KVM: Handle partial pae pdptr
[deliverable/linux.git] / drivers / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <linux/magic.h>
24 #include <asm/processor.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <asm/msr.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <asm/uaccess.h>
32 #include <linux/reboot.h>
33 #include <asm/io.h>
34 #include <linux/debugfs.h>
35 #include <linux/highmem.h>
36 #include <linux/file.h>
37 #include <asm/desc.h>
38 #include <linux/sysdev.h>
39 #include <linux/cpu.h>
40 #include <linux/file.h>
41 #include <linux/fs.h>
42 #include <linux/mount.h>
43
44 #include "x86_emulate.h"
45 #include "segment_descriptor.h"
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
52
53 struct kvm_arch_ops *kvm_arch_ops;
54 struct kvm_stat kvm_stat;
55 EXPORT_SYMBOL_GPL(kvm_stat);
56
57 static struct kvm_stats_debugfs_item {
58 const char *name;
59 u32 *data;
60 struct dentry *dentry;
61 } debugfs_entries[] = {
62 { "pf_fixed", &kvm_stat.pf_fixed },
63 { "pf_guest", &kvm_stat.pf_guest },
64 { "tlb_flush", &kvm_stat.tlb_flush },
65 { "invlpg", &kvm_stat.invlpg },
66 { "exits", &kvm_stat.exits },
67 { "io_exits", &kvm_stat.io_exits },
68 { "mmio_exits", &kvm_stat.mmio_exits },
69 { "signal_exits", &kvm_stat.signal_exits },
70 { "irq_window", &kvm_stat.irq_window_exits },
71 { "halt_exits", &kvm_stat.halt_exits },
72 { "request_irq", &kvm_stat.request_irq_exits },
73 { "irq_exits", &kvm_stat.irq_exits },
74 { NULL, NULL }
75 };
76
77 static struct dentry *debugfs_dir;
78
79 struct vfsmount *kvmfs_mnt;
80
81 #define MAX_IO_MSRS 256
82
83 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
84 #define LMSW_GUEST_MASK 0x0eULL
85 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
86 #define CR8_RESEVED_BITS (~0x0fULL)
87 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
88
89 #ifdef CONFIG_X86_64
90 // LDT or TSS descriptor in the GDT. 16 bytes.
91 struct segment_descriptor_64 {
92 struct segment_descriptor s;
93 u32 base_higher;
94 u32 pad_zero;
95 };
96
97 #endif
98
99 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
100 unsigned long arg);
101
102 static struct inode *kvmfs_inode(struct file_operations *fops)
103 {
104 int error = -ENOMEM;
105 struct inode *inode = new_inode(kvmfs_mnt->mnt_sb);
106
107 if (!inode)
108 goto eexit_1;
109
110 inode->i_fop = fops;
111
112 /*
113 * Mark the inode dirty from the very beginning,
114 * that way it will never be moved to the dirty
115 * list because mark_inode_dirty() will think
116 * that it already _is_ on the dirty list.
117 */
118 inode->i_state = I_DIRTY;
119 inode->i_mode = S_IRUSR | S_IWUSR;
120 inode->i_uid = current->fsuid;
121 inode->i_gid = current->fsgid;
122 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
123 return inode;
124
125 eexit_1:
126 return ERR_PTR(error);
127 }
128
129 static struct file *kvmfs_file(struct inode *inode, void *private_data)
130 {
131 struct file *file = get_empty_filp();
132
133 if (!file)
134 return ERR_PTR(-ENFILE);
135
136 file->f_path.mnt = mntget(kvmfs_mnt);
137 file->f_path.dentry = d_alloc_anon(inode);
138 if (!file->f_path.dentry)
139 return ERR_PTR(-ENOMEM);
140 file->f_mapping = inode->i_mapping;
141
142 file->f_pos = 0;
143 file->f_flags = O_RDWR;
144 file->f_op = inode->i_fop;
145 file->f_mode = FMODE_READ | FMODE_WRITE;
146 file->f_version = 0;
147 file->private_data = private_data;
148 return file;
149 }
150
151 unsigned long segment_base(u16 selector)
152 {
153 struct descriptor_table gdt;
154 struct segment_descriptor *d;
155 unsigned long table_base;
156 typedef unsigned long ul;
157 unsigned long v;
158
159 if (selector == 0)
160 return 0;
161
162 asm ("sgdt %0" : "=m"(gdt));
163 table_base = gdt.base;
164
165 if (selector & 4) { /* from ldt */
166 u16 ldt_selector;
167
168 asm ("sldt %0" : "=g"(ldt_selector));
169 table_base = segment_base(ldt_selector);
170 }
171 d = (struct segment_descriptor *)(table_base + (selector & ~7));
172 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
173 #ifdef CONFIG_X86_64
174 if (d->system == 0
175 && (d->type == 2 || d->type == 9 || d->type == 11))
176 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
177 #endif
178 return v;
179 }
180 EXPORT_SYMBOL_GPL(segment_base);
181
182 static inline int valid_vcpu(int n)
183 {
184 return likely(n >= 0 && n < KVM_MAX_VCPUS);
185 }
186
187 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
188 void *dest)
189 {
190 unsigned char *host_buf = dest;
191 unsigned long req_size = size;
192
193 while (size) {
194 hpa_t paddr;
195 unsigned now;
196 unsigned offset;
197 hva_t guest_buf;
198
199 paddr = gva_to_hpa(vcpu, addr);
200
201 if (is_error_hpa(paddr))
202 break;
203
204 guest_buf = (hva_t)kmap_atomic(
205 pfn_to_page(paddr >> PAGE_SHIFT),
206 KM_USER0);
207 offset = addr & ~PAGE_MASK;
208 guest_buf |= offset;
209 now = min(size, PAGE_SIZE - offset);
210 memcpy(host_buf, (void*)guest_buf, now);
211 host_buf += now;
212 addr += now;
213 size -= now;
214 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
215 }
216 return req_size - size;
217 }
218 EXPORT_SYMBOL_GPL(kvm_read_guest);
219
220 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
221 void *data)
222 {
223 unsigned char *host_buf = data;
224 unsigned long req_size = size;
225
226 while (size) {
227 hpa_t paddr;
228 unsigned now;
229 unsigned offset;
230 hva_t guest_buf;
231 gfn_t gfn;
232
233 paddr = gva_to_hpa(vcpu, addr);
234
235 if (is_error_hpa(paddr))
236 break;
237
238 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
239 mark_page_dirty(vcpu->kvm, gfn);
240 guest_buf = (hva_t)kmap_atomic(
241 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
242 offset = addr & ~PAGE_MASK;
243 guest_buf |= offset;
244 now = min(size, PAGE_SIZE - offset);
245 memcpy((void*)guest_buf, host_buf, now);
246 host_buf += now;
247 addr += now;
248 size -= now;
249 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
250 }
251 return req_size - size;
252 }
253 EXPORT_SYMBOL_GPL(kvm_write_guest);
254
255 /*
256 * Switches to specified vcpu, until a matching vcpu_put()
257 */
258 static void vcpu_load(struct kvm_vcpu *vcpu)
259 {
260 mutex_lock(&vcpu->mutex);
261 kvm_arch_ops->vcpu_load(vcpu);
262 }
263
264 /*
265 * Switches to specified vcpu, until a matching vcpu_put(). Will return NULL
266 * if the slot is not populated.
267 */
268 static struct kvm_vcpu *vcpu_load_slot(struct kvm *kvm, int slot)
269 {
270 struct kvm_vcpu *vcpu = &kvm->vcpus[slot];
271
272 mutex_lock(&vcpu->mutex);
273 if (!vcpu->vmcs) {
274 mutex_unlock(&vcpu->mutex);
275 return NULL;
276 }
277 kvm_arch_ops->vcpu_load(vcpu);
278 return vcpu;
279 }
280
281 static void vcpu_put(struct kvm_vcpu *vcpu)
282 {
283 kvm_arch_ops->vcpu_put(vcpu);
284 mutex_unlock(&vcpu->mutex);
285 }
286
287 static struct kvm *kvm_create_vm(void)
288 {
289 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
290 int i;
291
292 if (!kvm)
293 return ERR_PTR(-ENOMEM);
294
295 spin_lock_init(&kvm->lock);
296 INIT_LIST_HEAD(&kvm->active_mmu_pages);
297 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
298 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
299
300 mutex_init(&vcpu->mutex);
301 vcpu->cpu = -1;
302 vcpu->kvm = kvm;
303 vcpu->mmu.root_hpa = INVALID_PAGE;
304 INIT_LIST_HEAD(&vcpu->free_pages);
305 spin_lock(&kvm_lock);
306 list_add(&kvm->vm_list, &vm_list);
307 spin_unlock(&kvm_lock);
308 }
309 return kvm;
310 }
311
312 static int kvm_dev_open(struct inode *inode, struct file *filp)
313 {
314 return 0;
315 }
316
317 /*
318 * Free any memory in @free but not in @dont.
319 */
320 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
321 struct kvm_memory_slot *dont)
322 {
323 int i;
324
325 if (!dont || free->phys_mem != dont->phys_mem)
326 if (free->phys_mem) {
327 for (i = 0; i < free->npages; ++i)
328 if (free->phys_mem[i])
329 __free_page(free->phys_mem[i]);
330 vfree(free->phys_mem);
331 }
332
333 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
334 vfree(free->dirty_bitmap);
335
336 free->phys_mem = NULL;
337 free->npages = 0;
338 free->dirty_bitmap = NULL;
339 }
340
341 static void kvm_free_physmem(struct kvm *kvm)
342 {
343 int i;
344
345 for (i = 0; i < kvm->nmemslots; ++i)
346 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
347 }
348
349 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
350 {
351 int i;
352
353 for (i = 0; i < 2; ++i)
354 if (vcpu->pio.guest_pages[i]) {
355 __free_page(vcpu->pio.guest_pages[i]);
356 vcpu->pio.guest_pages[i] = NULL;
357 }
358 }
359
360 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
361 {
362 if (!vcpu->vmcs)
363 return;
364
365 vcpu_load(vcpu);
366 kvm_mmu_destroy(vcpu);
367 vcpu_put(vcpu);
368 kvm_arch_ops->vcpu_free(vcpu);
369 free_page((unsigned long)vcpu->run);
370 vcpu->run = NULL;
371 free_page((unsigned long)vcpu->pio_data);
372 vcpu->pio_data = NULL;
373 free_pio_guest_pages(vcpu);
374 }
375
376 static void kvm_free_vcpus(struct kvm *kvm)
377 {
378 unsigned int i;
379
380 for (i = 0; i < KVM_MAX_VCPUS; ++i)
381 kvm_free_vcpu(&kvm->vcpus[i]);
382 }
383
384 static int kvm_dev_release(struct inode *inode, struct file *filp)
385 {
386 return 0;
387 }
388
389 static void kvm_destroy_vm(struct kvm *kvm)
390 {
391 spin_lock(&kvm_lock);
392 list_del(&kvm->vm_list);
393 spin_unlock(&kvm_lock);
394 kvm_free_vcpus(kvm);
395 kvm_free_physmem(kvm);
396 kfree(kvm);
397 }
398
399 static int kvm_vm_release(struct inode *inode, struct file *filp)
400 {
401 struct kvm *kvm = filp->private_data;
402
403 kvm_destroy_vm(kvm);
404 return 0;
405 }
406
407 static void inject_gp(struct kvm_vcpu *vcpu)
408 {
409 kvm_arch_ops->inject_gp(vcpu, 0);
410 }
411
412 /*
413 * Load the pae pdptrs. Return true is they are all valid.
