KVM: Use ARRAY_SIZE macro instead of manual calculation.
[deliverable/linux.git] / drivers / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <asm/msr.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
32 #include <asm/io.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
36 #include <asm/desc.h>
37 #include <linux/sysdev.h>
38 #include <linux/cpu.h>
39
40 #include "x86_emulate.h"
41 #include "segment_descriptor.h"
42
43 MODULE_AUTHOR("Qumranet");
44 MODULE_LICENSE("GPL");
45
46 static DEFINE_SPINLOCK(kvm_lock);
47 static LIST_HEAD(vm_list);
48
49 struct kvm_arch_ops *kvm_arch_ops;
50 struct kvm_stat kvm_stat;
51 EXPORT_SYMBOL_GPL(kvm_stat);
52
53 static struct kvm_stats_debugfs_item {
54 const char *name;
55 u32 *data;
56 struct dentry *dentry;
57 } debugfs_entries[] = {
58 { "pf_fixed", &kvm_stat.pf_fixed },
59 { "pf_guest", &kvm_stat.pf_guest },
60 { "tlb_flush", &kvm_stat.tlb_flush },
61 { "invlpg", &kvm_stat.invlpg },
62 { "exits", &kvm_stat.exits },
63 { "io_exits", &kvm_stat.io_exits },
64 { "mmio_exits", &kvm_stat.mmio_exits },
65 { "signal_exits", &kvm_stat.signal_exits },
66 { "irq_window", &kvm_stat.irq_window_exits },
67 { "halt_exits", &kvm_stat.halt_exits },
68 { "request_irq", &kvm_stat.request_irq_exits },
69 { "irq_exits", &kvm_stat.irq_exits },
70 { NULL, NULL }
71 };
72
73 static struct dentry *debugfs_dir;
74
75 #define MAX_IO_MSRS 256
76
77 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
78 #define LMSW_GUEST_MASK 0x0eULL
79 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
80 #define CR8_RESEVED_BITS (~0x0fULL)
81 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
82
83 #ifdef CONFIG_X86_64
84 // LDT or TSS descriptor in the GDT. 16 bytes.
85 struct segment_descriptor_64 {
86 struct segment_descriptor s;
87 u32 base_higher;
88 u32 pad_zero;
89 };
90
91 #endif
92
93 unsigned long segment_base(u16 selector)
94 {
95 struct descriptor_table gdt;
96 struct segment_descriptor *d;
97 unsigned long table_base;
98 typedef unsigned long ul;
99 unsigned long v;
100
101 if (selector == 0)
102 return 0;
103
104 asm ("sgdt %0" : "=m"(gdt));
105 table_base = gdt.base;
106
107 if (selector & 4) { /* from ldt */
108 u16 ldt_selector;
109
110 asm ("sldt %0" : "=g"(ldt_selector));
111 table_base = segment_base(ldt_selector);
112 }
113 d = (struct segment_descriptor *)(table_base + (selector & ~7));
114 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
115 #ifdef CONFIG_X86_64
116 if (d->system == 0
117 && (d->type == 2 || d->type == 9 || d->type == 11))
118 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
119 #endif
120 return v;
121 }
122 EXPORT_SYMBOL_GPL(segment_base);
123
124 static inline int valid_vcpu(int n)
125 {
126 return likely(n >= 0 && n < KVM_MAX_VCPUS);
127 }
128
129 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
130 void *dest)
131 {
132 unsigned char *host_buf = dest;
133 unsigned long req_size = size;
134
135 while (size) {
136 hpa_t paddr;
137 unsigned now;
138 unsigned offset;
139 hva_t guest_buf;
140
141 paddr = gva_to_hpa(vcpu, addr);
142
143 if (is_error_hpa(paddr))
144 break;
145
146 guest_buf = (hva_t)kmap_atomic(
147 pfn_to_page(paddr >> PAGE_SHIFT),
148 KM_USER0);
149 offset = addr & ~PAGE_MASK;
150 guest_buf |= offset;
151 now = min(size, PAGE_SIZE - offset);
152 memcpy(host_buf, (void*)guest_buf, now);
153 host_buf += now;
154 addr += now;
155 size -= now;
156 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
157 }
158 return req_size - size;
159 }
160 EXPORT_SYMBOL_GPL(kvm_read_guest);
161
162 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
163 void *data)
164 {
165 unsigned char *host_buf = data;
166 unsigned long req_size = size;
167
168 while (size) {
169 hpa_t paddr;
170 unsigned now;
171 unsigned offset;
172 hva_t guest_buf;
173
174 paddr = gva_to_hpa(vcpu, addr);
175
176 if (is_error_hpa(paddr))
177 break;
178
179 guest_buf = (hva_t)kmap_atomic(
180 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
181 offset = addr & ~PAGE_MASK;
182 guest_buf |= offset;
183 now = min(size, PAGE_SIZE - offset);
184 memcpy((void*)guest_buf, host_buf, now);
185 host_buf += now;
186 addr += now;
187 size -= now;
188 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
189 }
190 return req_size - size;
191 }
192 EXPORT_SYMBOL_GPL(kvm_write_guest);
193
194 static int vcpu_slot(struct kvm_vcpu *vcpu)
195 {
196 return vcpu - vcpu->kvm->vcpus;
197 }
198
199 /*
200 * Switches to specified vcpu, until a matching vcpu_put()
201 */
202 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
203 {
204 struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
205
206 mutex_lock(&vcpu->mutex);
207 if (unlikely(!vcpu->vmcs)) {
208 mutex_unlock(&vcpu->mutex);
209 return NULL;
210 }
211 return kvm_arch_ops->vcpu_load(vcpu);
212 }
213
214 static void vcpu_put(struct kvm_vcpu *vcpu)
215 {
216 kvm_arch_ops->vcpu_put(vcpu);
217 mutex_unlock(&vcpu->mutex);
218 }
219
220 static int kvm_dev_open(struct inode *inode, struct file *filp)
221 {
222 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
223 int i;
224
225 if (!kvm)
226 return -ENOMEM;
227
228 spin_lock_init(&kvm->lock);
229 INIT_LIST_HEAD(&kvm->active_mmu_pages);
230 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
231 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
232
233 mutex_init(&vcpu->mutex);
234 vcpu->cpu = -1;
235 vcpu->kvm = kvm;
236 vcpu->mmu.root_hpa = INVALID_PAGE;
237 INIT_LIST_HEAD(&vcpu->free_pages);
238 spin_lock(&kvm_lock);
239 list_add(&kvm->vm_list, &vm_list);
240 spin_unlock(&kvm_lock);
241 }
242 filp->private_data = kvm;
243 return 0;
244 }
245
246 /*
247 * Free any memory in @free but not in @dont.
