[SCSI] hptiop: fix sense_buffer access bug
[deliverable/linux.git] / drivers / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
21 #include "irq.h"
22
23 #include <linux/kvm.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/percpu.h>
27 #include <linux/gfp.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <linux/reboot.h>
32 #include <linux/debugfs.h>
33 #include <linux/highmem.h>
34 #include <linux/file.h>
35 #include <linux/sysdev.h>
36 #include <linux/cpu.h>
37 #include <linux/sched.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42
43 #include <asm/processor.h>
44 #include <asm/msr.h>
45 #include <asm/io.h>
46 #include <asm/uaccess.h>
47 #include <asm/desc.h>
48
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
51
52 static DEFINE_SPINLOCK(kvm_lock);
53 static LIST_HEAD(vm_list);
54
55 static cpumask_t cpus_hardware_enabled;
56
57 struct kvm_x86_ops *kvm_x86_ops;
58 struct kmem_cache *kvm_vcpu_cache;
59 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
60
61 static __read_mostly struct preempt_ops kvm_preempt_ops;
62
63 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
64
65 static struct kvm_stats_debugfs_item {
66 const char *name;
67 int offset;
68 struct dentry *dentry;
69 } debugfs_entries[] = {
70 { "pf_fixed", STAT_OFFSET(pf_fixed) },
71 { "pf_guest", STAT_OFFSET(pf_guest) },
72 { "tlb_flush", STAT_OFFSET(tlb_flush) },
73 { "invlpg", STAT_OFFSET(invlpg) },
74 { "exits", STAT_OFFSET(exits) },
75 { "io_exits", STAT_OFFSET(io_exits) },
76 { "mmio_exits", STAT_OFFSET(mmio_exits) },
77 { "signal_exits", STAT_OFFSET(signal_exits) },
78 { "irq_window", STAT_OFFSET(irq_window_exits) },
79 { "halt_exits", STAT_OFFSET(halt_exits) },
80 { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
81 { "request_irq", STAT_OFFSET(request_irq_exits) },
82 { "irq_exits", STAT_OFFSET(irq_exits) },
83 { "light_exits", STAT_OFFSET(light_exits) },
84 { "efer_reload", STAT_OFFSET(efer_reload) },
85 { NULL }
86 };
87
88 static struct dentry *debugfs_dir;
89
90 #define MAX_IO_MSRS 256
91
92 #define CR0_RESERVED_BITS \
93 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
94 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
95 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
96 #define CR4_RESERVED_BITS \
97 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
98 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
99 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
100 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
101
102 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
103 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
104
105 #ifdef CONFIG_X86_64
106 // LDT or TSS descriptor in the GDT. 16 bytes.
107 struct segment_descriptor_64 {
108 struct segment_descriptor s;
109 u32 base_higher;
110 u32 pad_zero;
111 };
112
113 #endif
114
115 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
116 unsigned long arg);
117
118 unsigned long segment_base(u16 selector)
119 {
120 struct descriptor_table gdt;
121 struct segment_descriptor *d;
122 unsigned long table_base;
123 typedef unsigned long ul;
124 unsigned long v;
125
126 if (selector == 0)
127 return 0;
128
129 asm ("sgdt %0" : "=m"(gdt));
130 table_base = gdt.base;
131
132 if (selector & 4) { /* from ldt */
133 u16 ldt_selector;
134
135 asm ("sldt %0" : "=g"(ldt_selector));
136 table_base = segment_base(ldt_selector);
137 }
138 d = (struct segment_descriptor *)(table_base + (selector & ~7));
139 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
140 #ifdef CONFIG_X86_64
141 if (d->system == 0
142 && (d->type == 2 || d->type == 9 || d->type == 11))
143 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
144 #endif
145 return v;
146 }
147 EXPORT_SYMBOL_GPL(segment_base);
148
149 static inline int valid_vcpu(int n)
150 {
151 return likely(n >= 0 && n < KVM_MAX_VCPUS);
152 }
153
154 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
155 {
156 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
157 return;
158
159 vcpu->guest_fpu_loaded = 1;
160 fx_save(&vcpu->host_fx_image);
161 fx_restore(&vcpu->guest_fx_image);
162 }
163 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
164
165 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
166 {
167 if (!vcpu->guest_fpu_loaded)
168 return;
169
170 vcpu->guest_fpu_loaded = 0;
171 fx_save(&vcpu->guest_fx_image);
172 fx_restore(&vcpu->host_fx_image);
173 }
174 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
175
176 /*
177 * Switches to specified vcpu, until a matching vcpu_put()
178 */
179 static void vcpu_load(struct kvm_vcpu *vcpu)
180 {
181 int cpu;
182
183 mutex_lock(&vcpu->mutex);
184 cpu = get_cpu();
185 preempt_notifier_register(&vcpu->preempt_notifier);
186 kvm_x86_ops->vcpu_load(vcpu, cpu);
187 put_cpu();
188 }
189
190 static void vcpu_put(struct kvm_vcpu *vcpu)
191 {
192 preempt_disable();
193 kvm_x86_ops->vcpu_put(vcpu);
194 preempt_notifier_unregister(&vcpu->preempt_notifier);
195 preempt_enable();
196 mutex_unlock(&vcpu->mutex);
197 }
198
199 static void ack_flush(void *_completed)
200 {
201 }
202
203 void kvm_flush_remote_tlbs(struct kvm *kvm)
204 {
205 int i, cpu;
206 cpumask_t cpus;
207 struct kvm_vcpu *vcpu;
208
209 cpus_clear(cpus);
210 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
211 vcpu = kvm->vcpus[i];
212 if (!vcpu)
213 continue;
214 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
215 continue;
216 cpu = vcpu->cpu;
217 if (cpu != -1 && cpu != raw_smp_processor_id())
218 cpu_set(cpu, cpus);
219 }
220 smp_call_function_mask(cpus, ack_flush, NULL, 1);
221 }
222
223 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
224 {
225 struct page *page;
226 int r;
227
228 mutex_init(&vcpu->mutex);
229 vcpu->cpu = -1;
230 vcpu->mmu.root_hpa = INVALID_PAGE;
231 vcpu->kvm = kvm;
232 vcpu->vcpu_id = id;
233 if (!irqchip_in_kernel(kvm) || id == 0)
234 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
235 else
236 vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
237 init_waitqueue_head(&vcpu->wq);
238
239 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
240 if (!page) {
241 r = -ENOMEM;
242 goto fail;
243 }
244 vcpu->run = page_address(page);
245
246 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
247 if (!page) {
248 r = -ENOMEM;
249 goto fail_free_run;
250 }
251 vcpu->pio_data = page_address(page);
252
253 r = kvm_mmu_create(vcpu);
254 if (r < 0)
255 goto fail_free_pio_data;
256
257 return 0;
258
259 fail_free_pio_data:
260 free_page((unsigned long)vcpu->pio_data);
261 fail_free_run:
262 free_page((unsigned long)vcpu->run);
263 fail:
264 return -ENOMEM;
265 }
266 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
267
268 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
269 {
270 kvm_mmu_destroy(vcpu);
271 if (vcpu->apic)
272 hrtimer_cancel(&vcpu->apic->timer.dev);
273 kvm_free_apic(vcpu->apic);
274 free_page((unsigned long)vcpu->pio_data);
275 free_page((unsigned long)vcpu->run);
276 }
277 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
278
279 static struct kvm *kvm_create_vm(void)
280 {
281 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
282
283 if (!kvm)
284 return ERR_PTR(-ENOMEM);
285
286 kvm_io_bus_init(&kvm->pio_bus);
287 mutex_init(&kvm->lock);
288 INIT_LIST_HEAD(&kvm->active_mmu_pages);
289 kvm_io_bus_init(&kvm->mmio_bus);
290 spin_lock(&kvm_lock);
291 list_add(&kvm->vm_list, &vm_list);
292 spin_unlock(&kvm_lock);
293 return kvm;
294 }
295
296 /*
297 * Free any memory in @free but not in @dont.
298 */
299 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
300 struct kvm_memory_slot *dont)
301 {
302 int i;
303
304 if (!dont || free->phys_mem != dont->phys_mem)
305 if (free->phys_mem) {
306 for (i = 0; i < free->npages; ++i)
307 if (free->phys_mem[i])
308 __free_page(free->phys_mem[i]);
309 vfree(free->phys_mem);
310 }
311
312 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
313 vfree(free->dirty_bitmap);
314
315 free->phys_mem = NULL;
316 free->npages = 0;
317 free->dirty_bitmap = NULL;
318 }
319
320 static void kvm_free_physmem(struct kvm *kvm)
321 {
322 int i;
323
324 for (i = 0; i < kvm->nmemslots; ++i)
325 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
326 }
327
328 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
329 {
330 int i;
331
332 for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
333 if (vcpu->pio.guest_pages[i]) {
334 __free_page(vcpu->pio.guest_pages[i]);
335 vcpu->pio.guest_pages[i] = NULL;
336 }
337 }
338
339 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
340 {
341 vcpu_load(vcpu);
342 kvm_mmu_unload(vcpu);
343 vcpu_put(vcpu);
344 }
345
346 static void kvm_free_vcpus(struct kvm *kvm)
347 {
348 unsigned int i;
349
350 /*
351 * Unpin any mmu pages first.
352 */
353 for (i = 0; i < KVM_MAX_VCPUS; ++i)
354 if (kvm->vcpus[i])
355 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
356 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
357 if (kvm->vcpus[i]) {
358 kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
359 kvm->vcpus[i] = NULL;
360 }
361 }
362
363 }
364
365 static void kvm_destroy_vm(struct kvm *kvm)
366 {
367 spin_lock(&kvm_lock);
368 list_del(&kvm->vm_list);
369 spin_unlock(&kvm_lock);
370 kvm_io_bus_destroy(&kvm->pio_bus);
371 kvm_io_bus_destroy(&kvm->mmio_bus);
372 kfree(kvm->vpic);
373 kfree(kvm->vioapic);
374 kvm_free_vcpus(kvm);
375 kvm_free_physmem(kvm);
376 kfree(kvm);
377 }
378
379 static int kvm_vm_release(struct inode *inode, struct file *filp)
380 {
381 struct kvm *kvm = filp->private_data;
382
383 kvm_destroy_vm(kvm);
384 return 0;
385 }
386
387 static void inject_gp(struct kvm_vcpu *vcpu)
388 {
389 kvm_x86_ops->inject_gp(vcpu, 0);
390 }
391
392 /*
393 * Load the pae pdptrs. Return true is they are all valid.
