 if (copy_from_user(&tr, argp, sizeof tr))
2232 goto out;
2233 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2234 if (r)
2235 goto out;
2236 r = -EFAULT;
2237 if (copy_to_user(argp, &tr, sizeof tr))
2238 goto out;
2239 r = 0;
2240 break;
2241 }
2242 case KVM_INTERRUPT: {
2243 struct kvm_interrupt irq;
2244
2245 r = -EFAULT;
2246 if (copy_from_user(&irq, argp, sizeof irq))
2247 goto out;
2248 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2249 if (r)
2250 goto out;
2251 r = 0;
2252 break;
2253 }
2254 case KVM_DEBUG_GUEST: {
2255 struct kvm_debug_guest dbg;
2256
2257 r = -EFAULT;
2258 if (copy_from_user(&dbg, argp, sizeof dbg))
2259 goto out;
2260 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2261 if (r)
2262 goto out;
2263 r = 0;
2264 break;
2265 }
2266 case KVM_GET_MSRS:
2267 r = msr_io(vcpu, argp, get_msr, 1);
2268 break;
2269 case KVM_SET_MSRS:
2270 r = msr_io(vcpu, argp, do_set_msr, 0);
2271 break;
2272 case KVM_SET_CPUID: {
2273 struct kvm_cpuid __user *cpuid_arg = argp;
2274 struct kvm_cpuid cpuid;
2275
2276 r = -EFAULT;
2277 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2278 goto out;
2279 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2280 if (r)
2281 goto out;
2282 break;
2283 }
2284 case KVM_SET_SIGNAL_MASK: {
2285 struct kvm_signal_mask __user *sigmask_arg = argp;
2286 struct kvm_signal_mask kvm_sigmask;
2287 sigset_t sigset, *p;
2288
2289 p = NULL;
2290 if (argp) {
2291 r = -EFAULT;
2292 if (copy_from_user(&kvm_sigmask, argp,
2293 sizeof kvm_sigmask))
2294 goto out;
2295 r = -EINVAL;
2296 if (kvm_sigmask.len != sizeof sigset)
2297 goto out;
2298 r = -EFAULT;
2299 if (copy_from_user(&sigset, sigmask_arg->sigset,
2300 sizeof sigset))
2301 goto out;
2302 p = &sigset;
2303 }
2304 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2305 break;
2306 }
2307 default:
2308 ;
2309 }
2310 out:
2311 return r;
2312 }
2313
2314 static long kvm_vm_ioctl(struct file *filp,
2315 unsigned int ioctl, unsigned long arg)
2316 {
2317 struct kvm *kvm = filp->private_data;
2318 void __user *argp = (void __user *)arg;
2319 int r = -EINVAL;
2320
2321 switch (ioctl) {
2322 case KVM_CREATE_VCPU:
2323 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2324 if (r < 0)
2325 goto out;
2326 break;
2327 case KVM_SET_MEMORY_REGION: {
2328 struct kvm_memory_region kvm_mem;
2329
2330 r = -EFAULT;
2331 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2332 goto out;
2333 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2334 if (r)
2335 goto out;
2336 break;
2337 }
2338 case KVM_GET_DIRTY_LOG: {
2339 struct kvm_dirty_log log;
2340
2341 r = -EFAULT;
2342 if (copy_from_user(&log, argp, sizeof log))
2343 goto out;
2344 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2345 if (r)
2346 goto out;
2347 break;
2348 }
2349 default:
2350 ;
2351 }
2352 out:
2353 return r;
2354 }
2355
2356 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2357 unsigned long address,
2358 int *type)
2359 {
2360 struct kvm *kvm = vma->vm_file->private_data;
2361 unsigned long pgoff;
2362 struct kvm_memory_slot *slot;
2363 struct page *page;
2364
2365 *type = VM_FAULT_MINOR;
2366 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2367 slot = gfn_to_memslot(kvm, pgoff);
2368 if (!slot)
2369 return NOPAGE_SIGBUS;
2370 page = gfn_to_page(slot, pgoff);