248 */
249 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
250 struct kvm_memory_slot *dont)
251 {
252 int i;
253
254 if (!dont || free->phys_mem != dont->phys_mem)
255 if (free->phys_mem) {
256 for (i = 0; i < free->npages; ++i)
257 if (free->phys_mem[i])
258 __free_page(free->phys_mem[i]);
259 vfree(free->phys_mem);
260 }
261
262 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
263 vfree(free->dirty_bitmap);
264
265 free->phys_mem = NULL;
266 free->npages = 0;
267 free->dirty_bitmap = NULL;
268 }
269
270 static void kvm_free_physmem(struct kvm *kvm)
271 {
272 int i;
273
274 for (i = 0; i < kvm->nmemslots; ++i)
275 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
276 }
277
278 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
279 {
280 if (!vcpu_load(vcpu->kvm, vcpu_slot(vcpu)))
281 return;
282
283 kvm_mmu_destroy(vcpu);
284 vcpu_put(vcpu);
285 kvm_arch_ops->vcpu_free(vcpu);
286 }
287
288 static void kvm_free_vcpus(struct kvm *kvm)
289 {
290 unsigned int i;
291
292 for (i = 0; i < KVM_MAX_VCPUS; ++i)
293 kvm_free_vcpu(&kvm->vcpus[i]);
294 }
295
296 static int kvm_dev_release(struct inode *inode, struct file *filp)
297 {
298 struct kvm *kvm = filp->private_data;
299
300 spin_lock(&kvm_lock);
301 list_del(&kvm->vm_list);
302 spin_unlock(&kvm_lock);
303 kvm_free_vcpus(kvm);
304 kvm_free_physmem(kvm);
305 kfree(kvm);
306 return 0;
307 }
308
309 static void inject_gp(struct kvm_vcpu *vcpu)
310 {
311 kvm_arch_ops->inject_gp(vcpu, 0);
312 }
313
314 /*
315 * Load the pae pdptrs. Return true is they are all valid.
316 */
317 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
318 {
319 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
320 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
321 int i;
322 u64 pdpte;
323 u64 *pdpt;
324 int ret;
325 struct kvm_memory_slot *memslot;
326
327 spin_lock(&vcpu->kvm->lock);
328 memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
329 /* FIXME: !memslot - emulate? 0xff? */
330 pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
331
332 ret = 1;
333 for (i = 0; i < 4; ++i) {
334 pdpte = pdpt[offset + i];
335 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
336 ret = 0;
337 goto out;
338 }
339 }
340
341 for (i = 0; i < 4; ++i)
342 vcpu->pdptrs[i] = pdpt[offset + i];
343
344 out:
345 kunmap_atomic(pdpt, KM_USER0);
346 spin_unlock(&vcpu->kvm->lock);
347
348 return ret;
349 }
350
351 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
352 {
353 if (cr0 & CR0_RESEVED_BITS) {
354 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
355 cr0, vcpu->cr0);
356 inject_gp(vcpu);
357 return;
358 }
359
360 if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
361 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
362 inject_gp(vcpu);
363 return;
364 }
365
366 if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
367 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
368 "and a clear PE flag\n");
369 inject_gp(vcpu);
370 return;
371 }
372
373 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
374 #ifdef CONFIG_X86_64
375 if ((vcpu->shadow_efer & EFER_LME)) {
376 int cs_db, cs_l;
377
378 if (!is_pae(vcpu)) {
379 printk(KERN_DEBUG "set_cr0: #GP, start paging "
380 "in long mode while PAE is disabled\n");
381 inject_gp(vcpu);
382 return;
383 }
384 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
385 if (cs_l) {
386 printk(KERN_DEBUG "set_cr0: #GP, start paging "
387 "in long mode while CS.L == 1\n");
388 inject_gp(vcpu);
389 return;
390
391 }
392 } else
393 #endif
394 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
395 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
396 "reserved bits\n");
397 inject_gp(vcpu);
398 return;
399 }
400
401 }
402
403 kvm_arch_ops->set_cr0(vcpu, cr0);
404 vcpu->cr0 = cr0;
405
406 spin_lock(&vcpu->kvm->lock);
407 kvm_mmu_reset_context(vcpu);
408 spin_unlock(&vcpu->kvm->lock);
409 return;
410 }
411 EXPORT_SYMBOL_GPL(set_cr0);
412
413 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
414 {
415 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
416 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
417 }
418 EXPORT_SYMBOL_GPL(lmsw);