394 */
395 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
396 {
397 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
398 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
399 int i;
400 u64 *pdpt;
401 int ret;
402 struct page *page;
403 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
404
405 mutex_lock(&vcpu->kvm->lock);
406 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
407 if (!page) {
408 ret = 0;
409 goto out;
410 }
411
412 pdpt = kmap_atomic(page, KM_USER0);
413 memcpy(pdpte, pdpt+offset, sizeof(pdpte));
414 kunmap_atomic(pdpt, KM_USER0);
415
416 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
417 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
418 ret = 0;
419 goto out;
420 }
421 }
422 ret = 1;
423
424 memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
425 out:
426 mutex_unlock(&vcpu->kvm->lock);
427
428 return ret;
429 }
430
431 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
432 {
433 if (cr0 & CR0_RESERVED_BITS) {
434 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
435 cr0, vcpu->cr0);
436 inject_gp(vcpu);
437 return;
438 }
439
440 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
441 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
442 inject_gp(vcpu);
443 return;
444 }
445
446 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
447 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
448 "and a clear PE flag\n");
449 inject_gp(vcpu);
450 return;
451 }
452
453 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
454 #ifdef CONFIG_X86_64
455 if ((vcpu->shadow_efer & EFER_LME)) {
456 int cs_db, cs_l;
457
458 if (!is_pae(vcpu)) {
459 printk(KERN_DEBUG "set_cr0: #GP, start paging "
460 "in long mode while PAE is disabled\n");
461 inject_gp(vcpu);
462 return;
463 }
464 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
465 if (cs_l) {
466 printk(KERN_DEBUG "set_cr0: #GP, start paging "
467 "in long mode while CS.L == 1\n");
468 inject_gp(vcpu);
469 return;
470
471 }
472 } else
473 #endif
474 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
475 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
476 "reserved bits\n");
477 inject_gp(vcpu);
478 return;
479 }
480
481 }
482
483 kvm_x86_ops->set_cr0(vcpu, cr0);
484 vcpu->cr0 = cr0;
485
486 mutex_lock(&vcpu->kvm->lock);
487 kvm_mmu_reset_context(vcpu);
488 mutex_unlock(&vcpu->kvm->lock);
489 return;
490 }
491 EXPORT_SYMBOL_GPL(set_cr0);
492
493 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
494 {
495 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
496 }
497 EXPORT_SYMBOL_GPL(lmsw);
498
499 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
500 {
501 if (cr4 & CR4_RESERVED_BITS) {
502 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
503 inject_gp(vcpu);
504 return;
505 }
506
507 if (is_long_mode(vcpu)) {
508 if (!(cr4 & X86_CR4_PAE)) {
509 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
510 "in long mode\n");
511 inject_gp(vcpu);
512 return;
513 }
514 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
515 && !load_pdptrs(vcpu, vcpu->cr3)) {
516 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
517 inject_gp(vcpu);
518 return;
519 }
520
521 if (cr4 & X86_CR4_VMXE) {
522 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
523 inject_gp(vcpu);
524 return;
525 }
526 kvm_x86_ops->set_cr4(vcpu, cr4);
527 vcpu->cr4 = cr4;
528 mutex_lock(&vcpu->kvm->lock);
529 kvm_mmu_reset_context(vcpu);
530 mutex_unlock(&vcpu->kvm->lock);
531 }
532 EXPORT_SYMBOL_GPL(set_cr4);
533
534 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
535 {
536 if (is_long_mode(vcpu)) {
537 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
538 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
539 inject_gp(vcpu);
540 return;
541 }
542 } else {
543 if (is_pae(vcpu)) {
544 if (cr3 & CR3_PAE_RESERVED_BITS) {
545 printk(KERN_DEBUG
546 "set_cr3: #GP, reserved bits\n");
547 inject_gp(vcpu);
548 return;
549 }
550 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
551 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
552 "reserved bits\n");
553 inject_gp(vcpu);
554 return;
555 }
556 } else {
557 if (cr3 & CR3_NONPAE_RESERVED_BITS) {
558 printk(KERN_DEBUG
559 "set_cr3: #GP, reserved bits\n");
560 inject_gp(vcpu);
561 return;
562 }
563 }
564 }
565
566 mutex_lock(&vcpu->kvm->lock);
567 /*
568 * Does the new cr3 value map to physical memory? (Note, we
569 * catch an invalid cr3 even in real-mode, because it would
570 * cause trouble later on when we turn on paging anyway.)
571 *
572 * A real CPU would silently accept an invalid cr3 and would
573 * attempt to use it - with largely undefined (and often hard
574 * to debug) behavior on the guest side.
575 */
576 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
577 inject_gp(vcpu);
578 else {
579 vcpu->cr3 = cr3;
580 vcpu->mmu.new_cr3(vcpu);
581 }
582 mutex_unlock(&vcpu->kvm->lock);
583 }
584 EXPORT_SYMBOL_GPL(set_cr3);
585
586 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
587 {
588 if (cr8 & CR8_RESERVED_BITS) {
589 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
590 inject_gp(vcpu);
591 return;
592 }
593 if (irqchip_in_kernel(vcpu->kvm))
594 kvm_lapic_set_tpr(vcpu, cr8);
595 else
596 vcpu->cr8 = cr8;
597 }
598 EXPORT_SYMBOL_GPL(set_cr8);
599
600 unsigned long get_cr8(struct kvm_vcpu *vcpu)
601 {
602 if (irqchip_in_kernel(vcpu->kvm))
603 return kvm_lapic_get_cr8(vcpu);
604 else
605 return vcpu->cr8;
606 }
607 EXPORT_SYMBOL_GPL(get_cr8);
608
609 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
610 {
611 if (irqchip_in_kernel(vcpu->kvm))
612 return vcpu->apic_base;
613 else
614 return vcpu->apic_base;
615 }
616 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
617
618 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
619 {
620 /* TODO: reserve bits check */
621 if (irqchip_in_kernel(vcpu->kvm))
622 kvm_lapic_set_base(vcpu, data);
623 else
624 vcpu->apic_base = data;
625 }
626 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
627
628 void fx_init(struct kvm_vcpu *vcpu)
629 {
630 unsigned after_mxcsr_mask;
631
632 /* Initialize guest FPU by resetting ours and saving into guest's */
633 preempt_disable();
634 fx_save(&vcpu->host_fx_image);
635 fpu_init();
636 fx_save(&vcpu->guest_fx_image);
637 fx_restore(&vcpu->host_fx_image);
638 preempt_enable();
639
640 vcpu->cr0 |= X86_CR0_ET;
641 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
642 vcpu->guest_fx_image.mxcsr = 0x1f80;
643 memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
644 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
645 }
646 EXPORT_SYMBOL_GPL(fx_init);
647
648 /*
649 * Allocate some memory and give it an address in the guest physical address
650 * space.
651 *
652 * Discontiguous memory is allowed, mostly for framebuffers.
653 */
654 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
655 struct kvm_memory_region *mem)
656 {
657 int r;
658 gfn_t base_gfn;
659 unsigned long npages;
660 unsigned long i;
661 struct kvm_memory_slot *memslot;
662 struct kvm_memory_slot old, new;
663
664 r = -EINVAL;
665 /* General sanity checks */
666 if (mem->memory_size & (PAGE_SIZE - 1))
667 goto out;
668 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
669 goto out;
670 if (mem->slot >= KVM_MEMORY_SLOTS)
671 goto out;
672 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
673 goto out;
674
675 memslot = &kvm->memslots[mem->slot];
676 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
677 npages = mem->memory_size >> PAGE_SHIFT;
678
679 if (!npages)
680 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
681
682 mutex_lock(&kvm->lock);
683
684 new = old = *memslot;
685
686 new.base_gfn = base_gfn;
687 new.npages = npages;
688 new.flags = mem->flags;
689
690 /* Disallow changing a memory slot's size. */
691 r = -EINVAL;
692 if (npages && old.npages && npages != old.npages)
693 goto out_unlock;
694
695 /* Check for overlaps */
696 r = -EEXIST;
697 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
698 struct kvm_memory_slot *s = &kvm->memslots[i];
699
700 if (s == memslot)
701 continue;
702 if (!((base_gfn + npages <= s->base_gfn) ||
703 (base_gfn >= s->base_gfn + s->npages)))
704 goto out_unlock;
705 }
706
707 /* Deallocate if slot is being removed */
708 if (!npages)
709 new.phys_mem = NULL;
710
711 /* Free page dirty bitmap if unneeded */
712 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
713 new.dirty_bitmap = NULL;
714
715 r = -ENOMEM;
716
717 /* Allocate if a slot is being created */
718 if (npages && !new.phys_mem) {
719 new.phys_mem = vmalloc(npages * sizeof(struct page *));
720
721 if (!new.phys_mem)
722 goto out_unlock;
723
724 memset(new.phys_mem, 0, npages * sizeof(struct page *));
725 for (i = 0; i < npages; ++i) {
726 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
727 | __GFP_ZERO);
728 if (!new.phys_mem[i])
729 goto out_unlock;
730 set_page_private(new.phys_mem[i],0);
731 }
732 }
733
734 /* Allocate page dirty bitmap if needed */
735 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
736 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
737
738 new.dirty_bitmap = vmalloc(dirty_bytes);
739 if (!new.dirty_bitmap)
740 goto out_unlock;
741 memset(new.dirty_bitmap, 0, dirty_bytes);
742 }
743
744 if (mem->slot >= kvm->nmemslots)
745 kvm->nmemslots = mem->slot + 1;
746
747 *memslot = new;
748
749 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
750 kvm_flush_remote_tlbs(kvm);
751
752 mutex_unlock(&kvm->lock);
753
754 kvm_free_physmem_slot(&old, &new);
755 return 0;
756
757 out_unlock:
758 mutex_unlock(&kvm->lock);
759 kvm_free_physmem_slot(&new, &old);
760 out:
761 return r;
762 }
763
764 /*
765 * Get (and clear) the dirty memory log for a memory slot.
766 */
767 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
768 struct kvm_dirty_log *log)
769 {
770 struct kvm_memory_slot *memslot;
771 int r, i;
772 int n;
773 unsigned long any = 0;
774
775 mutex_lock(&kvm->lock);
776
777 r = -EINVAL;
778 if (log->slot >= KVM_MEMORY_SLOTS)
779 goto out;
780
781 memslot = &kvm->memslots[log->slot];
782 r = -ENOENT;
783 if (!memslot->dirty_bitmap)
784 goto out;
785
786 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
787
788 for (i = 0; !any && i < n/sizeof(long); ++i)
789 any = memslot->dirty_bitmap[i];
790
791 r = -EFAULT;
792 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
793 goto out;
794
795 /* If nothing is dirty, don't bother messing with page tables. */
796 if (any) {
797 kvm_mmu_slot_remove_write_access(kvm, log->slot);
798 kvm_flush_remote_tlbs(kvm);
799 memset(memslot->dirty_bitmap, 0, n);
800 }
801
802 r = 0;
803
804 out:
805 mutex_unlock(&kvm->lock);
806 return r;
807 }
808
809 /*
810 * Set a new alias region. Aliases map a portion of physical memory into
811 * another portion. This is useful for memory windows, for example the PC
812 * VGA region.
813 */
814 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
815 struct kvm_memory_alias *alias)
816 {
817 int r, n;
818 struct kvm_mem_alias *p;
819
820 r = -EINVAL;
821 /* General sanity checks */
822 if (alias->memory_size & (PAGE_SIZE - 1))
823 goto out;
824 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
825 goto out;
826 if (alias->slot >= KVM_ALIAS_SLOTS)
827 goto out;
828 if (alias->guest_phys_addr + alias->memory_size
829 < alias->guest_phys_addr)
830 goto out;
831 if (alias->target_phys_addr + alias->memory_size
832 < alias->target_phys_addr)
833 goto out;
834
835 mutex_lock(&kvm->lock);
836
837 p = &kvm->aliases[alias->slot];
838 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
839 p->npages = alias->memory_size >> PAGE_SHIFT;
840 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
841
842 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
843 if (kvm->aliases[n - 1].npages)
844 break;
845 kvm->naliases = n;
846
847 kvm_mmu_zap_all(kvm);
848
849 mutex_unlock(&kvm->lock);
850
851 return 0;
852
853 out:
854 return r;
855 }
856
857 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
858 {
859 int r;
860
861 r = 0;
862 switch (chip->chip_id) {
863 case KVM_IRQCHIP_PIC_MASTER:
864 memcpy (&chip->chip.pic,
865 &pic_irqchip(kvm)->pics[0],
866 sizeof(struct kvm_pic_state));
867 break;
868 case KVM_IRQCHIP_PIC_SLAVE:
869 memcpy (&chip->chip.pic,
870 &pic_irqchip(kvm)->pics[1],
871 sizeof(struct kvm_pic_state));
872 break;
873 case KVM_IRQCHIP_IOAPIC:
874 memcpy (&chip->chip.ioapic,
875 ioapic_irqchip(kvm),
876 sizeof(struct kvm_ioapic_state));
877 break;
878 default:
879 r = -EINVAL;
880 break;
881 }
882 return r;
883 }
884
885 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
886 {
887 int r;
888
889 r = 0;
890 switch (chip->chip_id) {
891 case KVM_IRQCHIP_PIC_MASTER:
892 memcpy (&pic_irqchip(kvm)->pics[0],
893 &chip->chip.pic,
894 sizeof(struct kvm_pic_state));
895 break;
896 case KVM_IRQCHIP_PIC_SLAVE:
897 memcpy (&pic_irqchip(kvm)->pics[1],
898 &chip->chip.pic,
899 sizeof(struct kvm_pic_state));
900 break;
901 case KVM_IRQCHIP_IOAPIC:
902 memcpy (ioapic_irqchip(kvm),
903 &chip->chip.ioapic,
904 sizeof(struct kvm_ioapic_state));
905 break;
906 default:
907 r = -EINVAL;
908 break;
909 }
910 kvm_pic_update_irq(pic_irqchip(kvm));
911 return r;
912 }
913
914 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
915 {
916 int i;
917 struct kvm_mem_alias *alias;
918
919 for (i = 0; i < kvm->naliases; ++i) {
920 alias = &kvm->aliases[i];
921 if (gfn >= alias->base_gfn
922 && gfn < alias->base_gfn + alias->npages)
923 return alias->target_gfn + gfn - alias->base_gfn;
924 }
925 return gfn;
926 }
927
928 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
929 {
930 int i;
931
932 for (i = 0; i < kvm->nmemslots; ++i) {
933 struct kvm_memory_slot *memslot = &kvm->memslots[i];
934
935 if (gfn >= memslot->base_gfn
936 && gfn < memslot->base_gfn + memslot->npages)
937 return memslot;
938 }
939 return NULL;
940 }
941
942 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
943 {
944 gfn = unalias_gfn(kvm, gfn);
945 return __gfn_to_memslot(kvm, gfn);
946 }
947
948 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
949 {
950 struct kvm_memory_slot *slot;
951
952 gfn = unalias_gfn(kvm, gfn);
953 slot = __gfn_to_memslot(kvm, gfn);
954 if (!slot)
955 return NULL;
956 return slot->phys_mem[gfn - slot->base_gfn];
957 }
958 EXPORT_SYMBOL_GPL(gfn_to_page);
959
960 /* WARNING: Does not work on aliased pages. */
961 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
962 {
963 struct kvm_memory_slot *memslot;
964
965 memslot = __gfn_to_memslot(kvm, gfn);
966 if (memslot && memslot->dirty_bitmap) {
967 unsigned long rel_gfn = gfn - memslot->base_gfn;
968
969 /* avoid RMW */
970 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
971 set_bit(rel_gfn, memslot->dirty_bitmap);
972 }
973 }
974
975 int emulator_read_std(unsigned long addr,
976 void *val,
977 unsigned int bytes,
978 struct kvm_vcpu *vcpu)
979 {
980 void *data = val;
981
982 while (bytes) {
983 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
984 unsigned offset = addr & (PAGE_SIZE-1);
985 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
986 unsigned long pfn;
987 struct page *page;
988 void *page_virt;
989
990 if (gpa == UNMAPPED_GVA)
991 return X86EMUL_PROPAGATE_FAULT;
992 pfn = gpa >> PAGE_SHIFT;
993 page = gfn_to_page(vcpu->kvm, pfn);
994 if (!page)
995 return X86EMUL_UNHANDLEABLE;
996 page_virt = kmap_atomic(page, KM_USER0);
997
998 memcpy(data, page_virt + offset, tocopy);
999
1000 kunmap_atomic(page_virt, KM_USER0);
1001
1002 bytes -= tocopy;
1003 data += tocopy;
1004 addr += tocopy;
1005 }
1006
1007 return X86EMUL_CONTINUE;
1008 }
1009 EXPORT_SYMBOL_GPL(emulator_read_std);
1010
1011 static int emulator_write_std(unsigned long addr,
1012 const void *val,
1013 unsigned int bytes,
1014 struct kvm_vcpu *vcpu)
1015 {
1016 pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
1017 return X86EMUL_UNHANDLEABLE;
1018 }
1019
1020 /*
1021 * Only apic need an MMIO device hook, so shortcut now..