2371 if (!page)
2372 return NOPAGE_SIGBUS;
2373 get_page(page);
2374 return page;
2375 }
2376
2377 static struct vm_operations_struct kvm_vm_vm_ops = {
2378 .nopage = kvm_vm_nopage,
2379 };
2380
2381 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2382 {
2383 vma->vm_ops = &kvm_vm_vm_ops;
2384 return 0;
2385 }
2386
2387 static struct file_operations kvm_vm_fops = {
2388 .release = kvm_vm_release,
2389 .unlocked_ioctl = kvm_vm_ioctl,
2390 .compat_ioctl = kvm_vm_ioctl,
2391 .mmap = kvm_vm_mmap,
2392 };
2393
2394 static int kvm_dev_ioctl_create_vm(void)
2395 {
2396 int fd, r;
2397 struct inode *inode;
2398 struct file *file;
2399 struct kvm *kvm;
2400
2401 inode = kvmfs_inode(&kvm_vm_fops);
2402 if (IS_ERR(inode)) {
2403 r = PTR_ERR(inode);
2404 goto out1;
2405 }
2406
2407 kvm = kvm_create_vm();
2408 if (IS_ERR(kvm)) {
2409 r = PTR_ERR(kvm);
2410 goto out2;
2411 }
2412
2413 file = kvmfs_file(inode, kvm);
2414 if (IS_ERR(file)) {
2415 r = PTR_ERR(file);
2416 goto out3;
2417 }
2418 kvm->filp = file;
2419
2420 r = get_unused_fd();
2421 if (r < 0)
2422 goto out4;
2423 fd = r;
2424 fd_install(fd, file);
2425
2426 return fd;
2427
2428 out4:
2429 fput(file);
2430 out3:
2431 kvm_destroy_vm(kvm);
2432 out2:
2433 iput(inode);
2434 out1:
2435 return r;
2436 }
2437
2438 static long kvm_dev_ioctl(struct file *filp,
2439 unsigned int ioctl, unsigned long arg)
2440 {
2441 void __user *argp = (void __user *)arg;
2442 long r = -EINVAL;
2443
2444 switch (ioctl) {
2445 case KVM_GET_API_VERSION:
2446 r = -EINVAL;
2447 if (arg)
2448 goto out;
2449 r = KVM_API_VERSION;
2450 break;
2451 case KVM_CREATE_VM:
2452 r = -EINVAL;
2453 if (arg)
2454 goto out;
2455 r = kvm_dev_ioctl_create_vm();
2456 break;
2457 case KVM_GET_MSR_INDEX_LIST: {
2458 struct kvm_msr_list __user *user_msr_list = argp;
2459 struct kvm_msr_list msr_list;
2460 unsigned n;
2461
2462 r = -EFAULT;
2463 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2464 goto out;
2465 n = msr_list.nmsrs;
2466 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2467 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2468 goto out;
2469 r = -E2BIG;
2470 if (n < num_msrs_to_save)
2471 goto out;
2472 r = -EFAULT;
2473 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2474 num_msrs_to_save * sizeof(u32)))
2475 goto out;
2476 if (copy_to_user(user_msr_list->indices
2477 + num_msrs_to_save * sizeof(u32),
2478 &emulated_msrs,
2479 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2480 goto out;
2481 r = 0;
2482 break;
2483 }
2484 case KVM_CHECK_EXTENSION:
2485 /*
2486 * No extensions defined at present.
2487 */
2488 r = 0;
2489 break;
2490 case KVM_GET_VCPU_MMAP_SIZE:
2491 r = -EINVAL;
2492 if (arg)
2493 goto out;
2494 r = PAGE_SIZE;
2495 break;
2496 default:
2497 ;
2498 }
2499 out:
2500 return r;
2501 }
2502
2503 static struct file_operations kvm_chardev_ops = {
2504 .open = kvm_dev_open,
2505 .release = kvm_dev_release,
2506 .unlocked_ioctl = kvm_dev_ioctl,
2507 .compat_ioctl = kvm_dev_ioctl,
2508 };
2509
2510 static struct miscdevice kvm_dev = {
2511 KVM_MINOR,
2512 "kvm",
2513 &kvm_chardev_ops,
2514 };
2515
2516 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2517 void *v)
2518 {
2519 if (val == SYS_RESTART) {
2520 /*
2521 * Some (well, at least mine) BIOSes hang on reboot if
2522 * in vmx root mode.