419
420 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
421 {
422 if (cr4 & CR4_RESEVED_BITS) {
423 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
424 inject_gp(vcpu);
425 return;
426 }
427
428 if (is_long_mode(vcpu)) {
429 if (!(cr4 & CR4_PAE_MASK)) {
430 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
431 "in long mode\n");
432 inject_gp(vcpu);
433 return;
434 }
435 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
436 && !load_pdptrs(vcpu, vcpu->cr3)) {
437 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
438 inject_gp(vcpu);
439 }
440
441 if (cr4 & CR4_VMXE_MASK) {
442 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
443 inject_gp(vcpu);
444 return;
445 }
446 kvm_arch_ops->set_cr4(vcpu, cr4);
447 spin_lock(&vcpu->kvm->lock);
448 kvm_mmu_reset_context(vcpu);
449 spin_unlock(&vcpu->kvm->lock);
450 }
451 EXPORT_SYMBOL_GPL(set_cr4);
452
453 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
454 {
455 if (is_long_mode(vcpu)) {
456 if (cr3 & CR3_L_MODE_RESEVED_BITS) {
457 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
458 inject_gp(vcpu);
459 return;
460 }
461 } else {
462 if (cr3 & CR3_RESEVED_BITS) {
463 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
464 inject_gp(vcpu);
465 return;
466 }
467 if (is_paging(vcpu) && is_pae(vcpu) &&
468 !load_pdptrs(vcpu, cr3)) {
469 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
470 "reserved bits\n");
471 inject_gp(vcpu);
472 return;
473 }
474 }
475
476 vcpu->cr3 = cr3;
477 spin_lock(&vcpu->kvm->lock);
478 /*
479 * Does the new cr3 value map to physical memory? (Note, we
480 * catch an invalid cr3 even in real-mode, because it would
481 * cause trouble later on when we turn on paging anyway.)
482 *
483 * A real CPU would silently accept an invalid cr3 and would
484 * attempt to use it - with largely undefined (and often hard
485 * to debug) behavior on the guest side.
486 */
487 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
488 inject_gp(vcpu);
489 else
490 vcpu->mmu.new_cr3(vcpu);
491 spin_unlock(&vcpu->kvm->lock);
492 }
493 EXPORT_SYMBOL_GPL(set_cr3);
494
495 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
496 {
497 if ( cr8 & CR8_RESEVED_BITS) {
498 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
499 inject_gp(vcpu);
500 return;
501 }
502 vcpu->cr8 = cr8;
503 }
504 EXPORT_SYMBOL_GPL(set_cr8);
505
506 void fx_init(struct kvm_vcpu *vcpu)
507 {
508 struct __attribute__ ((__packed__)) fx_image_s {
509 u16 control; //fcw
510 u16 status; //fsw
511 u16 tag; // ftw
512 u16 opcode; //fop
513 u64 ip; // fpu ip
514 u64 operand;// fpu dp
515 u32 mxcsr;
516 u32 mxcsr_mask;
517
518 } *fx_image;
519
520 fx_save(vcpu->host_fx_image);
521 fpu_init();
522 fx_save(vcpu->guest_fx_image);
523 fx_restore(vcpu->host_fx_image);
524
525 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
526 fx_image->mxcsr = 0x1f80;
527 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
528 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
529 }
530 EXPORT_SYMBOL_GPL(fx_init);
531
532 /*
533 * Creates some virtual cpus. Good luck creating more than one.
534 */
535 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
536 {
537 int r;
538 struct kvm_vcpu *vcpu;
539
540 r = -EINVAL;
541 if (!valid_vcpu(n))
542 goto out;
543
544 vcpu = &kvm->vcpus[n];
545
546 mutex_lock(&vcpu->mutex);
547
548 if (vcpu->vmcs) {
549 mutex_unlock(&vcpu->mutex);
550 return -EEXIST;
551 }
552
553 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
554 FX_IMAGE_ALIGN);
555 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
556
557 r = kvm_arch_ops->vcpu_create(vcpu);
558 if (r < 0)
559 goto out_free_vcpus;
560
561 r = kvm_mmu_create(vcpu);
562 if (r < 0)
563 goto out_free_vcpus;
564
565 kvm_arch_ops->vcpu_load(vcpu);
566 r = kvm_mmu_setup(vcpu);
567 if (r >= 0)
568 r = kvm_arch_ops->vcpu_setup(vcpu);
569 vcpu_put(vcpu);
570
571 if (r < 0)
572 goto out_free_vcpus;
573
574 return 0;
575
576 out_free_vcpus:
577 kvm_free_vcpu(vcpu);
578 mutex_unlock(&vcpu->mutex);
579 out:
580 return r;
581 }
582
583 /*
584 * Allocate some memory and give it an address in the guest physical address
585 * space.