1022 */
1023 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1024 gpa_t addr)
1025 {
1026 struct kvm_io_device *dev;
1027
1028 if (vcpu->apic) {
1029 dev = &vcpu->apic->dev;
1030 if (dev->in_range(dev, addr))
1031 return dev;
1032 }
1033 return NULL;
1034 }
1035
1036 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1037 gpa_t addr)
1038 {
1039 struct kvm_io_device *dev;
1040
1041 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1042 if (dev == NULL)
1043 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1044 return dev;
1045 }
1046
1047 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1048 gpa_t addr)
1049 {
1050 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1051 }
1052
1053 static int emulator_read_emulated(unsigned long addr,
1054 void *val,
1055 unsigned int bytes,
1056 struct kvm_vcpu *vcpu)
1057 {
1058 struct kvm_io_device *mmio_dev;
1059 gpa_t gpa;
1060
1061 if (vcpu->mmio_read_completed) {
1062 memcpy(val, vcpu->mmio_data, bytes);
1063 vcpu->mmio_read_completed = 0;
1064 return X86EMUL_CONTINUE;
1065 } else if (emulator_read_std(addr, val, bytes, vcpu)
1066 == X86EMUL_CONTINUE)
1067 return X86EMUL_CONTINUE;
1068
1069 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1070 if (gpa == UNMAPPED_GVA)
1071 return X86EMUL_PROPAGATE_FAULT;
1072
1073 /*
1074 * Is this MMIO handled locally?
1075 */
1076 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1077 if (mmio_dev) {
1078 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1079 return X86EMUL_CONTINUE;
1080 }
1081
1082 vcpu->mmio_needed = 1;
1083 vcpu->mmio_phys_addr = gpa;
1084 vcpu->mmio_size = bytes;
1085 vcpu->mmio_is_write = 0;
1086
1087 return X86EMUL_UNHANDLEABLE;
1088 }
1089
1090 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1091 const void *val, int bytes)
1092 {
1093 struct page *page;
1094 void *virt;
1095
1096 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1097 return 0;
1098 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1099 if (!page)
1100 return 0;
1101 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1102 virt = kmap_atomic(page, KM_USER0);
1103 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1104 memcpy(virt + offset_in_page(gpa), val, bytes);
1105 kunmap_atomic(virt, KM_USER0);
1106 return 1;
1107 }
1108
1109 static int emulator_write_emulated_onepage(unsigned long addr,
1110 const void *val,
1111 unsigned int bytes,
1112 struct kvm_vcpu *vcpu)
1113 {
1114 struct kvm_io_device *mmio_dev;
1115 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1116
1117 if (gpa == UNMAPPED_GVA) {
1118 kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
1119 return X86EMUL_PROPAGATE_FAULT;
1120 }
1121
1122 if (emulator_write_phys(vcpu, gpa, val, bytes))
1123 return X86EMUL_CONTINUE;
1124
1125 /*
1126 * Is this MMIO handled locally?
1127 */
1128 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1129 if (mmio_dev) {
1130 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1131 return X86EMUL_CONTINUE;
1132 }
1133
1134 vcpu->mmio_needed = 1;
1135 vcpu->mmio_phys_addr = gpa;
1136 vcpu->mmio_size = bytes;
1137 vcpu->mmio_is_write = 1;
1138 memcpy(vcpu->mmio_data, val, bytes);
1139
1140 return X86EMUL_CONTINUE;
1141 }
1142
1143 int emulator_write_emulated(unsigned long addr,
1144 const void *val,
1145 unsigned int bytes,
1146 struct kvm_vcpu *vcpu)
1147 {
1148 /* Crossing a page boundary? */
1149 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1150 int rc, now;
1151
1152 now = -addr & ~PAGE_MASK;
1153 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1154 if (rc != X86EMUL_CONTINUE)
1155 return rc;
1156 addr += now;
1157 val += now;
1158 bytes -= now;
1159 }
1160 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1161 }
1162 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1163
1164 static int emulator_cmpxchg_emulated(unsigned long addr,
1165 const void *old,
1166 const void *new,
1167 unsigned int bytes,
1168 struct kvm_vcpu *vcpu)
1169 {
1170 static int reported;
1171
1172 if (!reported) {
1173 reported = 1;
1174 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1175 }
1176 return emulator_write_emulated(addr, new, bytes, vcpu);
1177 }
1178
1179 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1180 {
1181 return kvm_x86_ops->get_segment_base(vcpu, seg);
1182 }
1183
1184 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1185 {
1186 return X86EMUL_CONTINUE;
1187 }
1188
1189 int emulate_clts(struct kvm_vcpu *vcpu)
1190 {
1191 kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
1192 return X86EMUL_CONTINUE;
1193 }
1194
1195 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1196 {
1197 struct kvm_vcpu *vcpu = ctxt->vcpu;
1198
1199 switch (dr) {
1200 case 0 ... 3:
1201 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1202 return X86EMUL_CONTINUE;
1203 default:
1204 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1205 return X86EMUL_UNHANDLEABLE;
1206 }
1207 }
1208
1209 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1210 {
1211 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1212 int exception;
1213
1214 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1215 if (exception) {
1216 /* FIXME: better handling */
1217 return X86EMUL_UNHANDLEABLE;
1218 }
1219 return X86EMUL_CONTINUE;
1220 }
1221
1222 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
1223 {
1224 static int reported;
1225 u8 opcodes[4];
1226 unsigned long rip = vcpu->rip;
1227 unsigned long rip_linear;
1228
1229 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
1230
1231 if (reported)
1232 return;
1233
1234 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
1235
1236 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1237 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1238 reported = 1;
1239 }
1240 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
1241
1242 struct x86_emulate_ops emulate_ops = {
1243 .read_std = emulator_read_std,
1244 .write_std = emulator_write_std,
1245 .read_emulated = emulator_read_emulated,
1246 .write_emulated = emulator_write_emulated,
1247 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1248 };
1249
1250 int emulate_instruction(struct kvm_vcpu *vcpu,
1251 struct kvm_run *run,
1252 unsigned long cr2,
1253 u16 error_code)
1254 {
1255 struct x86_emulate_ctxt emulate_ctxt;
1256 int r;
1257 int cs_db, cs_l;
1258
1259 vcpu->mmio_fault_cr2 = cr2;
1260 kvm_x86_ops->cache_regs(vcpu);
1261
1262 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1263
1264 emulate_ctxt.vcpu = vcpu;
1265 emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
1266 emulate_ctxt.cr2 = cr2;
1267 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1268 ? X86EMUL_MODE_REAL : cs_l
1269 ? X86EMUL_MODE_PROT64 : cs_db
1270 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1271
1272 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1273 emulate_ctxt.cs_base = 0;
1274 emulate_ctxt.ds_base = 0;
1275 emulate_ctxt.es_base = 0;
1276 emulate_ctxt.ss_base = 0;
1277 } else {
1278 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1279 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1280 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1281 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1282 }
1283
1284 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1285 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1286
1287 vcpu->mmio_is_write = 0;
1288 vcpu->pio.string = 0;
1289 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1290 if (vcpu->pio.string)
1291 return EMULATE_DO_MMIO;
1292
1293 if ((r || vcpu->mmio_is_write) && run) {
1294 run->exit_reason = KVM_EXIT_MMIO;
1295 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1296 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1297 run->mmio.len = vcpu->mmio_size;
1298 run->mmio.is_write = vcpu->mmio_is_write;
1299 }
1300
1301 if (r) {
1302 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1303 return EMULATE_DONE;
1304 if (!vcpu->mmio_needed) {
1305 kvm_report_emulation_failure(vcpu, "mmio");
1306 return EMULATE_FAIL;
1307 }
1308 return EMULATE_DO_MMIO;
1309 }
1310
1311 kvm_x86_ops->decache_regs(vcpu);
1312 kvm_x86_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1313
1314 if (vcpu->mmio_is_write) {
1315 vcpu->mmio_needed = 0;
1316 return EMULATE_DO_MMIO;
1317 }
1318
1319 return EMULATE_DONE;
1320 }
1321 EXPORT_SYMBOL_GPL(emulate_instruction);
1322
1323 /*
1324 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1325 */
1326 static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1327 {
1328 DECLARE_WAITQUEUE(wait, current);
1329
1330 add_wait_queue(&vcpu->wq, &wait);
1331
1332 /*
1333 * We will block until either an interrupt or a signal wakes us up
1334 */
1335 while (!kvm_cpu_has_interrupt(vcpu)
1336 && !signal_pending(current)
1337 && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
1338 && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
1339 set_current_state(TASK_INTERRUPTIBLE);
1340 vcpu_put(vcpu);
1341 schedule();
1342 vcpu_load(vcpu);
1343 }
1344
1345 __set_current_state(TASK_RUNNING);
1346 remove_wait_queue(&vcpu->wq, &wait);
1347 }
1348
1349 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1350 {
1351 ++vcpu->stat.halt_exits;
1352 if (irqchip_in_kernel(vcpu->kvm)) {
1353 vcpu->mp_state = VCPU_MP_STATE_HALTED;
1354 kvm_vcpu_block(vcpu);
1355 if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
1356 return -EINTR;
1357 return 1;
1358 } else {
1359 vcpu->run->exit_reason = KVM_EXIT_HLT;
1360 return 0;
1361 }
1362 }
1363 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1364
1365 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1366 {
1367 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1368
1369 kvm_x86_ops->cache_regs(vcpu);
1370 ret = -KVM_EINVAL;
1371 #ifdef CONFIG_X86_64
1372 if (is_long_mode(vcpu)) {
1373 nr = vcpu->regs[VCPU_REGS_RAX];
1374 a0 = vcpu->regs[VCPU_REGS_RDI];
1375 a1 = vcpu->regs[VCPU_REGS_RSI];
1376 a2 = vcpu->regs[VCPU_REGS_RDX];
1377 a3 = vcpu->regs[VCPU_REGS_RCX];
1378 a4 = vcpu->regs[VCPU_REGS_R8];
1379 a5 = vcpu->regs[VCPU_REGS_R9];
1380 } else
1381 #endif
1382 {
1383 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1384 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1385 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1386 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1387 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1388 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1389 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1390 }