2523 */
2524 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2525 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2526 }
2527 return NOTIFY_OK;
2528 }
2529
2530 static struct notifier_block kvm_reboot_notifier = {
2531 .notifier_call = kvm_reboot,
2532 .priority = 0,
2533 };
2534
2535 /*
2536 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2537 * cached on it.
2538 */
2539 static void decache_vcpus_on_cpu(int cpu)
2540 {
2541 struct kvm *vm;
2542 struct kvm_vcpu *vcpu;
2543 int i;
2544
2545 spin_lock(&kvm_lock);
2546 list_for_each_entry(vm, &vm_list, vm_list)
2547 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2548 vcpu = &vm->vcpus[i];
2549 /*
2550 * If the vcpu is locked, then it is running on some
2551 * other cpu and therefore it is not cached on the
2552 * cpu in question.
2553 *
2554 * If it's not locked, check the last cpu it executed
2555 * on.
2556 */
2557 if (mutex_trylock(&vcpu->mutex)) {
2558 if (vcpu->cpu == cpu) {
2559 kvm_arch_ops->vcpu_decache(vcpu);
2560 vcpu->cpu = -1;
2561 }
2562 mutex_unlock(&vcpu->mutex);
2563 }
2564 }
2565 spin_unlock(&kvm_lock);
2566 }
2567
2568 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2569 void *v)
2570 {
2571 int cpu = (long)v;
2572
2573 switch (val) {
2574 case CPU_DOWN_PREPARE:
2575 case CPU_UP_CANCELED:
2576 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2577 cpu);
2578 decache_vcpus_on_cpu(cpu);
2579 smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
2580 NULL, 0, 1);
2581 break;
2582 case CPU_ONLINE:
2583 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2584 cpu);
2585 smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
2586 NULL, 0, 1);
2587 break;
2588 }
2589 return NOTIFY_OK;
2590 }
2591
2592 static struct notifier_block kvm_cpu_notifier = {
2593 .notifier_call = kvm_cpu_hotplug,
2594 .priority = 20, /* must be > scheduler priority */
2595 };
2596
2597 static __init void kvm_init_debug(void)
2598 {
2599 struct kvm_stats_debugfs_item *p;
2600
2601 debugfs_dir = debugfs_create_dir("kvm", NULL);
2602 for (p = debugfs_entries; p->name; ++p)
2603 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
2604 p->data);
2605 }
2606
2607 static void kvm_exit_debug(void)
2608 {
2609 struct kvm_stats_debugfs_item *p;
2610
2611 for (p = debugfs_entries; p->name; ++p)
2612 debugfs_remove(p->dentry);
2613 debugfs_remove(debugfs_dir);
2614 }
2615
2616 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2617 {
2618 decache_vcpus_on_cpu(raw_smp_processor_id());
2619 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2620 return 0;
2621 }
2622
2623 static int kvm_resume(struct sys_device *dev)
2624 {
2625 on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2626 return 0;
2627 }
2628
2629 static struct sysdev_class kvm_sysdev_class = {
2630 set_kset_name("kvm"),
2631 .suspend = kvm_suspend,
2632 .resume = kvm_resume,
2633 };
2634
2635 static struct sys_device kvm_sysdev = {
2636 .id = 0,
2637 .cls = &kvm_sysdev_class,
2638 };
2639
2640 hpa_t bad_page_address;
2641
2642 static int kvmfs_get_sb(struct file_system_type *fs_type, int flags,
2643 const char *dev_name, void *data, struct vfsmount *mnt)
2644 {
2645 return get_sb_pseudo(fs_type, "kvm:", NULL, KVMFS_SUPER_MAGIC, mnt);
2646 }
2647