586 *
587 * Discontiguous memory is allowed, mostly for framebuffers.
588 */
589 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
590 struct kvm_memory_region *mem)
591 {
592 int r;
593 gfn_t base_gfn;
594 unsigned long npages;
595 unsigned long i;
596 struct kvm_memory_slot *memslot;
597 struct kvm_memory_slot old, new;
598 int memory_config_version;
599
600 r = -EINVAL;
601 /* General sanity checks */
602 if (mem->memory_size & (PAGE_SIZE - 1))
603 goto out;
604 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
605 goto out;
606 if (mem->slot >= KVM_MEMORY_SLOTS)
607 goto out;
608 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
609 goto out;
610
611 memslot = &kvm->memslots[mem->slot];
612 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
613 npages = mem->memory_size >> PAGE_SHIFT;
614
615 if (!npages)
616 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
617
618 raced:
619 spin_lock(&kvm->lock);
620
621 memory_config_version = kvm->memory_config_version;
622 new = old = *memslot;
623
624 new.base_gfn = base_gfn;
625 new.npages = npages;
626 new.flags = mem->flags;
627
628 /* Disallow changing a memory slot's size. */
629 r = -EINVAL;
630 if (npages && old.npages && npages != old.npages)
631 goto out_unlock;
632
633 /* Check for overlaps */
634 r = -EEXIST;
635 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
636 struct kvm_memory_slot *s = &kvm->memslots[i];
637
638 if (s == memslot)
639 continue;
640 if (!((base_gfn + npages <= s->base_gfn) ||
641 (base_gfn >= s->base_gfn + s->npages)))
642 goto out_unlock;
643 }
644 /*
645 * Do memory allocations outside lock. memory_config_version will
646 * detect any races.
647 */
648 spin_unlock(&kvm->lock);
649
650 /* Deallocate if slot is being removed */
651 if (!npages)
652 new.phys_mem = NULL;
653
654 /* Free page dirty bitmap if unneeded */
655 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
656 new.dirty_bitmap = NULL;
657
658 r = -ENOMEM;
659
660 /* Allocate if a slot is being created */
661 if (npages && !new.phys_mem) {
662 new.phys_mem = vmalloc(npages * sizeof(struct page *));
663
664 if (!new.phys_mem)
665 goto out_free;
666
667 memset(new.phys_mem, 0, npages * sizeof(struct page *));
668 for (i = 0; i < npages; ++i) {
669 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
670 | __GFP_ZERO);
671 if (!new.phys_mem[i])
672 goto out_free;
673 new.phys_mem[i]->private = 0;
674 }
675 }
676
677 /* Allocate page dirty bitmap if needed */
678 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
679 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
680
681 new.dirty_bitmap = vmalloc(dirty_bytes);
682 if (!new.dirty_bitmap)
683 goto out_free;
684 memset(new.dirty_bitmap, 0, dirty_bytes);
685 }
686
687 spin_lock(&kvm->lock);
688
689 if (memory_config_version != kvm->memory_config_version) {
690 spin_unlock(&kvm->lock);
691 kvm_free_physmem_slot(&new, &old);
692 goto raced;
693 }
694
695 r = -EAGAIN;
696 if (kvm->busy)
697 goto out_unlock;
698
699 if (mem->slot >= kvm->nmemslots)
700 kvm->nmemslots = mem->slot + 1;
701
702 *memslot = new;
703 ++kvm->memory_config_version;
704
705 spin_unlock(&kvm->lock);
706
707 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
708 struct kvm_vcpu *vcpu;
709
710 vcpu = vcpu_load(kvm, i);
711 if (!vcpu)
712 continue;
713 kvm_mmu_reset_context(vcpu);
714 vcpu_put(vcpu);
715 }
716
717 kvm_free_physmem_slot(&old, &new);
718 return 0;
719
720 out_unlock:
721 spin_unlock(&kvm->lock);
722 out_free:
723 kvm_free_physmem_slot(&new, &old);
724 out:
725 return r;
726 }
727
728 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
729 {
730 spin_lock(&vcpu->kvm->lock);
731 kvm_mmu_slot_remove_write_access(vcpu, slot);
732 spin_unlock(&vcpu->kvm->lock);
733 }
734
735 /*
736 * Get (and clear) the dirty memory log for a memory slot.
737 */
738 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
739 struct kvm_dirty_log *log)
740 {
741 struct kvm_memory_slot *memslot;
742 int r, i;
743 int n;
744 int cleared;
745 unsigned long any = 0;
746
747 spin_lock(&kvm->lock);
748
749 /*
750 * Prevent changes to guest memory configuration even while the lock
751 * is not taken.