1391 switch (nr) {
1392 default:
1393 run->hypercall.nr = nr;
1394 run->hypercall.args[0] = a0;
1395 run->hypercall.args[1] = a1;
1396 run->hypercall.args[2] = a2;
1397 run->hypercall.args[3] = a3;
1398 run->hypercall.args[4] = a4;
1399 run->hypercall.args[5] = a5;
1400 run->hypercall.ret = ret;
1401 run->hypercall.longmode = is_long_mode(vcpu);
1402 kvm_x86_ops->decache_regs(vcpu);
1403 return 0;
1404 }
1405 vcpu->regs[VCPU_REGS_RAX] = ret;
1406 kvm_x86_ops->decache_regs(vcpu);
1407 return 1;
1408 }
1409 EXPORT_SYMBOL_GPL(kvm_hypercall);
1410
1411 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1412 {
1413 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1414 }
1415
1416 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1417 {
1418 struct descriptor_table dt = { limit, base };
1419
1420 kvm_x86_ops->set_gdt(vcpu, &dt);
1421 }
1422
1423 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1424 {
1425 struct descriptor_table dt = { limit, base };
1426
1427 kvm_x86_ops->set_idt(vcpu, &dt);
1428 }
1429
1430 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1431 unsigned long *rflags)
1432 {
1433 lmsw(vcpu, msw);
1434 *rflags = kvm_x86_ops->get_rflags(vcpu);
1435 }
1436
1437 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1438 {
1439 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
1440 switch (cr) {
1441 case 0:
1442 return vcpu->cr0;
1443 case 2:
1444 return vcpu->cr2;
1445 case 3:
1446 return vcpu->cr3;
1447 case 4:
1448 return vcpu->cr4;
1449 default:
1450 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1451 return 0;
1452 }
1453 }
1454
1455 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1456 unsigned long *rflags)
1457 {
1458 switch (cr) {
1459 case 0:
1460 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1461 *rflags = kvm_x86_ops->get_rflags(vcpu);
1462 break;
1463 case 2:
1464 vcpu->cr2 = val;
1465 break;
1466 case 3:
1467 set_cr3(vcpu, val);
1468 break;
1469 case 4:
1470 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1471 break;
1472 default:
1473 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1474 }
1475 }
1476
1477 /*
1478 * Register the para guest with the host:
1479 */
1480 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1481 {
1482 struct kvm_vcpu_para_state *para_state;
1483 hpa_t para_state_hpa, hypercall_hpa;
1484 struct page *para_state_page;
1485 unsigned char *hypercall;
1486 gpa_t hypercall_gpa;
1487
1488 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1489 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1490
1491 /*
1492 * Needs to be page aligned:
1493 */
1494 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1495 goto err_gp;
1496
1497 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1498 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1499 if (is_error_hpa(para_state_hpa))
1500 goto err_gp;
1501
1502 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1503 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1504 para_state = kmap(para_state_page);
1505
1506 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1507 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1508
1509 para_state->host_version = KVM_PARA_API_VERSION;
1510 /*
1511 * We cannot support guests that try to register themselves
1512 * with a newer API version than the host supports:
1513 */
1514 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1515 para_state->ret = -KVM_EINVAL;
1516 goto err_kunmap_skip;
1517 }
1518
1519 hypercall_gpa = para_state->hypercall_gpa;
1520 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1521 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1522 if (is_error_hpa(hypercall_hpa)) {
1523 para_state->ret = -KVM_EINVAL;
1524 goto err_kunmap_skip;
1525 }
1526
1527 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1528 vcpu->para_state_page = para_state_page;
1529 vcpu->para_state_gpa = para_state_gpa;
1530 vcpu->hypercall_gpa = hypercall_gpa;
1531
1532 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1533 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1534 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1535 kvm_x86_ops->patch_hypercall(vcpu, hypercall);
1536 kunmap_atomic(hypercall, KM_USER1);
1537
1538 para_state->ret = 0;
1539 err_kunmap_skip:
1540 kunmap(para_state_page);
1541 return 0;
1542 err_gp:
1543 return 1;
1544 }
1545
1546 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1547 {
1548 u64 data;
1549
1550 switch (msr) {
1551 case 0xc0010010: /* SYSCFG */
1552 case 0xc0010015: /* HWCR */
1553 case MSR_IA32_PLATFORM_ID:
1554 case MSR_IA32_P5_MC_ADDR:
1555 case MSR_IA32_P5_MC_TYPE:
1556 case MSR_IA32_MC0_CTL:
1557 case MSR_IA32_MCG_STATUS:
1558 case MSR_IA32_MCG_CAP:
1559 case MSR_IA32_MC0_MISC:
1560 case MSR_IA32_MC0_MISC+4:
1561 case MSR_IA32_MC0_MISC+8:
1562 case MSR_IA32_MC0_MISC+12:
1563 case MSR_IA32_MC0_MISC+16:
1564 case MSR_IA32_UCODE_REV:
1565 case MSR_IA32_PERF_STATUS:
1566 case MSR_IA32_EBL_CR_POWERON:
1567 /* MTRR registers */
1568 case 0xfe:
1569 case 0x200 ... 0x2ff:
1570 data = 0;
1571 break;
1572 case 0xcd: /* fsb frequency */
1573 data = 3;
1574 break;
1575 case MSR_IA32_APICBASE:
1576 data = kvm_get_apic_base(vcpu);
1577 break;
1578 case MSR_IA32_MISC_ENABLE:
1579 data = vcpu->ia32_misc_enable_msr;
1580 break;
1581 #ifdef CONFIG_X86_64
1582 case MSR_EFER:
1583 data = vcpu->shadow_efer;
1584 break;
1585 #endif
1586 default:
1587 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1588 return 1;
1589 }
1590 *pdata = data;
1591 return 0;
1592 }
1593 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1594
1595 /*
1596 * Reads an msr value (of 'msr_index') into 'pdata'.
1597 * Returns 0 on success, non-0 otherwise.
1598 * Assumes vcpu_load() was already called.
1599 */
1600 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1601 {
1602 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1603 }
1604
1605 #ifdef CONFIG_X86_64
1606
1607 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1608 {
1609 if (efer & EFER_RESERVED_BITS) {
1610 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1611 efer);
1612 inject_gp(vcpu);
1613 return;
1614 }
1615
1616 if (is_paging(vcpu)
1617 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1618 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1619 inject_gp(vcpu);
1620 return;
1621 }
1622
1623 kvm_x86_ops->set_efer(vcpu, efer);
1624
1625 efer &= ~EFER_LMA;
1626 efer |= vcpu->shadow_efer & EFER_LMA;
1627
1628 vcpu->shadow_efer = efer;
1629 }
1630
1631 #endif
1632
1633 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1634 {
1635 switch (msr) {
1636 #ifdef CONFIG_X86_64
1637 case MSR_EFER:
1638 set_efer(vcpu, data);
1639 break;
1640 #endif
1641 case MSR_IA32_MC0_STATUS:
1642 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1643 __FUNCTION__, data);
1644 break;
1645 case MSR_IA32_MCG_STATUS:
1646 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1647 __FUNCTION__, data);
1648 break;
1649 case MSR_IA32_UCODE_REV:
1650 case MSR_IA32_UCODE_WRITE:
1651 case 0x200 ... 0x2ff: /* MTRRs */
1652 break;
1653 case MSR_IA32_APICBASE:
1654 kvm_set_apic_base(vcpu, data);
1655 break;
1656 case MSR_IA32_MISC_ENABLE:
1657 vcpu->ia32_misc_enable_msr = data;
1658 break;
1659 /*
1660 * This is the 'probe whether the host is KVM' logic:
1661 */
1662 case MSR_KVM_API_MAGIC:
1663 return vcpu_register_para(vcpu, data);
1664
1665 default:
1666 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
1667 return 1;
1668 }
1669 return 0;
1670 }
1671 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1672
1673 /*
1674 * Writes msr value into into the appropriate "register".
1675 * Returns 0 on success, non-0 otherwise.
1676 * Assumes vcpu_load() was already called.
1677 */
1678 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1679 {
1680 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
1681 }
1682
1683 void kvm_resched(struct kvm_vcpu *vcpu)
1684 {
1685 if (!need_resched())
1686 return;
1687 cond_resched();
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_resched);
1690
1691 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1692 {
1693 int i;
1694 u32 function;
1695 struct kvm_cpuid_entry *e, *best;
1696
1697 kvm_x86_ops->cache_regs(vcpu);
1698 function = vcpu->regs[VCPU_REGS_RAX];
1699 vcpu->regs[VCPU_REGS_RAX] = 0;
1700 vcpu->regs[VCPU_REGS_RBX] = 0;
1701 vcpu->regs[VCPU_REGS_RCX] = 0;
1702 vcpu->regs[VCPU_REGS_RDX] = 0;
1703 best = NULL;
1704 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1705 e = &vcpu->cpuid_entries[i];
1706 if (e->function == function) {
1707 best = e;
1708 break;
1709 }
1710 /*
1711 * Both basic or both extended?
1712 */
1713 if (((e->function ^ function) & 0x80000000) == 0)
1714 if (!best || e->function > best->function)
1715 best = e;
1716 }
1717 if (best) {
1718 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1719 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1720 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1721 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1722 }
1723 kvm_x86_ops->decache_regs(vcpu);
1724 kvm_x86_ops->skip_emulated_instruction(vcpu);
1725 }
1726 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1727
1728 static int pio_copy_data(struct kvm_vcpu *vcpu)
1729 {
1730 void *p = vcpu->pio_data;
1731 void *q;
1732 unsigned bytes;
1733 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1734
1735 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1736 PAGE_KERNEL);
1737 if (!q) {
1738 free_pio_guest_pages(vcpu);
1739 return -ENOMEM;
1740 }
1741 q += vcpu->pio.guest_page_offset;
1742 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1743 if (vcpu->pio.in)
1744 memcpy(q, p, bytes);
1745 else
1746 memcpy(p, q, bytes);
1747 q -= vcpu->pio.guest_page_offset;
1748 vunmap(q);
1749 free_pio_guest_pages(vcpu);
1750 return 0;
1751 }
1752
1753 static int complete_pio(struct kvm_vcpu *vcpu)
1754 {
1755 struct kvm_pio_request *io = &vcpu->pio;
1756 long delta;
1757 int r;
1758
1759 kvm_x86_ops->cache_regs(vcpu);
1760
1761 if (!io->string) {
1762 if (io->in)
1763 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1764 io->size);
1765 } else {
1766 if (io->in) {
1767 r = pio_copy_data(vcpu);
1768 if (r) {
1769 kvm_x86_ops->cache_regs(vcpu);
1770 return r;
1771 }
1772 }
1773
1774 delta = 1;
1775 if (io->rep) {
1776 delta *= io->cur_count;
1777 /*
1778 * The size of the register should really depend on
1779 * current address size.