414 */
415 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
416 {
417 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
418 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
419 int i;
420 u64 pdpte;
421 u64 *pdpt;
422 int ret;
423 struct page *page;
424
425 spin_lock(&vcpu->kvm->lock);
426 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
427 /* FIXME: !page - emulate? 0xff? */
428 pdpt = kmap_atomic(page, KM_USER0);
429
430 ret = 1;
431 for (i = 0; i < 4; ++i) {
432 pdpte = pdpt[offset + i];
433 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
434 ret = 0;
435 goto out;
436 }
437 }
438
439 for (i = 0; i < 4; ++i)
440 vcpu->pdptrs[i] = pdpt[offset + i];
441
442 out:
443 kunmap_atomic(pdpt, KM_USER0);
444 spin_unlock(&vcpu->kvm->lock);
445
446 return ret;
447 }
448
449 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
450 {
451 if (cr0 & CR0_RESEVED_BITS) {
452 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
453 cr0, vcpu->cr0);
454 inject_gp(vcpu);
455 return;
456 }
457
458 if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
459 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
460 inject_gp(vcpu);
461 return;
462 }
463
464 if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
465 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
466 "and a clear PE flag\n");
467 inject_gp(vcpu);
468 return;
469 }
470
471 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
472 #ifdef CONFIG_X86_64
473 if ((vcpu->shadow_efer & EFER_LME)) {
474 int cs_db, cs_l;
475
476 if (!is_pae(vcpu)) {
477 printk(KERN_DEBUG "set_cr0: #GP, start paging "
478 "in long mode while PAE is disabled\n");
479 inject_gp(vcpu);
480 return;
481 }
482 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
483 if (cs_l) {
484 printk(KERN_DEBUG "set_cr0: #GP, start paging "
485 "in long mode while CS.L == 1\n");
486 inject_gp(vcpu);
487 return;
488
489 }
490 } else
491 #endif
492 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
493 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
494 "reserved bits\n");
495 inject_gp(vcpu);
496 return;
497 }
498
499 }
500
501 kvm_arch_ops->set_cr0(vcpu, cr0);
502 vcpu->cr0 = cr0;
503
504 spin_lock(&vcpu->kvm->lock);
505 kvm_mmu_reset_context(vcpu);
506 spin_unlock(&vcpu->kvm->lock);
507 return;
508 }
509 EXPORT_SYMBOL_GPL(set_cr0);
510
511 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
512 {
513 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
514 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
515 }
516 EXPORT_SYMBOL_GPL(lmsw);
517
518 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
519 {
520 if (cr4 & CR4_RESEVED_BITS) {
521 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
522 inject_gp(vcpu);
523 return;
524 }
525
526 if (is_long_mode(vcpu)) {
527 if (!(cr4 & CR4_PAE_MASK)) {
528 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
529 "in long mode\n");
530 inject_gp(vcpu);
531 return;
532 }
533 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
534 && !load_pdptrs(vcpu, vcpu->cr3)) {
535 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
536 inject_gp(vcpu);
537 }
538
539 if (cr4 & CR4_VMXE_MASK) {
540 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
541 inject_gp(vcpu);
542 return;
543 }
544 kvm_arch_ops->set_cr4(vcpu, cr4);
545 spin_lock(&vcpu->kvm->lock);
546 kvm_mmu_reset_context(vcpu);
547 spin_unlock(&vcpu->kvm->lock);
548 }
549 EXPORT_SYMBOL_GPL(set_cr4);
550
551 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
552 {
553 if (is_long_mode(vcpu)) {
554 if (cr3 & CR3_L_MODE_RESEVED_BITS) {
555 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
556 inject_gp(vcpu);
557 return;
558 }
559 } else {
560 if (cr3 & CR3_RESEVED_BITS) {
561 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
562 inject_gp(vcpu);
563 return;
564 }
565 if (is_paging(vcpu) && is_pae(vcpu) &&
566 !load_pdptrs(vcpu, cr3)) {
567 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
568 "reserved bits\n");
569 inject_gp(vcpu);
570 return;
571 }
572 }
573
574 vcpu->cr3 = cr3;
575 spin_lock(&vcpu->kvm->lock);
576 /*
577 * Does the new cr3 value map to physical memory? (Note, we
578 * catch an invalid cr3 even in real-mode, because it would
579 * cause trouble later on when we turn on paging anyway.)
580 *
581 * A real CPU would silently accept an invalid cr3 and would
582 * attempt to use it - with largely undefined (and often hard
583 * to debug) behavior on the guest side.
584 */
585 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
586 inject_gp(vcpu);
587 else
588 vcpu->mmu.new_cr3(vcpu);
589 spin_unlock(&vcpu->kvm->lock);
590 }
591 EXPORT_SYMBOL_GPL(set_cr3);
592
593 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
594 {
595 if ( cr8 & CR8_RESEVED_BITS) {
596 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
597 inject_gp(vcpu);
598 return;
599 }
600 vcpu->cr8 = cr8;
601 }
602 EXPORT_SYMBOL_GPL(set_cr8);
603
604 void fx_init(struct kvm_vcpu *vcpu)
605 {
606 struct __attribute__ ((__packed__)) fx_image_s {
607 u16 control; //fcw
608 u16 status; //fsw
609 u16 tag; // ftw
610 u16 opcode; //fop
611 u64 ip; // fpu ip
612 u64 operand;// fpu dp
613 u32 mxcsr;
614 u32 mxcsr_mask;
615
616 } *fx_image;
617
618 fx_save(vcpu->host_fx_image);
619 fpu_init();
620 fx_save(vcpu->guest_fx_image);
621 fx_restore(vcpu->host_fx_image);
622
623 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
624 fx_image->mxcsr = 0x1f80;
625 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
626 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
627 }
628 EXPORT_SYMBOL_GPL(fx_init);
629
630 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
631 {
632 spin_lock(&vcpu->kvm->lock);
633 kvm_mmu_slot_remove_write_access(vcpu, slot);
634 spin_unlock(&vcpu->kvm->lock);
635 }
636
637 /*
638 * Allocate some memory and give it an address in the guest physical address
639 * space.
640 *
641 * Discontiguous memory is allowed, mostly for framebuffers.
642 */
643 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
644 struct kvm_memory_region *mem)
645 {
646 int r;
647 gfn_t base_gfn;
648 unsigned long npages;
649 unsigned long i;
650 struct kvm_memory_slot *memslot;
651 struct kvm_memory_slot old, new;
652 int memory_config_version;
653
654 r = -EINVAL;
655 /* General sanity checks */
656 if (mem->memory_size & (PAGE_SIZE - 1))
657 goto out;
658 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
659 goto out;
660 if (mem->slot >= KVM_MEMORY_SLOTS)
661 goto out;
662 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
663 goto out;
664
665 memslot = &kvm->memslots[mem->slot];
666 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
667 npages = mem->memory_size >> PAGE_SHIFT;
668
669 if (!npages)
670 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
671
672 raced:
673 spin_lock(&kvm->lock);
674
675 memory_config_version = kvm->memory_config_version;
676 new = old = *memslot;
677
678 new.base_gfn = base_gfn;
679 new.npages = npages;
680 new.flags = mem->flags;
681
682 /* Disallow changing a memory slot's size. */
683 r = -EINVAL;
684 if (npages && old.npages && npages != old.npages)
685 goto out_unlock;
686
687 /* Check for overlaps */
688 r = -EEXIST;
689 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
690 struct kvm_memory_slot *s = &kvm->memslots[i];
691
692 if (s == memslot)
693 continue;
694 if (!((base_gfn + npages <= s->base_gfn) ||
695 (base_gfn >= s->base_gfn + s->npages)))
696 goto out_unlock;
697 }
698 /*
699 * Do memory allocations outside lock. memory_config_version will
700 * detect any races.
701 */
702 spin_unlock(&kvm->lock);
703
704 /* Deallocate if slot is being removed */
705 if (!npages)
706 new.phys_mem = NULL;
707
708 /* Free page dirty bitmap if unneeded */
709 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
710 new.dirty_bitmap = NULL;
711
712 r = -ENOMEM;
713
714 /* Allocate if a slot is being created */
715 if (npages && !new.phys_mem) {
716 new.phys_mem = vmalloc(npages * sizeof(struct page *));
717
718 if (!new.phys_mem)
719 goto out_free;
720
721 memset(new.phys_mem, 0, npages * sizeof(struct page *));
722 for (i = 0; i < npages; ++i) {
723 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
724 | __GFP_ZERO);
725 if (!new.phys_mem[i])
726 goto out_free;
727 set_page_private(new.phys_mem[i],0);
728 }
729 }
730
731 /* Allocate page dirty bitmap if needed */
732 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
733 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
734
735 new.dirty_bitmap = vmalloc(dirty_bytes);
736 if (!new.dirty_bitmap)
737 goto out_free;
738 memset(new.dirty_bitmap, 0, dirty_bytes);
739 }
740
741 spin_lock(&kvm->lock);
742
743 if (memory_config_version != kvm->memory_config_version) {
744 spin_unlock(&kvm->lock);
745 kvm_free_physmem_slot(&new, &old);
746 goto raced;
747 }
748
749 r = -EAGAIN;
750 if (kvm->busy)
751 goto out_unlock;
752
753 if (mem->slot >= kvm->nmemslots)
754 kvm->nmemslots = mem->slot + 1;
755
756 *memslot = new;
757 ++kvm->memory_config_version;
758
759 spin_unlock(&kvm->lock);
760
761 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
762 struct kvm_vcpu *vcpu;
763
764 vcpu = vcpu_load_slot(kvm, i);
765 if (!vcpu)
766 continue;
767 if (new.flags & KVM_MEM_LOG_DIRTY_PAGES)
768 do_remove_write_access(vcpu, mem->slot);
769 kvm_mmu_reset_context(vcpu);
770 vcpu_put(vcpu);
771 }
772
773 kvm_free_physmem_slot(&old, &new);
774 return 0;
775
776 out_unlock:
777 spin_unlock(&kvm->lock);
778 out_free:
779 kvm_free_physmem_slot(&new, &old);
780 out:
781 return r;
782 }
783
784 /*
785 * Get (and clear) the dirty memory log for a memory slot.