752 */
753 ++kvm->busy;
754 spin_unlock(&kvm->lock);
755 r = -EINVAL;
756 if (log->slot >= KVM_MEMORY_SLOTS)
757 goto out;
758
759 memslot = &kvm->memslots[log->slot];
760 r = -ENOENT;
761 if (!memslot->dirty_bitmap)
762 goto out;
763
764 n = ALIGN(memslot->npages, 8) / 8;
765
766 for (i = 0; !any && i < n; ++i)
767 any = memslot->dirty_bitmap[i];
768
769 r = -EFAULT;
770 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
771 goto out;
772
773 if (any) {
774 cleared = 0;
775 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
776 struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
777
778 if (!vcpu)
779 continue;
780 if (!cleared) {
781 do_remove_write_access(vcpu, log->slot);
782 memset(memslot->dirty_bitmap, 0, n);
783 cleared = 1;
784 }
785 kvm_arch_ops->tlb_flush(vcpu);
786 vcpu_put(vcpu);
787 }
788 }
789
790 r = 0;
791
792 out:
793 spin_lock(&kvm->lock);
794 --kvm->busy;
795 spin_unlock(&kvm->lock);
796 return r;
797 }
798
799 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
800 {
801 int i;
802
803 for (i = 0; i < kvm->nmemslots; ++i) {
804 struct kvm_memory_slot *memslot = &kvm->memslots[i];
805
806 if (gfn >= memslot->base_gfn
807 && gfn < memslot->base_gfn + memslot->npages)
808 return memslot;
809 }
810 return NULL;
811 }
812 EXPORT_SYMBOL_GPL(gfn_to_memslot);
813
814 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
815 {
816 int i;
817 struct kvm_memory_slot *memslot = NULL;
818 unsigned long rel_gfn;
819
820 for (i = 0; i < kvm->nmemslots; ++i) {
821 memslot = &kvm->memslots[i];
822
823 if (gfn >= memslot->base_gfn
824 && gfn < memslot->base_gfn + memslot->npages) {
825
826 if (!memslot || !memslot->dirty_bitmap)
827 return;
828
829 rel_gfn = gfn - memslot->base_gfn;
830
831 /* avoid RMW */
832 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
833 set_bit(rel_gfn, memslot->dirty_bitmap);
834 return;
835 }
836 }
837 }
838
839 static int emulator_read_std(unsigned long addr,
840 unsigned long *val,
841 unsigned int bytes,
842 struct x86_emulate_ctxt *ctxt)
843 {
844 struct kvm_vcpu *vcpu = ctxt->vcpu;
845 void *data = val;
846
847 while (bytes) {
848 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
849 unsigned offset = addr & (PAGE_SIZE-1);
850 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
851 unsigned long pfn;
852 struct kvm_memory_slot *memslot;
853 void *page;
854
855 if (gpa == UNMAPPED_GVA)
856 return X86EMUL_PROPAGATE_FAULT;
857 pfn = gpa >> PAGE_SHIFT;
858 memslot = gfn_to_memslot(vcpu->kvm, pfn);
859 if (!memslot)
860 return X86EMUL_UNHANDLEABLE;
861 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
862
863 memcpy(data, page + offset, tocopy);
864
865 kunmap_atomic(page, KM_USER0);
866
867 bytes -= tocopy;
868 data += tocopy;
869 addr += tocopy;
870 }
871
872 return X86EMUL_CONTINUE;
873 }
874
875 static int emulator_write_std(unsigned long addr,
876 unsigned long val,
877 unsigned int bytes,
878 struct x86_emulate_ctxt *ctxt)
879 {
880 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
881 addr, bytes);
882 return X86EMUL_UNHANDLEABLE;
883 }
884
885 static int emulator_read_emulated(unsigned long addr,
886 unsigned long *val,
887 unsigned int bytes,
888 struct x86_emulate_ctxt *ctxt)
889 {
890 struct kvm_vcpu *vcpu = ctxt->vcpu;
891
892 if (vcpu->mmio_read_completed) {
893 memcpy(val, vcpu->mmio_data, bytes);
894 vcpu->mmio_read_completed = 0;
895 return X86EMUL_CONTINUE;
896 } else if (emulator_read_std(addr, val, bytes, ctxt)
897 == X86EMUL_CONTINUE)
898 return X86EMUL_CONTINUE;
899 else {
900 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
901
902 if (gpa == UNMAPPED_GVA)
903 return X86EMUL_PROPAGATE_FAULT;
904 vcpu->mmio_needed = 1;
905 vcpu->mmio_phys_addr = gpa;
906 vcpu->mmio_size = bytes;
907 vcpu->mmio_is_write = 0;
908
909 return X86EMUL_UNHANDLEABLE;
910 }
911 }
912
913 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
914 unsigned long val, int bytes)
915 {
916 struct kvm_memory_slot *m;
917 struct page *page;
918 void *virt;
919
920 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
921 return 0;
922 m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
923 if (!m)
924 return 0;
925 page = gfn_to_page(m, gpa >> PAGE_SHIFT);
926 kvm_mmu_pre_write(vcpu, gpa, bytes);
927 virt = kmap_atomic(page, KM_USER0);
928 memcpy(virt + offset_in_page(gpa), &val, bytes);
929 kunmap_atomic(virt, KM_USER0);
930 kvm_mmu_post_write(vcpu, gpa, bytes);
931 return 1;
932 }
933
934 static int emulator_write_emulated(unsigned long addr,
935 unsigned long val,
936 unsigned int bytes,
937 struct x86_emulate_ctxt *ctxt)
938 {
939 struct kvm_vcpu *vcpu = ctxt->vcpu;
940 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
941
942 if (gpa == UNMAPPED_GVA)
943 return X86EMUL_PROPAGATE_FAULT;
944
945 if (emulator_write_phys(vcpu, gpa, val, bytes))
946 return X86EMUL_CONTINUE;
947
948 vcpu->mmio_needed = 1;
949 vcpu->mmio_phys_addr = gpa;