1780 */
1781 vcpu->regs[VCPU_REGS_RCX] -= delta;
1782 }
1783 if (io->down)
1784 delta = -delta;
1785 delta *= io->size;
1786 if (io->in)
1787 vcpu->regs[VCPU_REGS_RDI] += delta;
1788 else
1789 vcpu->regs[VCPU_REGS_RSI] += delta;
1790 }
1791
1792 kvm_x86_ops->decache_regs(vcpu);
1793
1794 io->count -= io->cur_count;
1795 io->cur_count = 0;
1796
1797 return 0;
1798 }
1799
1800 static void kernel_pio(struct kvm_io_device *pio_dev,
1801 struct kvm_vcpu *vcpu,
1802 void *pd)
1803 {
1804 /* TODO: String I/O for in kernel device */
1805
1806 mutex_lock(&vcpu->kvm->lock);
1807 if (vcpu->pio.in)
1808 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1809 vcpu->pio.size,
1810 pd);
1811 else
1812 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1813 vcpu->pio.size,
1814 pd);
1815 mutex_unlock(&vcpu->kvm->lock);
1816 }
1817
1818 static void pio_string_write(struct kvm_io_device *pio_dev,
1819 struct kvm_vcpu *vcpu)
1820 {
1821 struct kvm_pio_request *io = &vcpu->pio;
1822 void *pd = vcpu->pio_data;
1823 int i;
1824
1825 mutex_lock(&vcpu->kvm->lock);
1826 for (i = 0; i < io->cur_count; i++) {
1827 kvm_iodevice_write(pio_dev, io->port,
1828 io->size,
1829 pd);
1830 pd += io->size;
1831 }
1832 mutex_unlock(&vcpu->kvm->lock);
1833 }
1834
1835 int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1836 int size, unsigned port)
1837 {
1838 struct kvm_io_device *pio_dev;
1839
1840 vcpu->run->exit_reason = KVM_EXIT_IO;
1841 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1842 vcpu->run->io.size = vcpu->pio.size = size;
1843 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1844 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
1845 vcpu->run->io.port = vcpu->pio.port = port;
1846 vcpu->pio.in = in;
1847 vcpu->pio.string = 0;
1848 vcpu->pio.down = 0;
1849 vcpu->pio.guest_page_offset = 0;
1850 vcpu->pio.rep = 0;
1851
1852 kvm_x86_ops->cache_regs(vcpu);
1853 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1854 kvm_x86_ops->decache_regs(vcpu);
1855
1856 kvm_x86_ops->skip_emulated_instruction(vcpu);
1857
1858 pio_dev = vcpu_find_pio_dev(vcpu, port);
1859 if (pio_dev) {
1860 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1861 complete_pio(vcpu);
1862 return 1;
1863 }
1864 return 0;
1865 }
1866 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
1867
1868 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1869 int size, unsigned long count, int down,
1870 gva_t address, int rep, unsigned port)
1871 {
1872 unsigned now, in_page;
1873 int i, ret = 0;
1874 int nr_pages = 1;
1875 struct page *page;
1876 struct kvm_io_device *pio_dev;
1877
1878 vcpu->run->exit_reason = KVM_EXIT_IO;
1879 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1880 vcpu->run->io.size = vcpu->pio.size = size;
1881 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1882 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
1883 vcpu->run->io.port = vcpu->pio.port = port;
1884 vcpu->pio.in = in;
1885 vcpu->pio.string = 1;
1886 vcpu->pio.down = down;
1887 vcpu->pio.guest_page_offset = offset_in_page(address);
1888 vcpu->pio.rep = rep;
1889
1890 if (!count) {
1891 kvm_x86_ops->skip_emulated_instruction(vcpu);
1892 return 1;
1893 }
1894
1895 if (!down)
1896 in_page = PAGE_SIZE - offset_in_page(address);
1897 else
1898 in_page = offset_in_page(address) + size;
1899 now = min(count, (unsigned long)in_page / size);
1900 if (!now) {
1901 /*
1902 * String I/O straddles page boundary. Pin two guest pages
1903 * so that we satisfy atomicity constraints. Do just one
1904 * transaction to avoid complexity.
1905 */
1906 nr_pages = 2;
1907 now = 1;
1908 }
1909 if (down) {
1910 /*
1911 * String I/O in reverse. Yuck. Kill the guest, fix later.
1912 */
1913 pr_unimpl(vcpu, "guest string pio down\n");
1914 inject_gp(vcpu);
1915 return 1;
1916 }
1917 vcpu->run->io.count = now;
1918 vcpu->pio.cur_count = now;
1919
1920 if (vcpu->pio.cur_count == vcpu->pio.count)
1921 kvm_x86_ops->skip_emulated_instruction(vcpu);
1922
1923 for (i = 0; i < nr_pages; ++i) {
1924 mutex_lock(&vcpu->kvm->lock);
1925 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1926 if (page)
1927 get_page(page);
1928 vcpu->pio.guest_pages[i] = page;
1929 mutex_unlock(&vcpu->kvm->lock);
1930 if (!page) {
1931 inject_gp(vcpu);
1932 free_pio_guest_pages(vcpu);
1933 return 1;
1934 }
1935 }
1936
1937 pio_dev = vcpu_find_pio_dev(vcpu, port);
1938 if (!vcpu->pio.in) {
1939 /* string PIO write */
1940 ret = pio_copy_data(vcpu);
1941 if (ret >= 0 && pio_dev) {
1942 pio_string_write(pio_dev, vcpu);
1943 complete_pio(vcpu);
1944 if (vcpu->pio.count == 0)
1945 ret = 1;
1946 }
1947 } else if (pio_dev)
1948 pr_unimpl(vcpu, "no string pio read support yet, "
1949 "port %x size %d count %ld\n",
1950 port, size, count);
1951
1952 return ret;
1953 }
1954 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
1955
1956 /*
1957 * Check if userspace requested an interrupt window, and that the
1958 * interrupt window is open.
1959 *
1960 * No need to exit to userspace if we already have an interrupt queued.
1961 */
1962 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1963 struct kvm_run *kvm_run)
1964 {
1965 return (!vcpu->irq_summary &&
1966 kvm_run->request_interrupt_window &&
1967 vcpu->interrupt_window_open &&
1968 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
1969 }
1970
1971 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1972 struct kvm_run *kvm_run)
1973 {
1974 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
1975 kvm_run->cr8 = get_cr8(vcpu);
1976 kvm_run->apic_base = kvm_get_apic_base(vcpu);
1977 if (irqchip_in_kernel(vcpu->kvm))
1978 kvm_run->ready_for_interrupt_injection = 1;
1979 else
1980 kvm_run->ready_for_interrupt_injection =
1981 (vcpu->interrupt_window_open &&
1982 vcpu->irq_summary == 0);
1983 }
1984
1985 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1986 {
1987 int r;
1988
1989 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
1990 printk("vcpu %d received sipi with vector # %x\n",
1991 vcpu->vcpu_id, vcpu->sipi_vector);
1992 kvm_lapic_reset(vcpu);
1993 kvm_x86_ops->vcpu_reset(vcpu);
1994 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
1995 }
1996
1997 preempted:
1998 if (vcpu->guest_debug.enabled)
1999 kvm_x86_ops->guest_debug_pre(vcpu);
2000
2001 again:
2002 r = kvm_mmu_reload(vcpu);
2003 if (unlikely(r))
2004 goto out;
2005
2006 preempt_disable();
2007
2008 kvm_x86_ops->prepare_guest_switch(vcpu);
2009 kvm_load_guest_fpu(vcpu);
2010
2011 local_irq_disable();
2012
2013 if (signal_pending(current)) {
2014 local_irq_enable();
2015 preempt_enable();
2016 r = -EINTR;
2017 kvm_run->exit_reason = KVM_EXIT_INTR;
2018 ++vcpu->stat.signal_exits;
2019 goto out;
2020 }
2021
2022 if (irqchip_in_kernel(vcpu->kvm))
2023 kvm_x86_ops->inject_pending_irq(vcpu);
2024 else if (!vcpu->mmio_read_completed)
2025 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2026
2027 vcpu->guest_mode = 1;
2028 kvm_guest_enter();
2029
2030 if (vcpu->requests)
2031 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
2032 kvm_x86_ops->tlb_flush(vcpu);
2033
2034 kvm_x86_ops->run(vcpu, kvm_run);
2035
2036 vcpu->guest_mode = 0;
2037 local_irq_enable();
2038
2039 ++vcpu->stat.exits;
2040
2041 /*
2042 * We must have an instruction between local_irq_enable() and
2043 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2044 * the interrupt shadow. The stat.exits increment will do nicely.
2045 * But we need to prevent reordering, hence this barrier():
2046 */
2047 barrier();
2048
2049 kvm_guest_exit();
2050
2051 preempt_enable();
2052
2053 /*
2054 * Profile KVM exit RIPs:
2055 */
2056 if (unlikely(prof_on == KVM_PROFILING)) {
2057 kvm_x86_ops->cache_regs(vcpu);
2058 profile_hit(KVM_PROFILING, (void *)vcpu->rip);
2059 }
2060
2061 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2062
2063 if (r > 0) {
2064 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2065 r = -EINTR;
2066 kvm_run->exit_reason = KVM_EXIT_INTR;
2067 ++vcpu->stat.request_irq_exits;
2068 goto out;
2069 }
2070 if (!need_resched()) {
2071 ++vcpu->stat.light_exits;
2072 goto again;
2073 }
2074 }
2075
2076 out:
2077 if (r > 0) {
2078 kvm_resched(vcpu);
2079 goto preempted;
2080 }
2081
2082 post_kvm_run_save(vcpu, kvm_run);
2083
2084 return r;
2085 }
2086
2087
2088 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2089 {
2090 int r;
2091 sigset_t sigsaved;
2092
2093 vcpu_load(vcpu);
2094
2095 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2096 kvm_vcpu_block(vcpu);
2097 vcpu_put(vcpu);
2098 return -EAGAIN;
2099 }
2100
2101 if (vcpu->sigset_active)
2102 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2103
2104 /* re-sync apic's tpr */
2105 if (!irqchip_in_kernel(vcpu->kvm))
2106 set_cr8(vcpu, kvm_run->cr8);
2107
2108 if (vcpu->pio.cur_count) {
2109 r = complete_pio(vcpu);
2110 if (r)
2111 goto out;
2112 }
2113
2114 if (vcpu->mmio_needed) {
2115 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2116 vcpu->mmio_read_completed = 1;
2117 vcpu->mmio_needed = 0;
2118 r = emulate_instruction(vcpu, kvm_run,
2119 vcpu->mmio_fault_cr2, 0);
2120 if (r == EMULATE_DO_MMIO) {
2121 /*
2122 * Read-modify-write. Back to userspace.
2123 */
2124 r = 0;
2125 goto out;
2126 }
2127 }
2128
2129 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2130 kvm_x86_ops->cache_regs(vcpu);
2131 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2132 kvm_x86_ops->decache_regs(vcpu);
2133 }
2134
2135 r = __vcpu_run(vcpu, kvm_run);
2136
2137 out:
2138 if (vcpu->sigset_active)
2139 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2140
2141 vcpu_put(vcpu);
2142 return r;
2143 }
2144
2145 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
2146 struct kvm_regs *regs)
2147 {
2148 vcpu_load(vcpu);
2149
2150 kvm_x86_ops->cache_regs(vcpu);
2151
2152 regs->rax = vcpu->regs[VCPU_REGS_RAX];
2153 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
2154 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
2155 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
2156 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
2157 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
2158 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
2159 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
2160 #ifdef CONFIG_X86_64
2161 regs->r8 = vcpu->regs[VCPU_REGS_R8];
2162 regs->r9 = vcpu->regs[VCPU_REGS_R9];
2163 regs->r10 = vcpu->regs[VCPU_REGS_R10];
2164 regs->r11 = vcpu->regs[VCPU_REGS_R11];
2165 regs->r12 = vcpu->regs[VCPU_REGS_R12];
2166 regs->r13 = vcpu->regs[VCPU_REGS_R13];
2167 regs->r14 = vcpu->regs[VCPU_REGS_R14];
2168 regs->r15 = vcpu->regs[VCPU_REGS_R15];
2169 #endif
2170
2171 regs->rip = vcpu->rip;
2172 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2173
2174 /*
2175 * Don't leak debug flags in case they were set for guest debugging
2176 */
2177 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2178 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2179
2180 vcpu_put(vcpu);
2181
2182 return 0;
2183 }
2184
2185 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2186 struct kvm_regs *regs)
2187 {
2188 vcpu_load(vcpu);
2189
2190 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2191 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2192 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2193 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2194 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2195 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2196 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2197 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2198 #ifdef CONFIG_X86_64
2199 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2200 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2201 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2202 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2203 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2204 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2205 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2206 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2207 #endif
2208
2209 vcpu->rip = regs->rip;
2210 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2211
2212 kvm_x86_ops->decache_regs(vcpu);
2213
2214 vcpu_put(vcpu);
2215
2216 return 0;
2217 }
2218
2219 static void get_segment(struct kvm_vcpu *vcpu,
2220 struct kvm_segment *var, int seg)
2221 {
2222 return kvm_x86_ops->get_segment(vcpu, var, seg);
2223 }
2224
2225 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2226 struct kvm_sregs *sregs)
2227 {
2228 struct descriptor_table dt;
2229 int pending_vec;
2230
2231 vcpu_load(vcpu);
2232
2233 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2234 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2235 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2236 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2237 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2238 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2239
2240 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2241 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2242
2243 kvm_x86_ops->get_idt(vcpu, &dt);
2244 sregs->idt.limit = dt.limit;
2245 sregs->idt.base = dt.base;
2246 kvm_x86_ops->get_gdt(vcpu, &dt);
2247 sregs->gdt.limit = dt.limit;
2248 sregs->gdt.base = dt.base;
2249
2250 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2251 sregs->cr0 = vcpu->cr0;
2252 sregs->cr2 = vcpu->cr2;
2253 sregs->cr3 = vcpu->cr3;
2254 sregs->cr4 = vcpu->cr4;
2255 sregs->cr8 = get_cr8(vcpu);
2256 sregs->efer = vcpu->shadow_efer;
2257 sregs->apic_base = kvm_get_apic_base(vcpu);
2258
2259 if (irqchip_in_kernel(vcpu->kvm)) {
2260 memset(sregs->interrupt_bitmap, 0,
2261 sizeof sregs->interrupt_bitmap);
2262 pending_vec = kvm_x86_ops->get_irq(vcpu);
2263 if (pending_vec >= 0)
2264 set_bit(pending_vec, (unsigned long *)sregs->interrupt_bitmap);
2265 } else
2266 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2267 sizeof sregs->interrupt_bitmap);
2268
2269 vcpu_put(vcpu);
2270
2271 return 0;
2272 }
2273
2274 static void set_segment(struct kvm_vcpu *vcpu,
2275 struct kvm_segment *var, int seg)
2276 {
2277 return kvm_x86_ops->set_segment(vcpu, var, seg);
2278 }
2279
2280 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2281 struct kvm_sregs *sregs)
2282 {
2283 int mmu_reset_needed = 0;
2284 int i, pending_vec, max_bits;
2285 struct descriptor_table dt;
2286
2287 vcpu_load(vcpu);
2288
2289 dt.limit = sregs->idt.limit;
2290 dt.base = sregs->idt.base;
2291 kvm_x86_ops->set_idt(vcpu, &dt);
2292 dt.limit = sregs->gdt.limit;
2293 dt.base = sregs->gdt.base;
2294 kvm_x86_ops->set_gdt(vcpu, &dt);
2295
2296 vcpu->cr2 = sregs->cr2;
2297 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2298 vcpu->cr3 = sregs->cr3;
2299
2300 set_cr8(vcpu, sregs->cr8);
2301
2302 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2303 #ifdef CONFIG_X86_64
2304 kvm_x86_ops->set_efer(vcpu, sregs->efer);
2305 #endif
2306 kvm_set_apic_base(vcpu, sregs->apic_base);
2307
2308 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2309
2310 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2311 vcpu->cr0 = sregs->cr0;
2312 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
2313
2314 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2315 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
2316 if (!is_long_mode(vcpu) && is_pae(vcpu))
2317 load_pdptrs(vcpu, vcpu->cr3);
2318
2319 if (mmu_reset_needed)
2320 kvm_mmu_reset_context(vcpu);
2321
2322 if (!irqchip_in_kernel(vcpu->kvm)) {
2323 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2324 sizeof vcpu->irq_pending);
2325 vcpu->irq_summary = 0;
2326 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2327 if (vcpu->irq_pending[i])
2328 __set_bit(i, &vcpu->irq_summary);
2329 } else {
2330 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
2331 pending_vec = find_first_bit(
2332 (const unsigned long *)sregs->interrupt_bitmap,
2333 max_bits);
2334 /* Only pending external irq is handled here */
2335 if (pending_vec < max_bits) {
2336 kvm_x86_ops->set_irq(vcpu, pending_vec);
2337 printk("Set back pending irq %d\n", pending_vec);
2338 }
2339 }
2340
2341 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2342 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2343 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2344 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2345 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2346 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2347
2348 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2349 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2350
2351 vcpu_put(vcpu);
2352
2353 return 0;
2354 }
2355
2356 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2357 {
2358 struct kvm_segment cs;
2359
2360 get_segment(vcpu, &cs, VCPU_SREG_CS);
2361 *db = cs.db;
2362 *l = cs.l;
2363 }
2364 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2365
2366 /*
2367 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2368 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2369 *
2370 * This list is modified at module load time to reflect the
2371 * capabilities of the host cpu.