786 */
787 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
788 struct kvm_dirty_log *log)
789 {
790 struct kvm_memory_slot *memslot;
791 int r, i;
792 int n;
793 int cleared;
794 unsigned long any = 0;
795
796 spin_lock(&kvm->lock);
797
798 /*
799 * Prevent changes to guest memory configuration even while the lock
800 * is not taken.
801 */
802 ++kvm->busy;
803 spin_unlock(&kvm->lock);
804 r = -EINVAL;
805 if (log->slot >= KVM_MEMORY_SLOTS)
806 goto out;
807
808 memslot = &kvm->memslots[log->slot];
809 r = -ENOENT;
810 if (!memslot->dirty_bitmap)
811 goto out;
812
813 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
814
815 for (i = 0; !any && i < n/sizeof(long); ++i)
816 any = memslot->dirty_bitmap[i];
817
818 r = -EFAULT;
819 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
820 goto out;
821
822 if (any) {
823 cleared = 0;
824 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
825 struct kvm_vcpu *vcpu;
826
827 vcpu = vcpu_load_slot(kvm, i);
828 if (!vcpu)
829 continue;
830 if (!cleared) {
831 do_remove_write_access(vcpu, log->slot);
832 memset(memslot->dirty_bitmap, 0, n);
833 cleared = 1;
834 }
835 kvm_arch_ops->tlb_flush(vcpu);
836 vcpu_put(vcpu);
837 }
838 }
839
840 r = 0;
841
842 out:
843 spin_lock(&kvm->lock);
844 --kvm->busy;
845 spin_unlock(&kvm->lock);
846 return r;
847 }
848
849 /*
850 * Set a new alias region. Aliases map a portion of physical memory into
851 * another portion. This is useful for memory windows, for example the PC
852 * VGA region.
853 */
854 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
855 struct kvm_memory_alias *alias)
856 {
857 int r, n;
858 struct kvm_mem_alias *p;
859
860 r = -EINVAL;
861 /* General sanity checks */
862 if (alias->memory_size & (PAGE_SIZE - 1))
863 goto out;
864 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
865 goto out;
866 if (alias->slot >= KVM_ALIAS_SLOTS)
867 goto out;
868 if (alias->guest_phys_addr + alias->memory_size
869 < alias->guest_phys_addr)
870 goto out;
871 if (alias->target_phys_addr + alias->memory_size
872 < alias->target_phys_addr)
873 goto out;
874
875 spin_lock(&kvm->lock);
876
877 p = &kvm->aliases[alias->slot];
878 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
879 p->npages = alias->memory_size >> PAGE_SHIFT;
880 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
881
882 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
883 if (kvm->aliases[n - 1].npages)
884 break;
885 kvm->naliases = n;
886
887 spin_unlock(&kvm->lock);
888
889 vcpu_load(&kvm->vcpus[0]);
890 spin_lock(&kvm->lock);
891 kvm_mmu_zap_all(&kvm->vcpus[0]);
892 spin_unlock(&kvm->lock);
893 vcpu_put(&kvm->vcpus[0]);
894
895 return 0;
896
897 out:
898 return r;
899 }
900
901 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
902 {
903 int i;
904 struct kvm_mem_alias *alias;
905
906 for (i = 0; i < kvm->naliases; ++i) {
907 alias = &kvm->aliases[i];
908 if (gfn >= alias->base_gfn
909 && gfn < alias->base_gfn + alias->npages)
910 return alias->target_gfn + gfn - alias->base_gfn;
911 }
912 return gfn;
913 }
914
915 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
916 {
917 int i;
918
919 for (i = 0; i < kvm->nmemslots; ++i) {
920 struct kvm_memory_slot *memslot = &kvm->memslots[i];
921
922 if (gfn >= memslot->base_gfn
923 && gfn < memslot->base_gfn + memslot->npages)
924 return memslot;
925 }
926 return NULL;
927 }
928
929 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
930 {
931 gfn = unalias_gfn(kvm, gfn);
932 return __gfn_to_memslot(kvm, gfn);
933 }
934
935 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
936 {
937 struct kvm_memory_slot *slot;
938
939 gfn = unalias_gfn(kvm, gfn);
940 slot = __gfn_to_memslot(kvm, gfn);
941 if (!slot)
942 return NULL;
943 return slot->phys_mem[gfn - slot->base_gfn];
944 }
945 EXPORT_SYMBOL_GPL(gfn_to_page);
946
947 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
948 {
949 int i;
950 struct kvm_memory_slot *memslot = NULL;
951 unsigned long rel_gfn;
952
953 for (i = 0; i < kvm->nmemslots; ++i) {
954 memslot = &kvm->memslots[i];
955
956 if (gfn >= memslot->base_gfn
957 && gfn < memslot->base_gfn + memslot->npages) {
958
959 if (!memslot || !memslot->dirty_bitmap)
960 return;
961
962 rel_gfn = gfn - memslot->base_gfn;
963
964 /* avoid RMW */
965 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
966 set_bit(rel_gfn, memslot->dirty_bitmap);
967 return;
968 }
969 }
970 }
971
972 static int emulator_read_std(unsigned long addr,
973 unsigned long *val,
974 unsigned int bytes,
975 struct x86_emulate_ctxt *ctxt)
976 {
977 struct kvm_vcpu *vcpu = ctxt->vcpu;
978 void *data = val;
979
980 while (bytes) {
981 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
982 unsigned offset = addr & (PAGE_SIZE-1);
983 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
984 unsigned long pfn;
985 struct page *page;
986 void *page_virt;
987
988 if (gpa == UNMAPPED_GVA)
989 return X86EMUL_PROPAGATE_FAULT;
990 pfn = gpa >> PAGE_SHIFT;
991 page = gfn_to_page(vcpu->kvm, pfn);
992 if (!page)
993 return X86EMUL_UNHANDLEABLE;
994 page_virt = kmap_atomic(page, KM_USER0);
995
996 memcpy(data, page_virt + offset, tocopy);
997
998 kunmap_atomic(page_virt, KM_USER0);
999
1000 bytes -= tocopy;
1001 data += tocopy;
1002 addr += tocopy;
1003 }
1004
1005 return X86EMUL_CONTINUE;
1006 }
1007
1008 static int emulator_write_std(unsigned long addr,
1009 unsigned long val,
1010 unsigned int bytes,
1011 struct x86_emulate_ctxt *ctxt)
1012 {
1013 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
1014 addr, bytes);
1015 return X86EMUL_UNHANDLEABLE;
1016 }
1017
1018 static int emulator_read_emulated(unsigned long addr,
1019 unsigned long *val,
1020 unsigned int bytes,
1021 struct x86_emulate_ctxt *ctxt)
1022 {
1023 struct kvm_vcpu *vcpu = ctxt->vcpu;
1024
1025 if (vcpu->mmio_read_completed) {
1026 memcpy(val, vcpu->mmio_data, bytes);
1027 vcpu->mmio_read_completed = 0;
1028 return X86EMUL_CONTINUE;
1029 } else if (emulator_read_std(addr, val, bytes, ctxt)
1030 == X86EMUL_CONTINUE)
1031 return X86EMUL_CONTINUE;
1032 else {
1033 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1034
1035 if (gpa == UNMAPPED_GVA)
1036 return X86EMUL_PROPAGATE_FAULT;
1037 vcpu->mmio_needed = 1;
1038 vcpu->mmio_phys_addr = gpa;
1039 vcpu->mmio_size = bytes;
1040 vcpu->mmio_is_write = 0;
1041
1042 return X86EMUL_UNHANDLEABLE;
1043 }
1044 }
1045
1046 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1047 unsigned long val, int bytes)
1048 {
1049 struct page *page;
1050 void *virt;
1051
1052 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1053 return 0;
1054 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1055 if (!page)
1056 return 0;
1057 kvm_mmu_pre_write(vcpu, gpa, bytes);
1058 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1059 virt = kmap_atomic(page, KM_USER0);
1060 memcpy(virt + offset_in_page(gpa), &val, bytes);
1061 kunmap_atomic(virt, KM_USER0);
1062 kvm_mmu_post_write(vcpu, gpa, bytes);
1063 return 1;
1064 }
1065
1066 static int emulator_write_emulated(unsigned long addr,
1067 unsigned long val,
1068 unsigned int bytes,
1069 struct x86_emulate_ctxt *ctxt)
1070 {
1071 struct kvm_vcpu *vcpu = ctxt->vcpu;
1072 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1073
1074 if (gpa == UNMAPPED_GVA)
1075 return X86EMUL_PROPAGATE_FAULT;
1076
1077 if (emulator_write_phys(vcpu, gpa, val, bytes))
1078 return X86EMUL_CONTINUE;
1079
1080 vcpu->mmio_needed = 1;
1081 vcpu->mmio_phys_addr = gpa;
1082 vcpu->mmio_size = bytes;
1083 vcpu->mmio_is_write = 1;
1084 memcpy(vcpu->mmio_data, &val, bytes);
1085
1086 return X86EMUL_CONTINUE;
1087 }
1088
1089 static int emulator_cmpxchg_emulated(unsigned long addr,
1090 unsigned long old,
1091 unsigned long new,
1092 unsigned int bytes,
1093 struct x86_emulate_ctxt *ctxt)
1094 {
1095 static int reported;
1096
1097 if (!reported) {
1098 reported = 1;
1099 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1100 }
1101 return emulator_write_emulated(addr, new, bytes, ctxt);
1102 }
1103
1104 #ifdef CONFIG_X86_32
1105
1106 static int emulator_cmpxchg8b_emulated(unsigned long addr,
1107 unsigned long old_lo,
1108 unsigned long old_hi,
1109 unsigned long new_lo,
1110 unsigned long new_hi,
1111 struct x86_emulate_ctxt *ctxt)
1112 {
1113 static int reported;
1114 int r;
1115
1116 if (!reported) {
1117 reported = 1;
1118 printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
1119 }
1120 r = emulator_write_emulated(addr, new_lo, 4, ctxt);
1121 if (r != X86EMUL_CONTINUE)
1122 return r;
1123 return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
1124 }
1125
1126 #endif
1127
1128 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1129 {
1130 return kvm_arch_ops->get_segment_base(vcpu, seg);
1131 }
1132
1133 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1134 {
1135 return X86EMUL_CONTINUE;
1136 }
1137
1138 int emulate_clts(struct kvm_vcpu *vcpu)
1139 {
1140 unsigned long cr0;
1141
1142 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1143 cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1144 kvm_arch_ops->set_cr0(vcpu, cr0);
1145 return X86EMUL_CONTINUE;
1146 }
1147
1148 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1149 {
1150 struct kvm_vcpu *vcpu = ctxt->vcpu;
1151
1152 switch (dr) {
1153 case 0 ... 3:
1154 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1155 return X86EMUL_CONTINUE;
1156 default:
1157 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1158 __FUNCTION__, dr);
1159 return X86EMUL_UNHANDLEABLE;
1160 }
1161 }
1162
1163 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1164 {
1165 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1166 int exception;
1167
1168 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1169 if (exception) {
1170 /* FIXME: better handling */
1171 return X86EMUL_UNHANDLEABLE;
1172 }
1173 return X86EMUL_CONTINUE;
1174 }
1175
1176 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1177 {
1178 static int reported;
1179 u8 opcodes[4];
1180 unsigned long rip = ctxt->vcpu->rip;
1181 unsigned long rip_linear;
1182
1183 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1184
1185 if (reported)
1186 return;
1187
1188 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1189
1190 printk(KERN_ERR "emulation failed but !mmio_needed?"