950 vcpu->mmio_size = bytes;
951 vcpu->mmio_is_write = 1;
952 memcpy(vcpu->mmio_data, &val, bytes);
953
954 return X86EMUL_CONTINUE;
955 }
956
957 static int emulator_cmpxchg_emulated(unsigned long addr,
958 unsigned long old,
959 unsigned long new,
960 unsigned int bytes,
961 struct x86_emulate_ctxt *ctxt)
962 {
963 static int reported;
964
965 if (!reported) {
966 reported = 1;
967 printk(KERN_WARNING "kvm: emulating exchange as write\n");
968 }
969 return emulator_write_emulated(addr, new, bytes, ctxt);
970 }
971
972 #ifdef CONFIG_X86_32
973
974 static int emulator_cmpxchg8b_emulated(unsigned long addr,
975 unsigned long old_lo,
976 unsigned long old_hi,
977 unsigned long new_lo,
978 unsigned long new_hi,
979 struct x86_emulate_ctxt *ctxt)
980 {
981 static int reported;
982 int r;
983
984 if (!reported) {
985 reported = 1;
986 printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
987 }
988 r = emulator_write_emulated(addr, new_lo, 4, ctxt);
989 if (r != X86EMUL_CONTINUE)
990 return r;
991 return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
992 }
993
994 #endif
995
996 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
997 {
998 return kvm_arch_ops->get_segment_base(vcpu, seg);
999 }
1000
1001 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1002 {
1003 return X86EMUL_CONTINUE;
1004 }
1005
1006 int emulate_clts(struct kvm_vcpu *vcpu)
1007 {
1008 unsigned long cr0;
1009
1010 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1011 cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1012 kvm_arch_ops->set_cr0(vcpu, cr0);
1013 return X86EMUL_CONTINUE;
1014 }
1015
1016 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1017 {
1018 struct kvm_vcpu *vcpu = ctxt->vcpu;
1019
1020 switch (dr) {
1021 case 0 ... 3:
1022 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1023 return X86EMUL_CONTINUE;
1024 default:
1025 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1026 __FUNCTION__, dr);
1027 return X86EMUL_UNHANDLEABLE;
1028 }
1029 }
1030
1031 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1032 {
1033 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1034 int exception;
1035
1036 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1037 if (exception) {
1038 /* FIXME: better handling */
1039 return X86EMUL_UNHANDLEABLE;
1040 }
1041 return X86EMUL_CONTINUE;
1042 }
1043
1044 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1045 {
1046 static int reported;
1047 u8 opcodes[4];
1048 unsigned long rip = ctxt->vcpu->rip;
1049 unsigned long rip_linear;
1050
1051 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1052
1053 if (reported)
1054 return;
1055
1056 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1057
1058 printk(KERN_ERR "emulation failed but !mmio_needed?"
1059 " rip %lx %02x %02x %02x %02x\n",
1060 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1061 reported = 1;
1062 }
1063
1064 struct x86_emulate_ops emulate_ops = {
1065 .read_std = emulator_read_std,
1066 .write_std = emulator_write_std,
1067 .read_emulated = emulator_read_emulated,
1068 .write_emulated = emulator_write_emulated,
1069 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1070 #ifdef CONFIG_X86_32
1071 .cmpxchg8b_emulated = emulator_cmpxchg8b_emulated,
1072 #endif
1073 };
1074
1075 int emulate_instruction(struct kvm_vcpu *vcpu,
1076 struct kvm_run *run,
1077 unsigned long cr2,
1078 u16 error_code)
1079 {
1080 struct x86_emulate_ctxt emulate_ctxt;
1081 int r;
1082 int cs_db, cs_l;
1083
1084 kvm_arch_ops->cache_regs(vcpu);
1085
1086 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1087
1088 emulate_ctxt.vcpu = vcpu;
1089 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1090 emulate_ctxt.cr2 = cr2;
1091 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1092 ? X86EMUL_MODE_REAL : cs_l
1093 ? X86EMUL_MODE_PROT64 : cs_db
1094 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1095
1096 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1097 emulate_ctxt.cs_base = 0;
1098 emulate_ctxt.ds_base = 0;
1099 emulate_ctxt.es_base = 0;
1100 emulate_ctxt.ss_base = 0;
1101 } else {
1102 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1103 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1104 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1105 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1106 }
1107
1108 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1109 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1110
1111 vcpu->mmio_is_write = 0;
1112 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1113
1114 if ((r || vcpu->mmio_is_write) && run) {
1115 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1116 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1117 run->mmio.len = vcpu->mmio_size;
1118 run->mmio.is_write = vcpu->mmio_is_write;
1119 }
1120
1121 if (r) {
1122 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1123 return EMULATE_DONE;