2372 */
2373 static u32 msrs_to_save[] = {
2374 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2375 MSR_K6_STAR,
2376 #ifdef CONFIG_X86_64
2377 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2378 #endif
2379 MSR_IA32_TIME_STAMP_COUNTER,
2380 };
2381
2382 static unsigned num_msrs_to_save;
2383
2384 static u32 emulated_msrs[] = {
2385 MSR_IA32_MISC_ENABLE,
2386 };
2387
2388 static __init void kvm_init_msr_list(void)
2389 {
2390 u32 dummy[2];
2391 unsigned i, j;
2392
2393 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2394 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2395 continue;
2396 if (j < i)
2397 msrs_to_save[j] = msrs_to_save[i];
2398 j++;
2399 }
2400 num_msrs_to_save = j;
2401 }
2402
2403 /*
2404 * Adapt set_msr() to msr_io()'s calling convention
2405 */
2406 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2407 {
2408 return kvm_set_msr(vcpu, index, *data);
2409 }
2410
2411 /*
2412 * Read or write a bunch of msrs. All parameters are kernel addresses.
2413 *
2414 * @return number of msrs set successfully.
2415 */
2416 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2417 struct kvm_msr_entry *entries,
2418 int (*do_msr)(struct kvm_vcpu *vcpu,
2419 unsigned index, u64 *data))
2420 {
2421 int i;
2422
2423 vcpu_load(vcpu);
2424
2425 for (i = 0; i < msrs->nmsrs; ++i)
2426 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2427 break;
2428
2429 vcpu_put(vcpu);
2430
2431 return i;
2432 }
2433
2434 /*
2435 * Read or write a bunch of msrs. Parameters are user addresses.
2436 *
2437 * @return number of msrs set successfully.
2438 */
2439 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2440 int (*do_msr)(struct kvm_vcpu *vcpu,
2441 unsigned index, u64 *data),
2442 int writeback)
2443 {
2444 struct kvm_msrs msrs;
2445 struct kvm_msr_entry *entries;
2446 int r, n;
2447 unsigned size;
2448
2449 r = -EFAULT;
2450 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2451 goto out;
2452
2453 r = -E2BIG;
2454 if (msrs.nmsrs >= MAX_IO_MSRS)
2455 goto out;
2456
2457 r = -ENOMEM;
2458 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2459 entries = vmalloc(size);
2460 if (!entries)
2461 goto out;
2462
2463 r = -EFAULT;
2464 if (copy_from_user(entries, user_msrs->entries, size))
2465 goto out_free;
2466
2467 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2468 if (r < 0)
2469 goto out_free;
2470
2471 r = -EFAULT;
2472 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2473 goto out_free;
2474
2475 r = n;
2476
2477 out_free:
2478 vfree(entries);
2479 out:
2480 return r;
2481 }
2482
2483 /*
2484 * Translate a guest virtual address to a guest physical address.
2485 */
2486 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2487 struct kvm_translation *tr)
2488 {
2489 unsigned long vaddr = tr->linear_address;
2490 gpa_t gpa;
2491
2492 vcpu_load(vcpu);
2493 mutex_lock(&vcpu->kvm->lock);
2494 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2495 tr->physical_address = gpa;
2496 tr->valid = gpa != UNMAPPED_GVA;
2497 tr->writeable = 1;
2498 tr->usermode = 0;
2499 mutex_unlock(&vcpu->kvm->lock);
2500 vcpu_put(vcpu);
2501
2502 return 0;
2503 }
2504
2505 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2506 struct kvm_interrupt *irq)
2507 {
2508 if (irq->irq < 0 || irq->irq >= 256)
2509 return -EINVAL;
2510 if (irqchip_in_kernel(vcpu->kvm))
2511 return -ENXIO;
2512 vcpu_load(vcpu);
2513
2514 set_bit(irq->irq, vcpu->irq_pending);
2515 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2516
2517 vcpu_put(vcpu);
2518
2519 return 0;
2520 }
2521
2522 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2523 struct kvm_debug_guest *dbg)
2524 {
2525 int r;
2526
2527 vcpu_load(vcpu);
2528
2529 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
2530
2531 vcpu_put(vcpu);
2532
2533 return r;
2534 }
2535
2536 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2537 unsigned long address,
2538 int *type)
2539 {
2540 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2541 unsigned long pgoff;
2542 struct page *page;
2543
2544 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2545 if (pgoff == 0)
2546 page = virt_to_page(vcpu->run);
2547 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2548 page = virt_to_page(vcpu->pio_data);
2549 else
2550 return NOPAGE_SIGBUS;
2551 get_page(page);
2552 if (type != NULL)
2553 *type = VM_FAULT_MINOR;
2554
2555 return page;
2556 }
2557
2558 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2559 .nopage = kvm_vcpu_nopage,
2560 };
2561
2562 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2563 {
2564 vma->vm_ops = &kvm_vcpu_vm_ops;
2565 return 0;
2566 }
2567
2568 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2569 {
2570 struct kvm_vcpu *vcpu = filp->private_data;
2571
2572 fput(vcpu->kvm->filp);
2573 return 0;
2574 }
2575
2576 static struct file_operations kvm_vcpu_fops = {
2577 .release = kvm_vcpu_release,
2578 .unlocked_ioctl = kvm_vcpu_ioctl,
2579 .compat_ioctl = kvm_vcpu_ioctl,
2580 .mmap = kvm_vcpu_mmap,
2581 };
2582
2583 /*
2584 * Allocates an inode for the vcpu.
2585 */
2586 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2587 {
2588 int fd, r;
2589 struct inode *inode;
2590 struct file *file;
2591
2592 r = anon_inode_getfd(&fd, &inode, &file,
2593 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2594 if (r)
2595 return r;
2596 atomic_inc(&vcpu->kvm->filp->f_count);
2597 return fd;
2598 }
2599
2600 /*
2601 * Creates some virtual cpus. Good luck creating more than one.