1191 " rip %lx %02x %02x %02x %02x\n",
1192 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1193 reported = 1;
1194 }
1195
1196 struct x86_emulate_ops emulate_ops = {
1197 .read_std = emulator_read_std,
1198 .write_std = emulator_write_std,
1199 .read_emulated = emulator_read_emulated,
1200 .write_emulated = emulator_write_emulated,
1201 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1202 #ifdef CONFIG_X86_32
1203 .cmpxchg8b_emulated = emulator_cmpxchg8b_emulated,
1204 #endif
1205 };
1206
1207 int emulate_instruction(struct kvm_vcpu *vcpu,
1208 struct kvm_run *run,
1209 unsigned long cr2,
1210 u16 error_code)
1211 {
1212 struct x86_emulate_ctxt emulate_ctxt;
1213 int r;
1214 int cs_db, cs_l;
1215
1216 kvm_arch_ops->cache_regs(vcpu);
1217
1218 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1219
1220 emulate_ctxt.vcpu = vcpu;
1221 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1222 emulate_ctxt.cr2 = cr2;
1223 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1224 ? X86EMUL_MODE_REAL : cs_l
1225 ? X86EMUL_MODE_PROT64 : cs_db
1226 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1227
1228 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1229 emulate_ctxt.cs_base = 0;
1230 emulate_ctxt.ds_base = 0;
1231 emulate_ctxt.es_base = 0;
1232 emulate_ctxt.ss_base = 0;
1233 } else {
1234 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1235 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1236 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1237 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1238 }
1239
1240 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1241 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1242
1243 vcpu->mmio_is_write = 0;
1244 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1245
1246 if ((r || vcpu->mmio_is_write) && run) {
1247 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1248 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1249 run->mmio.len = vcpu->mmio_size;
1250 run->mmio.is_write = vcpu->mmio_is_write;
1251 }
1252
1253 if (r) {
1254 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1255 return EMULATE_DONE;
1256 if (!vcpu->mmio_needed) {
1257 report_emulation_failure(&emulate_ctxt);
1258 return EMULATE_FAIL;
1259 }
1260 return EMULATE_DO_MMIO;
1261 }
1262
1263 kvm_arch_ops->decache_regs(vcpu);
1264 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1265
1266 if (vcpu->mmio_is_write)
1267 return EMULATE_DO_MMIO;
1268
1269 return EMULATE_DONE;
1270 }
1271 EXPORT_SYMBOL_GPL(emulate_instruction);
1272
1273 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1274 {
1275 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1276
1277 kvm_arch_ops->cache_regs(vcpu);
1278 ret = -KVM_EINVAL;
1279 #ifdef CONFIG_X86_64
1280 if (is_long_mode(vcpu)) {
1281 nr = vcpu->regs[VCPU_REGS_RAX];
1282 a0 = vcpu->regs[VCPU_REGS_RDI];
1283 a1 = vcpu->regs[VCPU_REGS_RSI];
1284 a2 = vcpu->regs[VCPU_REGS_RDX];
1285 a3 = vcpu->regs[VCPU_REGS_RCX];
1286 a4 = vcpu->regs[VCPU_REGS_R8];
1287 a5 = vcpu->regs[VCPU_REGS_R9];
1288 } else
1289 #endif
1290 {
1291 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1292 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1293 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1294 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1295 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1296 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1297 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1298 }
1299 switch (nr) {
1300 default:
1301 run->hypercall.args[0] = a0;
1302 run->hypercall.args[1] = a1;
1303 run->hypercall.args[2] = a2;
1304 run->hypercall.args[3] = a3;
1305 run->hypercall.args[4] = a4;
1306 run->hypercall.args[5] = a5;
1307 run->hypercall.ret = ret;
1308 run->hypercall.longmode = is_long_mode(vcpu);
1309 kvm_arch_ops->decache_regs(vcpu);
1310 return 0;
1311 }
1312 vcpu->regs[VCPU_REGS_RAX] = ret;
1313 kvm_arch_ops->decache_regs(vcpu);
1314 return 1;
1315 }
1316 EXPORT_SYMBOL_GPL(kvm_hypercall);
1317
1318 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1319 {
1320 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1321 }
1322
1323 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1324 {
1325 struct descriptor_table dt = { limit, base };
1326
1327 kvm_arch_ops->set_gdt(vcpu, &dt);
1328 }
1329
1330 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1331 {
1332 struct descriptor_table dt = { limit, base };
1333
1334 kvm_arch_ops->set_idt(vcpu, &dt);
1335 }
1336
1337 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1338 unsigned long *rflags)
1339 {
1340 lmsw(vcpu, msw);
1341 *rflags = kvm_arch_ops->get_rflags(vcpu);
1342 }
1343
1344 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1345 {
1346 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1347 switch (cr) {
1348 case 0:
1349 return vcpu->cr0;
1350 case 2:
1351 return vcpu->cr2;
1352 case 3:
1353 return vcpu->cr3;
1354 case 4:
1355 return vcpu->cr4;
1356 default:
1357 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1358 return 0;
1359 }
1360 }
1361
1362 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1363 unsigned long *rflags)
1364 {
1365 switch (cr) {
1366 case 0:
1367 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1368 *rflags = kvm_arch_ops->get_rflags(vcpu);
1369 break;
1370 case 2:
1371 vcpu->cr2 = val;
1372 break;
1373 case 3:
1374 set_cr3(vcpu, val);
1375 break;
1376 case 4:
1377 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1378 break;
1379 default:
1380 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1381 }
1382 }
1383
1384 /*
1385 * Register the para guest with the host:
1386 */
1387 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1388 {
1389 struct kvm_vcpu_para_state *para_state;
1390 hpa_t para_state_hpa, hypercall_hpa;
1391 struct page *para_state_page;
1392 unsigned char *hypercall;
1393 gpa_t hypercall_gpa;
1394
1395 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1396 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1397
1398 /*
1399 * Needs to be page aligned:
1400 */
1401 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1402 goto err_gp;
1403
1404 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1405 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1406 if (is_error_hpa(para_state_hpa))
1407 goto err_gp;
1408
1409 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1410 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1411 para_state = kmap_atomic(para_state_page, KM_USER0);
1412
1413 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1414 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1415
1416 para_state->host_version = KVM_PARA_API_VERSION;
1417 /*
1418 * We cannot support guests that try to register themselves
1419 * with a newer API version than the host supports:
1420 */
1421 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1422 para_state->ret = -KVM_EINVAL;
1423 goto err_kunmap_skip;
1424 }
1425
1426 hypercall_gpa = para_state->hypercall_gpa;
1427 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1428 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1429 if (is_error_hpa(hypercall_hpa)) {
1430 para_state->ret = -KVM_EINVAL;
1431 goto err_kunmap_skip;
1432 }
1433
1434 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1435 vcpu->para_state_page = para_state_page;
1436 vcpu->para_state_gpa = para_state_gpa;
1437 vcpu->hypercall_gpa = hypercall_gpa;
1438
1439 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1440 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1441 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1442 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1443 kunmap_atomic(hypercall, KM_USER1);
1444
1445 para_state->ret = 0;
1446 err_kunmap_skip:
1447 kunmap_atomic(para_state, KM_USER0);
1448 return 0;
1449 err_gp:
1450 return 1;
1451 }
1452
1453 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1454 {
1455 u64 data;
1456
1457 switch (msr) {
1458 case 0xc0010010: /* SYSCFG */
1459 case 0xc0010015: /* HWCR */
1460 case MSR_IA32_PLATFORM_ID:
1461 case MSR_IA32_P5_MC_ADDR:
1462 case MSR_IA32_P5_MC_TYPE:
1463 case MSR_IA32_MC0_CTL:
1464 case MSR_IA32_MCG_STATUS:
1465 case MSR_IA32_MCG_CAP:
1466 case MSR_IA32_MC0_MISC:
1467 case MSR_IA32_MC0_MISC+4:
1468 case MSR_IA32_MC0_MISC+8:
1469 case MSR_IA32_MC0_MISC+12:
1470 case MSR_IA32_MC0_MISC+16:
1471 case MSR_IA32_UCODE_REV:
1472 case MSR_IA32_PERF_STATUS:
1473 /* MTRR registers */
1474 case 0xfe:
1475 case 0x200 ... 0x2ff:
1476 data = 0;
1477 break;
1478 case 0xcd: /* fsb frequency */
1479 data = 3;
1480 break;
1481 case MSR_IA32_APICBASE:
1482 data = vcpu->apic_base;
1483 break;
1484 case MSR_IA32_MISC_ENABLE:
1485 data = vcpu->ia32_misc_enable_msr;
1486 break;
1487 #ifdef CONFIG_X86_64
1488 case MSR_EFER:
1489 data = vcpu->shadow_efer;
1490 break;
1491 #endif
1492 default:
1493 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1494 return 1;
1495 }
1496 *pdata = data;
1497 return 0;
1498 }
1499 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1500
1501 /*
1502 * Reads an msr value (of 'msr_index') into 'pdata'.
1503 * Returns 0 on success, non-0 otherwise.
1504 * Assumes vcpu_load() was already called.
1505 */
1506 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1507 {
1508 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1509 }
1510
1511 #ifdef CONFIG_X86_64
1512
1513 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1514 {
1515 if (efer & EFER_RESERVED_BITS) {
1516 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1517 efer);
1518 inject_gp(vcpu);
1519 return;
1520 }
1521
1522 if (is_paging(vcpu)
1523 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1524 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1525 inject_gp(vcpu);
1526 return;
1527 }
1528
1529 kvm_arch_ops->set_efer(vcpu, efer);
1530
1531 efer &= ~EFER_LMA;
1532 efer |= vcpu->shadow_efer & EFER_LMA;
1533
1534 vcpu->shadow_efer = efer;
1535 }
1536
1537 #endif
1538
1539 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1540 {
1541 switch (msr) {
1542 #ifdef CONFIG_X86_64
1543 case MSR_EFER:
1544 set_efer(vcpu, data);
1545 break;
1546 #endif
1547 case MSR_IA32_MC0_STATUS:
1548 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1549 __FUNCTION__, data);
1550 break;
1551 case MSR_IA32_MCG_STATUS:
1552 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1553 __FUNCTION__, data);
1554 break;
1555 case MSR_IA32_UCODE_REV:
1556 case MSR_IA32_UCODE_WRITE:
1557 case 0x200 ... 0x2ff: /* MTRRs */
1558 break;
1559 case MSR_IA32_APICBASE:
1560 vcpu->apic_base = data;
1561 break;
1562 case MSR_IA32_MISC_ENABLE:
1563 vcpu->ia32_misc_enable_msr = data;
1564 break;
1565 /*
1566 * This is the 'probe whether the host is KVM' logic:
1567 */
1568 case MSR_KVM_API_MAGIC:
1569 return vcpu_register_para(vcpu, data);
1570
1571 default:
1572 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1573 return 1;
1574 }
1575 return 0;
1576 }
1577 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1578
1579 /*
1580 * Writes msr value into into the appropriate "register".