1124 if (!vcpu->mmio_needed) {
1125 report_emulation_failure(&emulate_ctxt);
1126 return EMULATE_FAIL;
1127 }
1128 return EMULATE_DO_MMIO;
1129 }
1130
1131 kvm_arch_ops->decache_regs(vcpu);
1132 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1133
1134 if (vcpu->mmio_is_write)
1135 return EMULATE_DO_MMIO;
1136
1137 return EMULATE_DONE;
1138 }
1139 EXPORT_SYMBOL_GPL(emulate_instruction);
1140
1141 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1142 {
1143 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1144 }
1145
1146 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1147 {
1148 struct descriptor_table dt = { limit, base };
1149
1150 kvm_arch_ops->set_gdt(vcpu, &dt);
1151 }
1152
1153 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1154 {
1155 struct descriptor_table dt = { limit, base };
1156
1157 kvm_arch_ops->set_idt(vcpu, &dt);
1158 }
1159
1160 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1161 unsigned long *rflags)
1162 {
1163 lmsw(vcpu, msw);
1164 *rflags = kvm_arch_ops->get_rflags(vcpu);
1165 }
1166
1167 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1168 {
1169 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1170 switch (cr) {
1171 case 0:
1172 return vcpu->cr0;
1173 case 2:
1174 return vcpu->cr2;
1175 case 3:
1176 return vcpu->cr3;
1177 case 4:
1178 return vcpu->cr4;
1179 default:
1180 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1181 return 0;
1182 }
1183 }
1184
1185 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1186 unsigned long *rflags)
1187 {
1188 switch (cr) {
1189 case 0:
1190 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1191 *rflags = kvm_arch_ops->get_rflags(vcpu);
1192 break;
1193 case 2:
1194 vcpu->cr2 = val;
1195 break;
1196 case 3:
1197 set_cr3(vcpu, val);
1198 break;
1199 case 4:
1200 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1201 break;
1202 default:
1203 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1204 }
1205 }
1206
1207 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1208 {
1209 u64 data;
1210
1211 switch (msr) {
1212 case 0xc0010010: /* SYSCFG */
1213 case 0xc0010015: /* HWCR */
1214 case MSR_IA32_PLATFORM_ID:
1215 case MSR_IA32_P5_MC_ADDR:
1216 case MSR_IA32_P5_MC_TYPE:
1217 case MSR_IA32_MC0_CTL:
1218 case MSR_IA32_MCG_STATUS:
1219 case MSR_IA32_MCG_CAP:
1220 case MSR_IA32_MC0_MISC:
1221 case MSR_IA32_MC0_MISC+4:
1222 case MSR_IA32_MC0_MISC+8:
1223 case MSR_IA32_MC0_MISC+12:
1224 case MSR_IA32_MC0_MISC+16:
1225 case MSR_IA32_UCODE_REV:
1226 case MSR_IA32_PERF_STATUS:
1227 /* MTRR registers */
1228 case 0xfe:
1229 case 0x200 ... 0x2ff:
1230 data = 0;
1231 break;
1232 case 0xcd: /* fsb frequency */
1233 data = 3;
1234 break;
1235 case MSR_IA32_APICBASE:
1236 data = vcpu->apic_base;
1237 break;
1238 case MSR_IA32_MISC_ENABLE:
1239 data = vcpu->ia32_misc_enable_msr;
1240 break;
1241 #ifdef CONFIG_X86_64
1242 case MSR_EFER:
1243 data = vcpu->shadow_efer;
1244 break;
1245 #endif
1246 default:
1247 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1248 return 1;
1249 }
1250 *pdata = data;
1251 return 0;
1252 }
1253 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1254
1255 /*
1256 * Reads an msr value (of 'msr_index') into 'pdata'.
1257 * Returns 0 on success, non-0 otherwise.
1258 * Assumes vcpu_load() was already called.
1259 */
1260 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1261 {
1262 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1263 }
1264
1265 #ifdef CONFIG_X86_64
1266
1267 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1268 {
1269 if (efer & EFER_RESERVED_BITS) {
1270 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1271 efer);
1272 inject_gp(vcpu);
1273 return;
1274 }
1275
1276 if (is_paging(vcpu)
1277 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1278 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1279 inject_gp(vcpu);
1280 return;
1281 }
1282
1283 kvm_arch_ops->set_efer(vcpu, efer);
1284
1285 efer &= ~EFER_LMA;
1286 efer |= vcpu->shadow_efer & EFER_LMA;
1287
1288 vcpu->shadow_efer = efer;
1289 }
1290
1291 #endif
1292
1293 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1294 {
1295 switch (msr) {
1296 #ifdef CONFIG_X86_64
1297 case MSR_EFER:
1298 set_efer(vcpu, data);
1299 break;
1300 #endif
1301 case MSR_IA32_MC0_STATUS:
1302 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1303 __FUNCTION__, data);
1304 break;
1305 case MSR_IA32_UCODE_REV:
1306 case MSR_IA32_UCODE_WRITE:
1307 case 0x200 ... 0x2ff: /* MTRRs */
1308 break;
1309 case MSR_IA32_APICBASE:
1310 vcpu->apic_base = data;
1311 break;
1312 case MSR_IA32_MISC_ENABLE:
1313 vcpu->ia32_misc_enable_msr = data;
1314 break;
1315 default:
1316 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1317 return 1;
1318 }
1319 return 0;
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1322
1323 /*
1324 * Writes msr value into into the appropriate "register".