2602 */
2603 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2604 {
2605 int r;
2606 struct kvm_vcpu *vcpu;
2607
2608 if (!valid_vcpu(n))
2609 return -EINVAL;
2610
2611 vcpu = kvm_x86_ops->vcpu_create(kvm, n);
2612 if (IS_ERR(vcpu))
2613 return PTR_ERR(vcpu);
2614
2615 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2616
2617 /* We do fxsave: this must be aligned. */
2618 BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2619
2620 vcpu_load(vcpu);
2621 r = kvm_mmu_setup(vcpu);
2622 vcpu_put(vcpu);
2623 if (r < 0)
2624 goto free_vcpu;
2625
2626 mutex_lock(&kvm->lock);
2627 if (kvm->vcpus[n]) {
2628 r = -EEXIST;
2629 mutex_unlock(&kvm->lock);
2630 goto mmu_unload;
2631 }
2632 kvm->vcpus[n] = vcpu;
2633 mutex_unlock(&kvm->lock);
2634
2635 /* Now it's all set up, let userspace reach it */
2636 r = create_vcpu_fd(vcpu);
2637 if (r < 0)
2638 goto unlink;
2639 return r;
2640
2641 unlink:
2642 mutex_lock(&kvm->lock);
2643 kvm->vcpus[n] = NULL;
2644 mutex_unlock(&kvm->lock);
2645
2646 mmu_unload:
2647 vcpu_load(vcpu);
2648 kvm_mmu_unload(vcpu);
2649 vcpu_put(vcpu);
2650
2651 free_vcpu:
2652 kvm_x86_ops->vcpu_free(vcpu);
2653 return r;
2654 }
2655
2656 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2657 {
2658 u64 efer;
2659 int i;
2660 struct kvm_cpuid_entry *e, *entry;
2661
2662 rdmsrl(MSR_EFER, efer);
2663 entry = NULL;
2664 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2665 e = &vcpu->cpuid_entries[i];
2666 if (e->function == 0x80000001) {
2667 entry = e;
2668 break;
2669 }
2670 }
2671 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2672 entry->edx &= ~(1 << 20);
2673 printk(KERN_INFO "kvm: guest NX capability removed\n");
2674 }
2675 }
2676
2677 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2678 struct kvm_cpuid *cpuid,
2679 struct kvm_cpuid_entry __user *entries)
2680 {
2681 int r;
2682
2683 r = -E2BIG;
2684 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2685 goto out;
2686 r = -EFAULT;
2687 if (copy_from_user(&vcpu->cpuid_entries, entries,
2688 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2689 goto out;
2690 vcpu->cpuid_nent = cpuid->nent;
2691 cpuid_fix_nx_cap(vcpu);
2692 return 0;
2693
2694 out:
2695 return r;
2696 }
2697
2698 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2699 {
2700 if (sigset) {
2701 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2702 vcpu->sigset_active = 1;
2703 vcpu->sigset = *sigset;
2704 } else
2705 vcpu->sigset_active = 0;
2706 return 0;
2707 }
2708
2709 /*
2710 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2711 * we have asm/x86/processor.h
2712 */
2713 struct fxsave {
2714 u16 cwd;
2715 u16 swd;
2716 u16 twd;
2717 u16 fop;
2718 u64 rip;
2719 u64 rdp;
2720 u32 mxcsr;
2721 u32 mxcsr_mask;
2722 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2723 #ifdef CONFIG_X86_64
2724 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2725 #else
2726 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2727 #endif
2728 };
2729
2730 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2731 {
2732 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2733
2734 vcpu_load(vcpu);
2735
2736 memcpy(fpu->fpr, fxsave->st_space, 128);
2737 fpu->fcw = fxsave->cwd;
2738 fpu->fsw = fxsave->swd;
2739 fpu->ftwx = fxsave->twd;
2740 fpu->last_opcode = fxsave->fop;
2741 fpu->last_ip = fxsave->rip;
2742 fpu->last_dp = fxsave->rdp;
2743 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2744
2745 vcpu_put(vcpu);
2746
2747 return 0;
2748 }
2749
2750 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2751 {
2752 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2753
2754 vcpu_load(vcpu);
2755
2756 memcpy(fxsave->st_space, fpu->fpr, 128);
2757 fxsave->cwd = fpu->fcw;
2758 fxsave->swd = fpu->fsw;
2759 fxsave->twd = fpu->ftwx;
2760 fxsave->fop = fpu->last_opcode;
2761 fxsave->rip = fpu->last_ip;
2762 fxsave->rdp = fpu->last_dp;
2763 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2764
2765 vcpu_put(vcpu);
2766
2767 return 0;
2768 }
2769
2770 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2771 struct kvm_lapic_state *s)
2772 {
2773 vcpu_load(vcpu);
2774 memcpy(s->regs, vcpu->apic->regs, sizeof *s);
2775 vcpu_put(vcpu);
2776
2777 return 0;
2778 }
2779
2780 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2781 struct kvm_lapic_state *s)
2782 {
2783 vcpu_load(vcpu);
2784 memcpy(vcpu->apic->regs, s->regs, sizeof *s);
2785 kvm_apic_post_state_restore(vcpu);
2786 vcpu_put(vcpu);
2787
2788 return 0;
2789 }
2790
2791 static long kvm_vcpu_ioctl(struct file *filp,
2792 unsigned int ioctl, unsigned long arg)
2793 {
2794 struct kvm_vcpu *vcpu = filp->private_data;
2795 void __user *argp = (void __user *)arg;
2796 int r = -EINVAL;
2797
2798 switch (ioctl) {
2799 case KVM_RUN:
2800 r = -EINVAL;
2801 if (arg)
2802 goto out;
2803 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2804 break;
2805 case KVM_GET_REGS: {
2806 struct kvm_regs kvm_regs;
2807
2808 memset(&kvm_regs, 0, sizeof kvm_regs);
2809 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2810 if (r)
2811 goto out;
2812 r = -EFAULT;
2813 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2814 goto out;
2815 r = 0;
2816 break;
2817 }
2818 case KVM_SET_REGS: {
2819 struct kvm_regs kvm_regs;
2820
2821 r = -EFAULT;
2822 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2823 goto out;
2824 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2825 if (r)
2826 goto out;
2827 r = 0;
2828 break;
2829 }
2830 case KVM_GET_SREGS: {
2831 struct kvm_sregs kvm_sregs;
2832
2833 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2834 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2835 if (r)
2836 goto out;
2837 r = -EFAULT;
2838 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2839 goto out;
2840 r = 0;
2841 break;
2842 }
2843 case KVM_SET_SREGS: {
2844 struct kvm_sregs kvm_sregs;
2845
2846 r = -EFAULT;
2847 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2848 goto out;
2849 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2850 if (r)
2851 goto out;
2852 r = 0;
2853 break;
2854 }
2855 case KVM_TRANSLATE: {
2856 struct kvm_translation tr;
2857
2858 r = -EFAULT;
2859 if (copy_from_user(&tr, argp, sizeof tr))
2860 goto out;
2861 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2862 if (r)
2863 goto out;
2864 r = -EFAULT;
2865 if (copy_to_user(argp, &tr, sizeof tr))
2866 goto out;
2867 r = 0;
2868 break;
2869 }
2870 case KVM_INTERRUPT: {
2871 struct kvm_interrupt irq;
2872
2873 r = -EFAULT;
2874 if (copy_from_user(&irq, argp, sizeof irq))
2875 goto out;
2876 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2877 if (r)
2878 goto out;
2879 r = 0;
2880 break;
2881 }
2882 case KVM_DEBUG_GUEST: {
2883 struct kvm_debug_guest dbg;
2884
2885 r = -EFAULT;
2886 if (copy_from_user(&dbg, argp, sizeof dbg))
2887 goto out;
2888 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2889 if (r)
2890 goto out;
2891 r = 0;
2892 break;
2893 }
2894 case KVM_GET_MSRS:
2895 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2896 break;
2897 case KVM_SET_MSRS:
2898 r = msr_io(vcpu, argp, do_set_msr, 0);
2899 break;
2900 case KVM_SET_CPUID: {
2901 struct kvm_cpuid __user *cpuid_arg = argp;
2902 struct kvm_cpuid cpuid;
2903
2904 r = -EFAULT;
2905 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2906 goto out;
2907 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2908 if (r)
2909 goto out;
2910 break;
2911 }
2912 case KVM_SET_SIGNAL_MASK: {
2913 struct kvm_signal_mask __user *sigmask_arg = argp;
2914 struct kvm_signal_mask kvm_sigmask;
2915 sigset_t sigset, *p;
2916
2917 p = NULL;
2918 if (argp) {
2919 r = -EFAULT;
2920 if (copy_from_user(&kvm_sigmask, argp,
2921 sizeof kvm_sigmask))
2922 goto out;
2923 r = -EINVAL;
2924 if (kvm_sigmask.len != sizeof sigset)
2925 goto out;
2926 r = -EFAULT;
2927 if (copy_from_user(&sigset, sigmask_arg->sigset,
2928 sizeof sigset))
2929 goto out;
2930 p = &sigset;
2931 }
2932 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2933 break;
2934 }
2935 case KVM_GET_FPU: {
2936 struct kvm_fpu fpu;
2937
2938 memset(&fpu, 0, sizeof fpu);
2939 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2940 if (r)
2941 goto out;
2942 r = -EFAULT;
2943 if (copy_to_user(argp, &fpu, sizeof fpu))
2944 goto out;
2945 r = 0;
2946 break;
2947 }
2948 case KVM_SET_FPU: {
2949 struct kvm_fpu fpu;
2950
2951 r = -EFAULT;
2952 if (copy_from_user(&fpu, argp, sizeof fpu))
2953 goto out;
2954 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2955 if (r)
2956 goto out;
2957 r = 0;
2958 break;
2959 }
2960 case KVM_GET_LAPIC: {
2961 struct kvm_lapic_state lapic;
2962
2963 memset(&lapic, 0, sizeof lapic);
2964 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
2965 if (r)
2966 goto out;
2967 r = -EFAULT;
2968 if (copy_to_user(argp, &lapic, sizeof lapic))
2969 goto out;
2970 r = 0;
2971 break;
2972 }
2973 case KVM_SET_LAPIC: {
2974 struct kvm_lapic_state lapic;
2975
2976 r = -EFAULT;
2977 if (copy_from_user(&lapic, argp, sizeof lapic))
2978 goto out;
2979 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
2980 if (r)
2981 goto out;
2982 r = 0;
2983 break;
2984 }
2985 default:
2986 ;
2987 }
2988 out:
2989 return r;
2990 }
2991
2992 static long kvm_vm_ioctl(struct file *filp,
2993 unsigned int ioctl, unsigned long arg)
2994 {
2995 struct kvm *kvm = filp->private_data;
2996 void __user *argp = (void __user *)arg;
2997 int r = -EINVAL;
2998
2999 switch (ioctl) {
3000 case KVM_CREATE_VCPU:
3001 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3002 if (r < 0)
3003 goto out;
3004 break;
3005 case KVM_SET_MEMORY_REGION: {
3006 struct kvm_memory_region kvm_mem;
3007
3008 r = -EFAULT;
3009 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
3010 goto out;
3011 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
3012 if (r)
3013 goto out;
3014 break;
3015 }
3016 case KVM_GET_DIRTY_LOG: {
3017 struct kvm_dirty_log log;
3018
3019 r = -EFAULT;
3020 if (copy_from_user(&log, argp, sizeof log))
3021 goto out;
3022 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3023 if (r)
3024 goto out;
3025 break;
3026 }
3027 case KVM_SET_MEMORY_ALIAS: {
3028 struct kvm_memory_alias alias;
3029
3030 r = -EFAULT;
3031 if (copy_from_user(&alias, argp, sizeof alias))
3032 goto out;
3033 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
3034 if (r)
3035 goto out;
3036 break;
3037 }
3038 case KVM_CREATE_IRQCHIP:
3039 r = -ENOMEM;
3040 kvm->vpic = kvm_create_pic(kvm);
3041 if (kvm->vpic) {
3042 r = kvm_ioapic_init(kvm);
3043 if (r) {
3044 kfree(kvm->vpic);
3045 kvm->vpic = NULL;
3046 goto out;
3047 }
3048 }
3049 else
3050 goto out;
3051 break;
3052 case KVM_IRQ_LINE: {
3053 struct kvm_irq_level irq_event;
3054
3055 r = -EFAULT;
3056 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3057 goto out;
3058 if (irqchip_in_kernel(kvm)) {
3059 mutex_lock(&kvm->lock);
3060 if (irq_event.irq < 16)
3061 kvm_pic_set_irq(pic_irqchip(kvm),
3062 irq_event.irq,
3063 irq_event.level);
3064 kvm_ioapic_set_irq(kvm->vioapic,
3065 irq_event.irq,
3066 irq_event.level);
3067 mutex_unlock(&kvm->lock);
3068 r = 0;
3069 }
3070 break;
3071 }
3072 case KVM_GET_IRQCHIP: {
3073 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3074 struct kvm_irqchip chip;
3075
3076 r = -EFAULT;
3077 if (copy_from_user(&chip, argp, sizeof chip))
3078 goto out;
3079 r = -ENXIO;
3080 if (!irqchip_in_kernel(kvm))
3081 goto out;
3082 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
3083 if (r)
3084 goto out;
3085 r = -EFAULT;
3086 if (copy_to_user(argp, &chip, sizeof chip))
3087 goto out;
3088 r = 0;
3089 break;
3090 }
3091 case KVM_SET_IRQCHIP: {
3092 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3093 struct kvm_irqchip chip;
3094
3095 r = -EFAULT;
3096 if (copy_from_user(&chip, argp, sizeof chip))
3097 goto out;
3098 r = -ENXIO;
3099 if (!irqchip_in_kernel(kvm))
3100 goto out;
3101 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
3102 if (r)
3103 goto out;
3104 r = 0;
3105 break;
3106 }
3107 default:
3108 ;
3109 }
3110 out:
3111 return r;
3112 }
3113
3114 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
3115 unsigned long address,
3116 int *type)
3117 {
3118 struct kvm *kvm = vma->vm_file->private_data;
3119 unsigned long pgoff;
3120 struct page *page;
3121
3122 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3123 page = gfn_to_page(kvm, pgoff);
3124 if (!page)
3125 return NOPAGE_SIGBUS;
3126 get_page(page);
3127 if (type != NULL)
3128 *type = VM_FAULT_MINOR;
3129
3130 return page;
3131 }
3132
3133 static struct vm_operations_struct kvm_vm_vm_ops = {
3134 .nopage = kvm_vm_nopage,
3135 };
3136
3137 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
3138 {
3139 vma->vm_ops = &kvm_vm_vm_ops;
3140 return 0;
3141 }
3142
3143 static struct file_operations kvm_vm_fops = {
3144 .release = kvm_vm_release,
3145 .unlocked_ioctl = kvm_vm_ioctl,
3146 .compat_ioctl = kvm_vm_ioctl,
3147 .mmap = kvm_vm_mmap,
3148 };
3149
3150 static int kvm_dev_ioctl_create_vm(void)
3151 {
3152 int fd, r;
3153 struct inode *inode;
3154 struct file *file;
3155 struct kvm *kvm;
3156
3157 kvm = kvm_create_vm();
3158 if (IS_ERR(kvm))
3159 return PTR_ERR(kvm);
3160 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
3161 if (r) {
3162 kvm_destroy_vm(kvm);
3163 return r;
3164 }
3165
3166 kvm->filp = file;
3167
3168 return fd;
3169 }
3170
3171 static long kvm_dev_ioctl(struct file *filp,
3172 unsigned int ioctl, unsigned long arg)
3173 {
3174 void __user *argp = (void __user *)arg;
3175 long r = -EINVAL;
3176
3177 switch (ioctl) {
3178 case KVM_GET_API_VERSION:
3179 r = -EINVAL;
3180 if (arg)
3181 goto out;
3182 r = KVM_API_VERSION;
3183 break;
3184 case KVM_CREATE_VM:
3185 r = -EINVAL;
3186 if (arg)
3187 goto out;
3188 r = kvm_dev_ioctl_create_vm();
3189 break;
3190 case KVM_GET_MSR_INDEX_LIST: {
3191 struct kvm_msr_list __user *user_msr_list = argp;
3192 struct kvm_msr_list msr_list;
3193 unsigned n;
3194
3195 r = -EFAULT;
3196 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3197 goto out;
3198 n = msr_list.nmsrs;
3199 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
3200 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3201 goto out;
3202 r = -E2BIG;
3203 if (n < num_msrs_to_save)
3204 goto out;
3205 r = -EFAULT;
3206 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3207 num_msrs_to_save * sizeof(u32)))
3208 goto out;
3209 if (copy_to_user(user_msr_list->indices
3210 + num_msrs_to_save * sizeof(u32),
3211 &emulated_msrs,
3212 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
3213 goto out;
3214 r = 0;
3215 break;
3216 }
3217 case KVM_CHECK_EXTENSION: {
3218 int ext = (long)argp;
3219
3220 switch (ext) {
3221 case KVM_CAP_IRQCHIP:
3222 case KVM_CAP_HLT:
3223 r = 1;
3224 break;
3225 default:
3226 r = 0;
3227 break;
3228 }
3229 break;
3230 }
3231 case KVM_GET_VCPU_MMAP_SIZE:
3232 r = -EINVAL;
3233 if (arg)
3234 goto out;
3235 r = 2 * PAGE_SIZE;
3236 break;
3237 default:
3238 ;
3239 }
3240 out:
3241 return r;
3242 }
3243
3244 static struct file_operations kvm_chardev_ops = {
3245 .unlocked_ioctl = kvm_dev_ioctl,
3246 .compat_ioctl = kvm_dev_ioctl,
3247 };
3248
3249 static struct miscdevice kvm_dev = {
3250 KVM_MINOR,
3251 "kvm",
3252 &kvm_chardev_ops,
3253 };
3254
3255 /*
3256 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
3257 * cached on it.