1581 * Returns 0 on success, non-0 otherwise.
1582 * Assumes vcpu_load() was already called.
1583 */
1584 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1585 {
1586 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1587 }
1588
1589 void kvm_resched(struct kvm_vcpu *vcpu)
1590 {
1591 vcpu_put(vcpu);
1592 cond_resched();
1593 vcpu_load(vcpu);
1594 }
1595 EXPORT_SYMBOL_GPL(kvm_resched);
1596
1597 void load_msrs(struct vmx_msr_entry *e, int n)
1598 {
1599 int i;
1600
1601 for (i = 0; i < n; ++i)
1602 wrmsrl(e[i].index, e[i].data);
1603 }
1604 EXPORT_SYMBOL_GPL(load_msrs);
1605
1606 void save_msrs(struct vmx_msr_entry *e, int n)
1607 {
1608 int i;
1609
1610 for (i = 0; i < n; ++i)
1611 rdmsrl(e[i].index, e[i].data);
1612 }
1613 EXPORT_SYMBOL_GPL(save_msrs);
1614
1615 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1616 {
1617 int i;
1618 u32 function;
1619 struct kvm_cpuid_entry *e, *best;
1620
1621 kvm_arch_ops->cache_regs(vcpu);
1622 function = vcpu->regs[VCPU_REGS_RAX];
1623 vcpu->regs[VCPU_REGS_RAX] = 0;
1624 vcpu->regs[VCPU_REGS_RBX] = 0;
1625 vcpu->regs[VCPU_REGS_RCX] = 0;
1626 vcpu->regs[VCPU_REGS_RDX] = 0;
1627 best = NULL;
1628 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1629 e = &vcpu->cpuid_entries[i];
1630 if (e->function == function) {
1631 best = e;
1632 break;
1633 }
1634 /*
1635 * Both basic or both extended?
1636 */
1637 if (((e->function ^ function) & 0x80000000) == 0)
1638 if (!best || e->function > best->function)
1639 best = e;
1640 }
1641 if (best) {
1642 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1643 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1644 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1645 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1646 }
1647 kvm_arch_ops->decache_regs(vcpu);
1648 kvm_arch_ops->skip_emulated_instruction(vcpu);
1649 }
1650 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1651
1652 static int pio_copy_data(struct kvm_vcpu *vcpu)
1653 {
1654 void *p = vcpu->pio_data;
1655 void *q;
1656 unsigned bytes;
1657 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1658
1659 kvm_arch_ops->vcpu_put(vcpu);
1660 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1661 PAGE_KERNEL);
1662 if (!q) {
1663 kvm_arch_ops->vcpu_load(vcpu);
1664 free_pio_guest_pages(vcpu);
1665 return -ENOMEM;
1666 }
1667 q += vcpu->pio.guest_page_offset;
1668 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1669 if (vcpu->pio.in)
1670 memcpy(q, p, bytes);
1671 else
1672 memcpy(p, q, bytes);
1673 q -= vcpu->pio.guest_page_offset;
1674 vunmap(q);
1675 kvm_arch_ops->vcpu_load(vcpu);
1676 free_pio_guest_pages(vcpu);
1677 return 0;
1678 }
1679
1680 static int complete_pio(struct kvm_vcpu *vcpu)
1681 {
1682 struct kvm_pio_request *io = &vcpu->pio;
1683 long delta;
1684 int r;
1685
1686 kvm_arch_ops->cache_regs(vcpu);
1687
1688 if (!io->string) {
1689 if (io->in)
1690 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1691 io->size);
1692 } else {
1693 if (io->in) {
1694 r = pio_copy_data(vcpu);
1695 if (r) {
1696 kvm_arch_ops->cache_regs(vcpu);
1697 return r;
1698 }
1699 }
1700
1701 delta = 1;
1702 if (io->rep) {
1703 delta *= io->cur_count;
1704 /*
1705 * The size of the register should really depend on
1706 * current address size.
1707 */
1708 vcpu->regs[VCPU_REGS_RCX] -= delta;
1709 }
1710 if (io->down)
1711 delta = -delta;
1712 delta *= io->size;
1713 if (io->in)
1714 vcpu->regs[VCPU_REGS_RDI] += delta;
1715 else
1716 vcpu->regs[VCPU_REGS_RSI] += delta;
1717 }
1718
1719 vcpu->run->io_completed = 0;
1720
1721 kvm_arch_ops->decache_regs(vcpu);
1722
1723 io->count -= io->cur_count;
1724 io->cur_count = 0;
1725
1726 if (!io->count)
1727 kvm_arch_ops->skip_emulated_instruction(vcpu);
1728 return 0;
1729 }
1730
1731 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1732 int size, unsigned long count, int string, int down,
1733 gva_t address, int rep, unsigned port)
1734 {
1735 unsigned now, in_page;
1736 int i;
1737 int nr_pages = 1;
1738 struct page *page;
1739
1740 vcpu->run->exit_reason = KVM_EXIT_IO;
1741 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1742 vcpu->run->io.size = size;
1743 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1744 vcpu->run->io.count = count;
1745 vcpu->run->io.port = port;
1746 vcpu->pio.count = count;
1747 vcpu->pio.cur_count = count;
1748 vcpu->pio.size = size;
1749 vcpu->pio.in = in;
1750 vcpu->pio.string = string;
1751 vcpu->pio.down = down;
1752 vcpu->pio.guest_page_offset = offset_in_page(address);
1753 vcpu->pio.rep = rep;
1754
1755 if (!string) {
1756 kvm_arch_ops->cache_regs(vcpu);
1757 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1758 kvm_arch_ops->decache_regs(vcpu);
1759 return 0;
1760 }
1761
1762 if (!count) {
1763 kvm_arch_ops->skip_emulated_instruction(vcpu);
1764 return 1;
1765 }
1766
1767 now = min(count, PAGE_SIZE / size);
1768
1769 if (!down)
1770 in_page = PAGE_SIZE - offset_in_page(address);
1771 else
1772 in_page = offset_in_page(address) + size;
1773 now = min(count, (unsigned long)in_page / size);
1774 if (!now) {
1775 /*
1776 * String I/O straddles page boundary. Pin two guest pages
1777 * so that we satisfy atomicity constraints. Do just one
1778 * transaction to avoid complexity.
1779 */
1780 nr_pages = 2;
1781 now = 1;
1782 }
1783 if (down) {
1784 /*
1785 * String I/O in reverse. Yuck. Kill the guest, fix later.
1786 */
1787 printk(KERN_ERR "kvm: guest string pio down\n");
1788 inject_gp(vcpu);
1789 return 1;
1790 }
1791 vcpu->run->io.count = now;
1792 vcpu->pio.cur_count = now;
1793
1794 for (i = 0; i < nr_pages; ++i) {
1795 spin_lock(&vcpu->kvm->lock);
1796 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1797 if (page)
1798 get_page(page);
1799 vcpu->pio.guest_pages[i] = page;
1800 spin_unlock(&vcpu->kvm->lock);
1801 if (!page) {
1802 inject_gp(vcpu);
1803 free_pio_guest_pages(vcpu);
1804 return 1;
1805 }
1806 }
1807
1808 if (!vcpu->pio.in)
1809 return pio_copy_data(vcpu);
1810 return 0;
1811 }
1812 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1813
1814 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1815 {
1816 int r;
1817 sigset_t sigsaved;
1818
1819 vcpu_load(vcpu);
1820
1821 if (vcpu->sigset_active)
1822 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1823
1824 /* re-sync apic's tpr */
1825 vcpu->cr8 = kvm_run->cr8;
1826
1827 if (kvm_run->io_completed) {
1828 if (vcpu->pio.cur_count) {
1829 r = complete_pio(vcpu);
1830 if (r)
1831 goto out;
1832 } else {
1833 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1834 vcpu->mmio_read_completed = 1;
1835 }
1836 }
1837
1838 vcpu->mmio_needed = 0;
1839
1840 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1841 kvm_arch_ops->cache_regs(vcpu);
1842 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1843 kvm_arch_ops->decache_regs(vcpu);
1844 }
1845
1846 r = kvm_arch_ops->run(vcpu, kvm_run);
1847
1848 out:
1849 if (vcpu->sigset_active)
1850 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1851
1852 vcpu_put(vcpu);
1853 return r;
1854 }
1855
1856 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1857 struct kvm_regs *regs)
1858 {
1859 vcpu_load(vcpu);
1860
1861 kvm_arch_ops->cache_regs(vcpu);
1862
1863 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1864 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1865 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1866 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1867 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1868 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1869 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1870 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1871 #ifdef CONFIG_X86_64
1872 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1873 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1874 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1875 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1876 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1877 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1878 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1879 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1880 #endif
1881
1882 regs->rip = vcpu->rip;
1883 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1884
1885 /*
1886 * Don't leak debug flags in case they were set for guest debugging
1887 */
1888 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1889 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1890
1891 vcpu_put(vcpu);
1892
1893 return 0;
1894 }
1895
1896 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1897 struct kvm_regs *regs)
1898 {
1899 vcpu_load(vcpu);
1900
1901 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1902 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1903 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1904 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1905 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1906 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1907 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1908 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1909 #ifdef CONFIG_X86_64
1910 vcpu->regs[VCPU_REGS_R8] = regs->r8;
1911 vcpu->regs[VCPU_REGS_R9] = regs->r9;
1912 vcpu->regs[VCPU_REGS_R10] = regs->r10;
1913 vcpu->regs[VCPU_REGS_R11] = regs->r11;
1914 vcpu->regs[VCPU_REGS_R12] = regs->r12;
1915 vcpu->regs[VCPU_REGS_R13] = regs->r13;
1916 vcpu->regs[VCPU_REGS_R14] = regs->r14;
1917 vcpu->regs[VCPU_REGS_R15] = regs->r15;
1918 #endif
1919
1920 vcpu->rip = regs->rip;
1921 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1922
1923 kvm_arch_ops->decache_regs(vcpu);