2648 static struct file_system_type kvm_fs_type = {
2649 .name = "kvmfs",
2650 .get_sb = kvmfs_get_sb,
2651 .kill_sb = kill_anon_super,
2652 };
2653
2654 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
2655 {
2656 int r;
2657
2658 if (kvm_arch_ops) {
2659 printk(KERN_ERR "kvm: already loaded the other module\n");
2660 return -EEXIST;
2661 }
2662
2663 if (!ops->cpu_has_kvm_support()) {
2664 printk(KERN_ERR "kvm: no hardware support\n");
2665 return -EOPNOTSUPP;
2666 }
2667 if (ops->disabled_by_bios()) {
2668 printk(KERN_ERR "kvm: disabled by bios\n");
2669 return -EOPNOTSUPP;
2670 }
2671
2672 kvm_arch_ops = ops;
2673
2674 r = kvm_arch_ops->hardware_setup();
2675 if (r < 0)
2676 goto out;
2677
2678 on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2679 r = register_cpu_notifier(&kvm_cpu_notifier);
2680 if (r)
2681 goto out_free_1;
2682 register_reboot_notifier(&kvm_reboot_notifier);
2683
2684 r = sysdev_class_register(&kvm_sysdev_class);
2685 if (r)
2686 goto out_free_2;
2687
2688 r = sysdev_register(&kvm_sysdev);
2689 if (r)
2690 goto out_free_3;
2691
2692 kvm_chardev_ops.owner = module;
2693
2694 r = misc_register(&kvm_dev);
2695 if (r) {
2696 printk (KERN_ERR "kvm: misc device register failed\n");
2697 goto out_free;
2698 }
2699
2700 return r;
2701
2702 out_free:
2703 sysdev_unregister(&kvm_sysdev);
2704 out_free_3:
2705 sysdev_class_unregister(&kvm_sysdev_class);
2706 out_free_2:
2707 unregister_reboot_notifier(&kvm_reboot_notifier);
2708 unregister_cpu_notifier(&kvm_cpu_notifier);
2709 out_free_1:
2710 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2711 kvm_arch_ops->hardware_unsetup();
2712 out:
2713 kvm_arch_ops = NULL;
2714 return r;
2715 }
2716
2717 void kvm_exit_arch(void)
2718 {
2719 misc_deregister(&kvm_dev);
2720 sysdev_unregister(&kvm_sysdev);
2721 sysdev_class_unregister(&kvm_sysdev_class);
2722 unregister_reboot_notifier(&kvm_reboot_notifier);
2723 unregister_cpu_notifier(&kvm_cpu_notifier);
2724 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2725 kvm_arch_ops->hardware_unsetup();
2726 kvm_arch_ops = NULL;
2727 }
2728
2729 static __init int kvm_init(void)
2730 {
2731 static struct page *bad_page;
2732 int r;
2733
2734 r = register_filesystem(&kvm_fs_type);
2735 if (r)
2736 goto out3;
2737
2738 kvmfs_mnt = kern_mount(&kvm_fs_type);
2739 r = PTR_ERR(kvmfs_mnt);
2740 if (IS_ERR(kvmfs_mnt))
2741 goto out2;
2742 kvm_init_debug();
2743
2744 kvm_init_msr_list();
2745
2746 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2747 r = -ENOMEM;
2748 goto out;
2749 }
2750
2751 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2752 memset(__va(bad_page_address), 0, PAGE_SIZE);
2753
2754 return 0;
2755
2756 out:
2757 kvm_exit_debug();
2758 mntput(kvmfs_mnt);
2759 out2:
2760 unregister_filesystem(&kvm_fs_type);
2761 out3:
2762 return r;
2763 }
2764
2765 static __exit void kvm_exit(void)
2766 {
2767 kvm_exit_debug();
2768 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2769 mntput(kvmfs_mnt);
2770 unregister_filesystem(&kvm_fs_type);
2771 }
2772
2773 module_init(kvm_init)
2774 module_exit(kvm_exit)
2775
2776 EXPORT_SYMBOL_GPL(kvm_init_arch);
2777 EXPORT_SYMBOL_GPL(kvm_exit_arch);
This page took 0.081709 seconds and 4 git commands to generate.