3258 */
3259 static void decache_vcpus_on_cpu(int cpu)
3260 {
3261 struct kvm *vm;
3262 struct kvm_vcpu *vcpu;
3263 int i;
3264
3265 spin_lock(&kvm_lock);
3266 list_for_each_entry(vm, &vm_list, vm_list)
3267 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3268 vcpu = vm->vcpus[i];
3269 if (!vcpu)
3270 continue;
3271 /*
3272 * If the vcpu is locked, then it is running on some
3273 * other cpu and therefore it is not cached on the
3274 * cpu in question.
3275 *
3276 * If it's not locked, check the last cpu it executed
3277 * on.
3278 */
3279 if (mutex_trylock(&vcpu->mutex)) {
3280 if (vcpu->cpu == cpu) {
3281 kvm_x86_ops->vcpu_decache(vcpu);
3282 vcpu->cpu = -1;
3283 }
3284 mutex_unlock(&vcpu->mutex);
3285 }
3286 }
3287 spin_unlock(&kvm_lock);
3288 }
3289
3290 static void hardware_enable(void *junk)
3291 {
3292 int cpu = raw_smp_processor_id();
3293
3294 if (cpu_isset(cpu, cpus_hardware_enabled))
3295 return;
3296 cpu_set(cpu, cpus_hardware_enabled);
3297 kvm_x86_ops->hardware_enable(NULL);
3298 }
3299
3300 static void hardware_disable(void *junk)
3301 {
3302 int cpu = raw_smp_processor_id();
3303
3304 if (!cpu_isset(cpu, cpus_hardware_enabled))
3305 return;
3306 cpu_clear(cpu, cpus_hardware_enabled);
3307 decache_vcpus_on_cpu(cpu);
3308 kvm_x86_ops->hardware_disable(NULL);
3309 }
3310
3311 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3312 void *v)
3313 {
3314 int cpu = (long)v;
3315
3316 switch (val) {
3317 case CPU_DYING:
3318 case CPU_DYING_FROZEN:
3319 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3320 cpu);
3321 hardware_disable(NULL);
3322 break;
3323 case CPU_UP_CANCELED:
3324 case CPU_UP_CANCELED_FROZEN:
3325 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3326 cpu);
3327 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3328 break;
3329 case CPU_ONLINE:
3330 case CPU_ONLINE_FROZEN:
3331 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3332 cpu);
3333 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3334 break;
3335 }
3336 return NOTIFY_OK;
3337 }
3338
3339 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3340 void *v)
3341 {
3342 if (val == SYS_RESTART) {
3343 /*
3344 * Some (well, at least mine) BIOSes hang on reboot if
3345 * in vmx root mode.
3346 */
3347 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3348 on_each_cpu(hardware_disable, NULL, 0, 1);
3349 }
3350 return NOTIFY_OK;
3351 }
3352
3353 static struct notifier_block kvm_reboot_notifier = {
3354 .notifier_call = kvm_reboot,
3355 .priority = 0,
3356 };
3357
3358 void kvm_io_bus_init(struct kvm_io_bus *bus)
3359 {
3360 memset(bus, 0, sizeof(*bus));
3361 }
3362
3363 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3364 {
3365 int i;
3366
3367 for (i = 0; i < bus->dev_count; i++) {
3368 struct kvm_io_device *pos = bus->devs[i];
3369
3370 kvm_iodevice_destructor(pos);
3371 }
3372 }
3373
3374 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3375 {
3376 int i;
3377
3378 for (i = 0; i < bus->dev_count; i++) {
3379 struct kvm_io_device *pos = bus->devs[i];
3380
3381 if (pos->in_range(pos, addr))
3382 return pos;
3383 }
3384
3385 return NULL;
3386 }
3387
3388 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3389 {
3390 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3391
3392 bus->devs[bus->dev_count++] = dev;
3393 }
3394
3395 static struct notifier_block kvm_cpu_notifier = {
3396 .notifier_call = kvm_cpu_hotplug,
3397 .priority = 20, /* must be > scheduler priority */
3398 };
3399
3400 static u64 stat_get(void *_offset)
3401 {
3402 unsigned offset = (long)_offset;
3403 u64 total = 0;
3404 struct kvm *kvm;
3405 struct kvm_vcpu *vcpu;
3406 int i;
3407
3408 spin_lock(&kvm_lock);
3409 list_for_each_entry(kvm, &vm_list, vm_list)
3410 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3411 vcpu = kvm->vcpus[i];
3412 if (vcpu)
3413 total += *(u32 *)((void *)vcpu + offset);
3414 }
3415 spin_unlock(&kvm_lock);
3416 return total;
3417 }
3418
3419 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
3420
3421 static __init void kvm_init_debug(void)
3422 {
3423 struct kvm_stats_debugfs_item *p;
3424
3425 debugfs_dir = debugfs_create_dir("kvm", NULL);
3426 for (p = debugfs_entries; p->name; ++p)
3427 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3428 (void *)(long)p->offset,
3429 &stat_fops);
3430 }
3431
3432 static void kvm_exit_debug(void)
3433 {
3434 struct kvm_stats_debugfs_item *p;
3435
3436 for (p = debugfs_entries; p->name; ++p)
3437 debugfs_remove(p->dentry);
3438 debugfs_remove(debugfs_dir);
3439 }
3440
3441 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3442 {
3443 hardware_disable(NULL);
3444 return 0;
3445 }
3446
3447 static int kvm_resume(struct sys_device *dev)
3448 {
3449 hardware_enable(NULL);
3450 return 0;
3451 }
3452
3453 static struct sysdev_class kvm_sysdev_class = {
3454 .name = "kvm",
3455 .suspend = kvm_suspend,
3456 .resume = kvm_resume,
3457 };
3458
3459 static struct sys_device kvm_sysdev = {
3460 .id = 0,
3461 .cls = &kvm_sysdev_class,
3462 };
3463
3464 hpa_t bad_page_address;
3465
3466 static inline
3467 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3468 {
3469 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3470 }
3471
3472 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3473 {
3474 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3475
3476 kvm_x86_ops->vcpu_load(vcpu, cpu);
3477 }
3478
3479 static void kvm_sched_out(struct preempt_notifier *pn,
3480 struct task_struct *next)
3481 {
3482 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3483
3484 kvm_x86_ops->vcpu_put(vcpu);
3485 }
3486
3487 int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
3488 struct module *module)
3489 {
3490 int r;
3491 int cpu;
3492
3493 if (kvm_x86_ops) {
3494 printk(KERN_ERR "kvm: already loaded the other module\n");
3495 return -EEXIST;
3496 }
3497
3498 if (!ops->cpu_has_kvm_support()) {
3499 printk(KERN_ERR "kvm: no hardware support\n");
3500 return -EOPNOTSUPP;
3501 }
3502 if (ops->disabled_by_bios()) {
3503 printk(KERN_ERR "kvm: disabled by bios\n");
3504 return -EOPNOTSUPP;
3505 }
3506
3507 kvm_x86_ops = ops;
3508
3509 r = kvm_x86_ops->hardware_setup();
3510 if (r < 0)
3511 goto out;
3512
3513 for_each_online_cpu(cpu) {
3514 smp_call_function_single(cpu,
3515 kvm_x86_ops->check_processor_compatibility,
3516 &r, 0, 1);
3517 if (r < 0)
3518 goto out_free_0;
3519 }
3520
3521 on_each_cpu(hardware_enable, NULL, 0, 1);
3522 r = register_cpu_notifier(&kvm_cpu_notifier);
3523 if (r)
3524 goto out_free_1;
3525 register_reboot_notifier(&kvm_reboot_notifier);
3526
3527 r = sysdev_class_register(&kvm_sysdev_class);
3528 if (r)
3529 goto out_free_2;
3530
3531 r = sysdev_register(&kvm_sysdev);
3532 if (r)
3533 goto out_free_3;
3534
3535 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3536 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3537 __alignof__(struct kvm_vcpu), 0, 0);
3538 if (!kvm_vcpu_cache) {
3539 r = -ENOMEM;
3540 goto out_free_4;
3541 }
3542
3543 kvm_chardev_ops.owner = module;
3544
3545 r = misc_register(&kvm_dev);
3546 if (r) {
3547 printk (KERN_ERR "kvm: misc device register failed\n");
3548 goto out_free;
3549 }
3550
3551 kvm_preempt_ops.sched_in = kvm_sched_in;
3552 kvm_preempt_ops.sched_out = kvm_sched_out;
3553
3554 return r;
3555
3556 out_free:
3557 kmem_cache_destroy(kvm_vcpu_cache);
3558 out_free_4:
3559 sysdev_unregister(&kvm_sysdev);
3560 out_free_3:
3561 sysdev_class_unregister(&kvm_sysdev_class);
3562 out_free_2:
3563 unregister_reboot_notifier(&kvm_reboot_notifier);
3564 unregister_cpu_notifier(&kvm_cpu_notifier);
3565 out_free_1:
3566 on_each_cpu(hardware_disable, NULL, 0, 1);
3567 out_free_0:
3568 kvm_x86_ops->hardware_unsetup();
3569 out:
3570 kvm_x86_ops = NULL;
3571 return r;
3572 }
3573
3574 void kvm_exit_x86(void)
3575 {
3576 misc_deregister(&kvm_dev);
3577 kmem_cache_destroy(kvm_vcpu_cache);
3578 sysdev_unregister(&kvm_sysdev);
3579 sysdev_class_unregister(&kvm_sysdev_class);
3580 unregister_reboot_notifier(&kvm_reboot_notifier);
3581 unregister_cpu_notifier(&kvm_cpu_notifier);
3582 on_each_cpu(hardware_disable, NULL, 0, 1);
3583 kvm_x86_ops->hardware_unsetup();
3584 kvm_x86_ops = NULL;
3585 }
3586
3587 static __init int kvm_init(void)
3588 {
3589 static struct page *bad_page;
3590 int r;
3591
3592 r = kvm_mmu_module_init();
3593 if (r)
3594 goto out4;
3595
3596 kvm_init_debug();
3597
3598 kvm_init_msr_list();
3599
3600 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3601 r = -ENOMEM;
3602 goto out;
3603 }
3604
3605 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3606 memset(__va(bad_page_address), 0, PAGE_SIZE);
3607
3608 return 0;
3609
3610 out:
3611 kvm_exit_debug();
3612 kvm_mmu_module_exit();
3613 out4:
3614 return r;
3615 }
3616
3617 static __exit void kvm_exit(void)
3618 {
3619 kvm_exit_debug();
3620 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3621 kvm_mmu_module_exit();
3622 }
3623
3624 module_init(kvm_init)
3625 module_exit(kvm_exit)
3626
3627 EXPORT_SYMBOL_GPL(kvm_init_x86);
3628 EXPORT_SYMBOL_GPL(kvm_exit_x86);
This page took 0.12283 seconds and 5 git commands to generate.