1924
1925 vcpu_put(vcpu);
1926
1927 return 0;
1928 }
1929
1930 static void get_segment(struct kvm_vcpu *vcpu,
1931 struct kvm_segment *var, int seg)
1932 {
1933 return kvm_arch_ops->get_segment(vcpu, var, seg);
1934 }
1935
1936 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1937 struct kvm_sregs *sregs)
1938 {
1939 struct descriptor_table dt;
1940
1941 vcpu_load(vcpu);
1942
1943 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1944 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1945 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1946 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1947 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1948 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1949
1950 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1951 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1952
1953 kvm_arch_ops->get_idt(vcpu, &dt);
1954 sregs->idt.limit = dt.limit;
1955 sregs->idt.base = dt.base;
1956 kvm_arch_ops->get_gdt(vcpu, &dt);
1957 sregs->gdt.limit = dt.limit;
1958 sregs->gdt.base = dt.base;
1959
1960 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1961 sregs->cr0 = vcpu->cr0;
1962 sregs->cr2 = vcpu->cr2;
1963 sregs->cr3 = vcpu->cr3;
1964 sregs->cr4 = vcpu->cr4;
1965 sregs->cr8 = vcpu->cr8;
1966 sregs->efer = vcpu->shadow_efer;
1967 sregs->apic_base = vcpu->apic_base;
1968
1969 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1970 sizeof sregs->interrupt_bitmap);
1971
1972 vcpu_put(vcpu);
1973
1974 return 0;
1975 }
1976
1977 static void set_segment(struct kvm_vcpu *vcpu,
1978 struct kvm_segment *var, int seg)
1979 {
1980 return kvm_arch_ops->set_segment(vcpu, var, seg);
1981 }
1982
1983 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1984 struct kvm_sregs *sregs)
1985 {
1986 int mmu_reset_needed = 0;
1987 int i;
1988 struct descriptor_table dt;
1989
1990 vcpu_load(vcpu);
1991
1992 dt.limit = sregs->idt.limit;
1993 dt.base = sregs->idt.base;
1994 kvm_arch_ops->set_idt(vcpu, &dt);
1995 dt.limit = sregs->gdt.limit;
1996 dt.base = sregs->gdt.base;
1997 kvm_arch_ops->set_gdt(vcpu, &dt);
1998
1999 vcpu->cr2 = sregs->cr2;
2000 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2001 vcpu->cr3 = sregs->cr3;
2002
2003 vcpu->cr8 = sregs->cr8;
2004
2005 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2006 #ifdef CONFIG_X86_64
2007 kvm_arch_ops->set_efer(vcpu, sregs->efer);
2008 #endif
2009 vcpu->apic_base = sregs->apic_base;
2010
2011 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
2012
2013 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2014 kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2015
2016 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2017 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2018 if (!is_long_mode(vcpu) && is_pae(vcpu))
2019 load_pdptrs(vcpu, vcpu->cr3);
2020
2021 if (mmu_reset_needed)
2022 kvm_mmu_reset_context(vcpu);
2023
2024 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2025 sizeof vcpu->irq_pending);
2026 vcpu->irq_summary = 0;
2027 for (i = 0; i < NR_IRQ_WORDS; ++i)
2028 if (vcpu->irq_pending[i])
2029 __set_bit(i, &vcpu->irq_summary);
2030
2031 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2032 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2033 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2034 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2035 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2036 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2037
2038 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2039 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2040
2041 vcpu_put(vcpu);
2042
2043 return 0;
2044 }
2045
2046 /*
2047 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2048 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2049 *
2050 * This list is modified at module load time to reflect the
2051 * capabilities of the host cpu.
2052 */
2053 static u32 msrs_to_save[] = {
2054 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2055 MSR_K6_STAR,
2056 #ifdef CONFIG_X86_64
2057 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2058 #endif
2059 MSR_IA32_TIME_STAMP_COUNTER,
2060 };
2061
2062 static unsigned num_msrs_to_save;
2063
2064 static u32 emulated_msrs[] = {
2065 MSR_IA32_MISC_ENABLE,
2066 };
2067
2068 static __init void kvm_init_msr_list(void)
2069 {
2070 u32 dummy[2];
2071 unsigned i, j;
2072
2073 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2074 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2075 continue;
2076 if (j < i)
2077 msrs_to_save[j] = msrs_to_save[i];
2078 j++;
2079 }
2080 num_msrs_to_save = j;
2081 }
2082
2083 /*
2084 * Adapt set_msr() to msr_io()'s calling convention
2085 */
2086 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2087 {
2088 return set_msr(vcpu, index, *data);
2089 }
2090
2091 /*
2092 * Read or write a bunch of msrs. All parameters are kernel addresses.
2093 *
2094 * @return number of msrs set successfully.
2095 */
2096 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2097 struct kvm_msr_entry *entries,
2098 int (*do_msr)(struct kvm_vcpu *vcpu,
2099 unsigned index, u64 *data))
2100 {
2101 int i;
2102
2103 vcpu_load(vcpu);
2104
2105 for (i = 0; i < msrs->nmsrs; ++i)
2106 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2107 break;
2108
2109 vcpu_put(vcpu);
2110
2111 return i;
2112 }
2113
2114 /*
2115 * Read or write a bunch of msrs. Parameters are user addresses.
2116 *
2117 * @return number of msrs set successfully.
2118 */
2119 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2120 int (*do_msr)(struct kvm_vcpu *vcpu,
2121 unsigned index, u64 *data),
2122 int writeback)
2123 {
2124 struct kvm_msrs msrs;
2125 struct kvm_msr_entry *entries;
2126 int r, n;
2127 unsigned size;
2128
2129 r = -EFAULT;
2130 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2131 goto out;
2132
2133 r = -E2BIG;
2134 if (msrs.nmsrs >= MAX_IO_MSRS)
2135 goto out;
2136
2137 r = -ENOMEM;
2138 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2139 entries = vmalloc(size);
2140 if (!entries)
2141 goto out;
2142
2143 r = -EFAULT;
2144 if (copy_from_user(entries, user_msrs->entries, size))
2145 goto out_free;
2146
2147 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2148 if (r < 0)
2149 goto out_free;
2150
2151 r = -EFAULT;
2152 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2153 goto out_free;
2154
2155 r = n;
2156
2157 out_free:
2158 vfree(entries);
2159 out:
2160 return r;
2161 }
2162
2163 /*
2164 * Translate a guest virtual address to a guest physical address.
2165 */
2166 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2167 struct kvm_translation *tr)
2168 {
2169 unsigned long vaddr = tr->linear_address;
2170 gpa_t gpa;
2171
2172 vcpu_load(vcpu);
2173 spin_lock(&vcpu->kvm->lock);
2174 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2175 tr->physical_address = gpa;
2176 tr->valid = gpa != UNMAPPED_GVA;
2177 tr->writeable = 1;
2178 tr->usermode = 0;
2179 spin_unlock(&vcpu->kvm->lock);
2180 vcpu_put(vcpu);
2181
2182 return 0;
2183 }
2184
2185 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2186 struct kvm_interrupt *irq)
2187 {
2188 if (irq->irq < 0 || irq->irq >= 256)
2189 return -EINVAL;
2190 vcpu_load(vcpu);
2191
2192 set_bit(irq->irq, vcpu->irq_pending);
2193 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2194
2195 vcpu_put(vcpu);
2196
2197 return 0;
2198 }
2199
2200 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2201 struct kvm_debug_guest *dbg)
2202 {
2203 int r;
2204
2205 vcpu_load(vcpu);
2206
2207 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2208
2209 vcpu_put(vcpu);
2210
2211 return r;
2212 }
2213
2214 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2215 unsigned long address,
2216 int *type)
2217 {
2218 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2219 unsigned long pgoff;
2220 struct page *page;
2221
2222 *type = VM_FAULT_MINOR;
2223 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2224 if (pgoff == 0)
2225 page = virt_to_page(vcpu->run);
2226 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2227 page = virt_to_page(vcpu->pio_data);
2228 else
2229 return NOPAGE_SIGBUS;
2230 get_page(page);
2231 return page;
2232 }
2233
2234 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2235 .nopage = kvm_vcpu_nopage,
2236 };
2237
2238 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2239 {
2240 vma->vm_ops = &kvm_vcpu_vm_ops;
2241 return 0;
2242 }
2243
2244 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2245 {
2246 struct kvm_vcpu *vcpu = filp->private_data;
2247
2248 fput(vcpu->kvm->filp);
2249 return 0;
2250 }
2251
2252 static struct file_operations kvm_vcpu_fops = {
2253 .release = kvm_vcpu_release,
2254 .unlocked_ioctl = kvm_vcpu_ioctl,
2255 .compat_ioctl = kvm_vcpu_ioctl,
2256 .mmap = kvm_vcpu_mmap,
2257 };
2258
2259 /*
2260 * Allocates an inode for the vcpu.
2261 */
2262 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2263 {
2264 int fd, r;
2265 struct inode *inode;
2266 struct file *file;
2267
2268 atomic_inc(&vcpu->kvm->filp->f_count);
2269 inode = kvmfs_inode(&kvm_vcpu_fops);
2270 if (IS_ERR(inode)) {
2271 r = PTR_ERR(inode);
2272 goto out1;
2273 }
2274
2275 file = kvmfs_file(inode, vcpu);
2276 if (IS_ERR(file)) {
2277 r = PTR_ERR(file);
2278 goto out2;
2279 }
2280
2281 r = get_unused_fd();
2282 if (r < 0)
2283 goto out3;
2284 fd = r;
2285 fd_install(fd, file);
2286
2287 return fd;
2288
2289 out3:
2290 fput(file);
2291 out2:
2292 iput(inode);
2293 out1:
2294 fput(vcpu->kvm->filp);
2295 return r;
2296 }
2297
2298 /*
2299 * Creates some virtual cpus. Good luck creating more than one.
2300 */
2301 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2302 {
2303 int r;
2304 struct kvm_vcpu *vcpu;
2305 struct page *page;
2306
2307 r = -EINVAL;
2308 if (!valid_vcpu(n))
2309 goto out;
2310
2311 vcpu = &kvm->vcpus[n];
2312
2313 mutex_lock(&vcpu->mutex);
2314
2315 if (vcpu->vmcs) {
2316 mutex_unlock(&vcpu->mutex);
2317 return -EEXIST;
2318 }
2319
2320 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2321 r = -ENOMEM;
2322 if (!page)
2323 goto out_unlock;
2324 vcpu->run = page_address(page);
2325
2326 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2327 r = -ENOMEM;
2328 if (!page)
2329 goto out_free_run;
2330 vcpu->pio_data = page_address(page);
2331
2332 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
2333 FX_IMAGE_ALIGN);
2334 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
2335 vcpu->cr0 = 0x10;
2336
2337 r = kvm_arch_ops->vcpu_create(vcpu);
2338 if (r < 0)
2339 goto out_free_vcpus;
2340
2341 r = kvm_mmu_create(vcpu);
2342 if (r < 0)
2343 goto out_free_vcpus;
2344
2345 kvm_arch_ops->vcpu_load(vcpu);
2346 r = kvm_mmu_setup(vcpu);
2347 if (r >= 0)
2348 r = kvm_arch_ops->vcpu_setup(vcpu);
2349 vcpu_put(vcpu);
2350
2351 if (r < 0)
2352 goto out_free_vcpus;
2353
2354 r = create_vcpu_fd(vcpu);
2355 if (r < 0)
2356 goto out_free_vcpus;
2357
2358 return r;
2359
2360 out_free_vcpus:
2361 kvm_free_vcpu(vcpu);
2362 out_free_run:
2363 free_page((unsigned long)vcpu->run);
2364 vcpu->run = NULL;
2365 out_unlock:
2366 mutex_unlock(&vcpu->mutex);
2367 out:
2368 return r;
2369 }
2370
2371 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2372 struct kvm_cpuid *cpuid,
2373 struct kvm_cpuid_entry __user *entries)
2374 {
2375 int r;
2376
2377 r = -E2BIG;
2378 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2379 goto out;
2380 r = -EFAULT;
2381 if (copy_from_user(&vcpu->cpuid_entries, entries,
2382 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2383 goto out;
2384 vcpu->cpuid_nent = cpuid->nent;
2385 return 0;
2386
2387 out:
2388 return r;
2389 }
2390
2391 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2392 {
2393 if (sigset) {
2394 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2395 vcpu->sigset_active = 1;
2396 vcpu->sigset = *sigset;
2397 } else
2398 vcpu->sigset_active = 0;
2399 return 0;
2400 }
2401
2402 /*
2403 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2404 * we have asm/x86/processor.h
2405 */
2406 struct fxsave {
2407 u16 cwd;
2408 u16 swd;
2409 u16 twd;
2410 u16 fop;
2411 u64 rip;
2412 u64 rdp;
2413 u32 mxcsr;
2414 u32 mxcsr_mask;
2415 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2416 #ifdef CONFIG_X86_64
2417 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2418 #else
2419 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2420 #endif
2421 };
2422
2423 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2424 {
2425 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2426
2427 vcpu_load(vcpu);
2428
2429 memcpy(fpu->fpr, fxsave->st_space, 128);
2430 fpu->fcw = fxsave->cwd;
2431 fpu->fsw = fxsave->swd;
2432 fpu->ftwx = fxsave->twd;
2433 fpu->last_opcode = fxsave->fop;
2434 fpu->last_ip = fxsave->rip;
2435 fpu->last_dp = fxsave->rdp;
2436 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2437
2438 vcpu_put(vcpu);
2439
2440 return 0;
2441 }
2442
2443 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2444 {
2445 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2446
2447 vcpu_load(vcpu);
2448
2449 memcpy(fxsave->st_space, fpu->fpr, 128);
2450 fxsave->cwd = fpu->fcw;
2451 fxsave->swd = fpu->fsw;
2452 fxsave->twd = fpu->ftwx;
2453 fxsave->fop = fpu->last_opcode;
2454 fxsave->rip = fpu->last_ip;
2455 fxsave->rdp = fpu->last_dp;
2456 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2457
2458 vcpu_put(vcpu);
2459
2460 return 0;
2461 }
2462
2463 static long kvm_vcpu_ioctl(struct file *filp,
2464 unsigned int ioctl, unsigned long arg)
2465 {
2466 struct kvm_vcpu *vcpu = filp->private_data;
2467 void __user *argp = (void __user *)arg;
2468 int r = -EINVAL;
2469
2470 switch (ioctl) {
2471 case KVM_RUN:
2472 r = -EINVAL;
2473 if (arg)
2474 goto out;
2475 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2476 break;
2477 case KVM_GET_REGS: {
2478 struct kvm_regs kvm_regs;
2479
2480 memset(&kvm_regs, 0, sizeof kvm_regs);
2481 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2482 if (r)
2483 goto out;
2484 r = -EFAULT;
2485 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2486 goto out;
2487 r = 0;
2488 break;
2489 }
2490 case KVM_SET_REGS: {
2491 struct kvm_regs kvm_regs;
2492
2493 r = -EFAULT;
2494 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2495 goto out;
2496 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2497 if (r)
2498 goto out;
2499 r = 0;
2500 break;
2501 }
2502 case KVM_GET_SREGS: {
2503 struct kvm_sregs kvm_sregs;
2504
2505 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2506 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2507 if (r)
2508 goto out;
2509 r = -EFAULT;
2510 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2511 goto out;
2512 r = 0;
2513 break;
2514 }
2515 case KVM_SET_SREGS: {
2516 struct kvm_sregs kvm_sregs;
2517
2518 r = -EFAULT;
2519 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2520 goto out;
2521 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2522 if (r)
2523 goto out;
2524 r = 0;
2525 break;
2526 }
2527 case KVM_TRANSLATE: {
2528 struct kvm_translation tr;
2529
2530 r = -EFAULT;
2531 if (copy_from_user(&tr, argp, sizeof tr))
2532 goto out;
2533 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2534 if (r)
2535 goto out;
2536 r = -EFAULT;
2537 if (copy_to_user(argp, &tr, sizeof tr))
2538 goto out;
2539 r = 0;
2540 break;
2541 }
2542 case KVM_INTERRUPT: {
2543 struct kvm_interrupt irq;
2544
2545 r = -EFAULT;
2546 if (copy_from_user(&irq, argp, sizeof irq))
2547 goto out;
2548 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2549 if (r)
2550 goto out;
2551 r = 0;
2552 break;
2553 }
2554 case KVM_DEBUG_GUEST: {
2555 struct kvm_debug_guest dbg;
2556
2557 r = -EFAULT;
2558 if (copy_from_user(&dbg, argp, sizeof dbg))
2559 goto out;
2560 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2561 if (r)
2562 goto out;
2563 r = 0;
2564 break;
2565 }
2566 case KVM_GET_MSRS:
2567 r = msr_io(vcpu, argp, get_msr, 1);
2568 break;
2569 case KVM_SET_MSRS:
2570 r = msr_io(vcpu, argp, do_set_msr, 0);
2571 break;
2572 case KVM_SET_CPUID: {
2573 struct kvm_cpuid __user *cpuid_arg = argp;
2574 struct kvm_cpuid cpuid;
2575
2576 r = -EFAULT;
2577 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2578 goto out;
2579 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2580 if (r)
2581 goto out;
2582 break;
2583 }
2584 case KVM_SET_SIGNAL_MASK: {
2585 struct kvm_signal_mask __user *sigmask_arg = argp;
2586 struct kvm_signal_mask kvm_sigmask;
2587 sigset_t sigset, *p;
2588
2589 p = NULL;
2590 if (argp) {
2591 r = -EFAULT;
2592 if (copy_from_user(&kvm_sigmask, argp,
2593 sizeof kvm_sigmask))
2594 goto out;
2595 r = -EINVAL;
2596 if (kvm_sigmask.len != sizeof sigset)
2597 goto out;
2598 r = -EFAULT;
2599 if (copy_from_user(&sigset, sigmask_arg->sigset,
2600 sizeof sigset))
2601 goto out;
2602 p = &sigset;
2603 }
2604 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2605 break;
2606 }
2607 case KVM_GET_FPU: {
2608 struct kvm_fpu fpu;
2609
2610 memset(&fpu, 0, sizeof fpu);
2611 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2612 if (r)
2613 goto out;
2614 r = -EFAULT;
2615 if (copy_to_user(argp, &fpu, sizeof fpu))
2616 goto out;
2617 r = 0;
2618 break;
2619 }
2620 case KVM_SET_FPU: {
2621 struct kvm_fpu fpu;
2622
2623 r = -EFAULT;
2624 if (copy_from_user(&fpu, argp, sizeof fpu))
2625 goto out;
2626 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2627 if (r)
2628 goto out;
2629 r = 0;
2630 break;
2631 }
2632 default:
2633 ;
2634 }
2635 out:
2636 return r;
2637 }
2638
2639 static long kvm_vm_ioctl(struct file *filp,
2640 unsigned int ioctl, unsigned long arg)
2641 {
2642 struct kvm *kvm = filp->private_data;
2643 void __user *argp = (void __user *)arg;
2644 int r = -EINVAL;
2645
2646 switch (ioctl) {
2647 case KVM_CREATE_VCPU:
2648 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2649 if (r < 0)
2650 goto out;
2651 break;
2652 case KVM_SET_MEMORY_REGION: {
2653 struct kvm_memory_region kvm_mem;
2654
2655 r = -EFAULT;
2656 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2657 goto out;
2658 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2659 if (r)
2660 goto out;
2661 break;
2662 }
2663 case KVM_GET_DIRTY_LOG: {
2664 struct kvm_dirty_log log;
2665
2666 r = -EFAULT;
2667 if (copy_from_user(&log, argp, sizeof log))
2668 goto out;
2669 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2670 if (r)
2671 goto out;
2672 break;
2673 }
2674 case KVM_SET_MEMORY_ALIAS: {
2675 struct kvm_memory_alias alias;
2676
2677 r = -EFAULT;
2678 if (copy_from_user(&alias, argp, sizeof alias))
2679 goto out;
2680 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2681 if (r)
2682 goto out;
2683 break;
2684 }
2685 default:
2686 ;
2687 }
2688 out:
2689 return r;
2690 }
2691
2692 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2693 unsigned long address,
2694 int *type)
2695 {
2696 struct kvm *kvm = vma->vm_file->private_data;
2697 unsigned long pgoff;
2698 struct page *page;
2699
2700 *type = VM_FAULT_MINOR;
2701 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2702 page = gfn_to_page(kvm, pgoff);
2703 if (!page)
2704 return NOPAGE_SIGBUS;
2705 get_page(page);
2706 return page;
2707 }
2708
2709 static struct vm_operations_struct kvm_vm_vm_ops = {
2710 .nopage = kvm_vm_nopage,
2711 };
2712
2713 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2714 {
2715 vma->vm_ops = &kvm_vm_vm_ops;
2716 return 0;
2717 }
2718
2719 static struct file_operations kvm_vm_fops = {
2720 .release = kvm_vm_release,
2721 .unlocked_ioctl = kvm_vm_ioctl,
2722 .compat_ioctl = kvm_vm_ioctl,
2723 .mmap = kvm_vm_mmap,
2724 };
2725
2726 static int kvm_dev_ioctl_create_vm(void)
2727 {
2728 int fd, r;
2729 struct inode *inode;
2730 struct file *file;
2731 struct kvm *kvm;
2732
2733 inode = kvmfs_inode(&kvm_vm_fops);
2734 if (IS_ERR(inode)) {
2735 r = PTR_ERR(inode);
2736 goto out1;
2737 }
2738
2739 kvm = kvm_create_vm();
2740 if (IS_ERR(kvm)) {
2741 r = PTR_ERR(kvm);
2742 goto out2;
2743 }
2744
2745 file = kvmfs_file(inode, kvm);
2746 if (IS_ERR(file)) {
2747 r = PTR_ERR(file);
2748 goto out3;
2749 }
2750 kvm->filp = file;
2751
2752 r = get_unused_fd();
2753 if (r < 0)
2754 goto out4;
2755 fd = r;
2756 fd_install(fd, file);
2757
2758 return fd;
2759
2760 out4:
2761 fput(file);
2762 out3:
2763 kvm_destroy_vm(kvm);
2764 out2:
2765 iput(inode);
2766 out1:
2767 return r;
2768 }
2769
2770 static long kvm_dev_ioctl(struct file *filp,
2771 unsigned int ioctl, unsigned long arg)
2772 {
2773 void __user *argp = (void __user *)arg;
2774 long r = -EINVAL;
2775
2776 switch (ioctl) {
2777 case KVM_GET_API_VERSION:
2778 r = -EINVAL;
2779 if (arg)
2780 goto out;
2781 r = KVM_API_VERSION;
2782 break;
2783 case KVM_CREATE_VM:
2784 r = -EINVAL;
2785 if (arg)
2786 goto out;
2787 r = kvm_dev_ioctl_create_vm();
2788 break;
2789 case KVM_GET_MSR_INDEX_LIST: {
2790 struct kvm_msr_list __user *user_msr_list = argp;
2791 struct kvm_msr_list msr_list;
2792 unsigned n;
2793
2794 r = -EFAULT;
2795 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2796 goto out;
2797 n = msr_list.nmsrs;
2798 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2799 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2800 goto out;
2801 r = -E2BIG;
2802 if (n < num_msrs_to_save)
2803 goto out;
2804 r = -EFAULT;
2805 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2806 num_msrs_to_save * sizeof(u32)))
2807 goto out;
2808 if (copy_to_user(user_msr_list->indices
2809 + num_msrs_to_save * sizeof(u32),
2810 &emulated_msrs,
2811 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2812 goto out;
2813 r = 0;
2814 break;
2815 }
2816 case KVM_CHECK_EXTENSION:
2817 /*
2818 * No extensions defined at present.
2819 */
2820 r = 0;
2821 break;
2822 case KVM_GET_VCPU_MMAP_SIZE:
2823 r = -EINVAL;
2824 if (arg)
2825 goto out;
2826 r = 2 * PAGE_SIZE;
2827 break;
2828 default:
2829 ;
2830 }
2831 out:
2832 return r;
2833 }
2834
2835 static struct file_operations kvm_chardev_ops = {
2836 .open = kvm_dev_open,
2837 .release = kvm_dev_release,
2838 .unlocked_ioctl = kvm_dev_ioctl,
2839 .compat_ioctl = kvm_dev_ioctl,
2840 };
2841
2842 static struct miscdevice kvm_dev = {
2843 KVM_MINOR,
2844 "kvm",
2845 &kvm_chardev_ops,
2846 };
2847
2848 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2849 void *v)
2850 {
2851 if (val == SYS_RESTART) {
2852 /*
2853 * Some (well, at least mine) BIOSes hang on reboot if
2854 * in vmx root mode.
2855 */
2856 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2857 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2858 }
2859 return NOTIFY_OK;
2860 }
2861
2862 static struct notifier_block kvm_reboot_notifier = {
2863 .notifier_call = kvm_reboot,
2864 .priority = 0,
2865 };
2866
2867 /*
2868 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2869 * cached on it.
2870 */
2871 static void decache_vcpus_on_cpu(int cpu)
2872 {
2873 struct kvm *vm;
2874 struct kvm_vcpu *vcpu;
2875 int i;
2876
2877 spin_lock(&kvm_lock);
2878 list_for_each_entry(vm, &vm_list, vm_list)
2879 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2880 vcpu = &vm->vcpus[i];
2881 /*
2882 * If the vcpu is locked, then it is running on some
2883 * other cpu and therefore it is not cached on the
2884 * cpu in question.
2885 *
2886 * If it's not locked, check the last cpu it executed
2887 * on.
2888 */
2889 if (mutex_trylock(&vcpu->mutex)) {
2890 if (vcpu->cpu == cpu) {
2891 kvm_arch_ops->vcpu_decache(vcpu);
2892 vcpu->cpu = -1;
2893 }
2894 mutex_unlock(&vcpu->mutex);
2895 }
2896 }
2897 spin_unlock(&kvm_lock);
2898 }
2899
2900 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2901 void *v)
2902 {
2903 int cpu = (long)v;
2904
2905 switch (val) {
2906 case CPU_DOWN_PREPARE:
2907 case CPU_UP_CANCELED:
2908 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2909 cpu);
2910 decache_vcpus_on_cpu(cpu);
2911 smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
2912 NULL, 0, 1);
2913 break;
2914 case CPU_ONLINE:
2915 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2916 cpu);
2917 smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
2918 NULL, 0, 1);
2919 break;
2920 }
2921 return NOTIFY_OK;
2922 }
2923
2924 static struct notifier_block kvm_cpu_notifier = {
2925 .notifier_call = kvm_cpu_hotplug,
2926 .priority = 20, /* must be > scheduler priority */
2927 };
2928
2929 static __init void kvm_init_debug(void)
2930 {
2931 struct kvm_stats_debugfs_item *p;
2932
2933 debugfs_dir = debugfs_create_dir("kvm", NULL);
2934 for (p = debugfs_entries; p->name; ++p)
2935 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
2936 p->data);
2937 }
2938
2939 static void kvm_exit_debug(void)
2940 {
2941 struct kvm_stats_debugfs_item *p;
2942
2943 for (p = debugfs_entries; p->name; ++p)
2944 debugfs_remove(p->dentry);
2945 debugfs_remove(debugfs_dir);
2946 }
2947
2948 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2949 {
2950 decache_vcpus_on_cpu(raw_smp_processor_id());
2951 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2952 return 0;
2953 }
2954
2955 static int kvm_resume(struct sys_device *dev)
2956 {
2957 on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2958 return 0;
2959 }
2960
2961 static struct sysdev_class kvm_sysdev_class = {
2962 set_kset_name("kvm"),
2963 .suspend = kvm_suspend,
2964 .resume = kvm_resume,
2965 };
2966
2967 static struct sys_device kvm_sysdev = {
2968 .id = 0,
2969 .cls = &kvm_sysdev_class,
2970 };
2971
2972 hpa_t bad_page_address;
2973
2974 static int kvmfs_get_sb(struct file_system_type *fs_type, int flags,
2975 const char *dev_name, void *data, struct vfsmount *mnt)
2976 {
2977 return get_sb_pseudo(fs_type, "kvm:", NULL, KVMFS_SUPER_MAGIC, mnt);
2978 }
2979
2980 static struct file_system_type kvm_fs_type = {
2981 .name = "kvmfs",
2982 .get_sb = kvmfs_get_sb,
2983 .kill_sb = kill_anon_super,
2984 };
2985
2986 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
2987 {
2988 int r;
2989
2990 if (kvm_arch_ops) {
2991 printk(KERN_ERR "kvm: already loaded the other module\n");
2992 return -EEXIST;
2993 }
2994
2995 if (!ops->cpu_has_kvm_support()) {
2996 printk(KERN_ERR "kvm: no hardware support\n");
2997 return -EOPNOTSUPP;
2998 }
2999 if (ops->disabled_by_bios()) {
3000 printk(KERN_ERR "kvm: disabled by bios\n");
3001 return -EOPNOTSUPP;
3002 }
3003
3004 kvm_arch_ops = ops;
3005
3006 r = kvm_arch_ops->hardware_setup();
3007 if (r < 0)
3008 goto out;
3009
3010 on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
3011 r = register_cpu_notifier(&kvm_cpu_notifier);
3012 if (r)
3013 goto out_free_1;
3014 register_reboot_notifier(&kvm_reboot_notifier);
3015
3016 r = sysdev_class_register(&kvm_sysdev_class);
3017 if (r)
3018 goto out_free_2;
3019
3020 r = sysdev_register(&kvm_sysdev);
3021 if (r)
3022 goto out_free_3;
3023
3024 kvm_chardev_ops.owner = module;
3025
3026 r = misc_register(&kvm_dev);
3027 if (r) {
3028 printk (KERN_ERR "kvm: misc device register failed\n");
3029 goto out_free;
3030 }
3031
3032 return r;
3033
3034 out_free:
3035 sysdev_unregister(&kvm_sysdev);
3036 out_free_3:
3037 sysdev_class_unregister(&kvm_sysdev_class);
3038 out_free_2:
3039 unregister_reboot_notifier(&kvm_reboot_notifier);
3040 unregister_cpu_notifier(&kvm_cpu_notifier);
3041 out_free_1:
3042 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
3043 kvm_arch_ops->hardware_unsetup();
3044 out:
3045 kvm_arch_ops = NULL;
3046 return r;
3047 }
3048
3049 void kvm_exit_arch(void)
3050 {
3051 misc_deregister(&kvm_dev);
3052 sysdev_unregister(&kvm_sysdev);
3053 sysdev_class_unregister(&kvm_sysdev_class);
3054 unregister_reboot_notifier(&kvm_reboot_notifier);
3055 unregister_cpu_notifier(&kvm_cpu_notifier);
3056 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
3057 kvm_arch_ops->hardware_unsetup();
3058 kvm_arch_ops = NULL;
3059 }
3060
3061 static __init int kvm_init(void)
3062 {
3063 static struct page *bad_page;
3064 int r;
3065
3066 r = register_filesystem(&kvm_fs_type);
3067 if (r)
3068 goto out3;
3069
3070 kvmfs_mnt = kern_mount(&kvm_fs_type);
3071 r = PTR_ERR(kvmfs_mnt);
3072 if (IS_ERR(kvmfs_mnt))
3073 goto out2;
3074 kvm_init_debug();
3075
3076 kvm_init_msr_list();
3077
3078 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3079 r = -ENOMEM;
3080 goto out;
3081 }
3082
3083 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3084 memset(__va(bad_page_address), 0, PAGE_SIZE);
3085
3086 return 0;
3087
3088 out:
3089 kvm_exit_debug();
3090 mntput(kvmfs_mnt);
3091 out2:
3092 unregister_filesystem(&kvm_fs_type);
3093 out3:
3094 return r;
3095 }
3096
3097 static __exit void kvm_exit(void)
3098 {
3099 kvm_exit_debug();
3100 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3101 mntput(kvmfs_mnt);
3102 unregister_filesystem(&kvm_fs_type);
3103 }
3104
3105 module_init(kvm_init)
3106 module_exit(kvm_exit)
3107
3108 EXPORT_SYMBOL_GPL(kvm_init_arch);
3109 EXPORT_SYMBOL_GPL(kvm_exit_arch);
This page took 0.188297 seconds and 6 git commands to generate.