1325 * Returns 0 on success, non-0 otherwise.
1326 * Assumes vcpu_load() was already called.
1327 */
1328 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1329 {
1330 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1331 }
1332
1333 void kvm_resched(struct kvm_vcpu *vcpu)
1334 {
1335 vcpu_put(vcpu);
1336 cond_resched();
1337 /* Cannot fail - no vcpu unplug yet. */
1338 vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1339 }
1340 EXPORT_SYMBOL_GPL(kvm_resched);
1341
1342 void load_msrs(struct vmx_msr_entry *e, int n)
1343 {
1344 int i;
1345
1346 for (i = 0; i < n; ++i)
1347 wrmsrl(e[i].index, e[i].data);
1348 }
1349 EXPORT_SYMBOL_GPL(load_msrs);
1350
1351 void save_msrs(struct vmx_msr_entry *e, int n)
1352 {
1353 int i;
1354
1355 for (i = 0; i < n; ++i)
1356 rdmsrl(e[i].index, e[i].data);
1357 }
1358 EXPORT_SYMBOL_GPL(save_msrs);
1359
1360 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1361 {
1362 struct kvm_vcpu *vcpu;
1363 int r;
1364
1365 if (!valid_vcpu(kvm_run->vcpu))
1366 return -EINVAL;
1367
1368 vcpu = vcpu_load(kvm, kvm_run->vcpu);
1369 if (!vcpu)
1370 return -ENOENT;
1371
1372 /* re-sync apic's tpr */
1373 vcpu->cr8 = kvm_run->cr8;
1374
1375 if (kvm_run->emulated) {
1376 kvm_arch_ops->skip_emulated_instruction(vcpu);
1377 kvm_run->emulated = 0;
1378 }
1379
1380 if (kvm_run->mmio_completed) {
1381 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1382 vcpu->mmio_read_completed = 1;
1383 }
1384
1385 vcpu->mmio_needed = 0;
1386
1387 r = kvm_arch_ops->run(vcpu, kvm_run);
1388
1389 vcpu_put(vcpu);
1390 return r;
1391 }
1392
1393 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1394 {
1395 struct kvm_vcpu *vcpu;
1396
1397 if (!valid_vcpu(regs->vcpu))
1398 return -EINVAL;
1399
1400 vcpu = vcpu_load(kvm, regs->vcpu);
1401 if (!vcpu)
1402 return -ENOENT;
1403
1404 kvm_arch_ops->cache_regs(vcpu);
1405
1406 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1407 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1408 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1409 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1410 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1411 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1412 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1413 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1414 #ifdef CONFIG_X86_64
1415 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1416 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1417 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1418 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1419 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1420 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1421 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1422 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1423 #endif
1424
1425 regs->rip = vcpu->rip;
1426 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1427
1428 /*
1429 * Don't leak debug flags in case they were set for guest debugging
1430 */
1431 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1432 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1433
1434 vcpu_put(vcpu);
1435
1436 return 0;
1437 }
1438
1439 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1440 {
1441 struct kvm_vcpu *vcpu;
1442
1443 if (!valid_vcpu(regs->vcpu))
1444 return -EINVAL;
1445
1446 vcpu = vcpu_load(kvm, regs->vcpu);
1447 if (!vcpu)
1448 return -ENOENT;
1449
1450 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1451 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1452 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1453 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1454 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1455 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1456 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1457 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1458 #ifdef CONFIG_X86_64
1459 vcpu->regs[VCPU_REGS_R8] = regs->r8;
1460 vcpu->regs[VCPU_REGS_R9] = regs->r9;
1461 vcpu->regs[VCPU_REGS_R10] = regs->r10;
1462 vcpu->regs[VCPU_REGS_R11] = regs->r11;
1463 vcpu->regs[VCPU_REGS_R12] = regs->r12;
1464 vcpu->regs[VCPU_REGS_R13] = regs->r13;
1465 vcpu->regs[VCPU_REGS_R14] = regs->r14;
1466 vcpu->regs[VCPU_REGS_R15] = regs->r15;
1467 #endif
1468
1469 vcpu->rip = regs->rip;
1470 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1471
1472 kvm_arch_ops->decache_regs(vcpu);
1473
1474 vcpu_put(vcpu);
1475
1476 return 0;
1477 }
1478
1479 static void get_segment(struct kvm_vcpu *vcpu,
1480 struct kvm_segment *var, int seg)
1481 {
1482 return kvm_arch_ops->get_segment(vcpu, var, seg);
1483 }
1484
1485 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1486 {
1487 struct kvm_vcpu *vcpu;
1488 struct descriptor_table dt;
1489
1490 if (!valid_vcpu(sregs->vcpu))
1491 return -EINVAL;
1492 vcpu = vcpu_load(kvm, sregs->vcpu);
1493 if (!vcpu)
1494 return -ENOENT;
1495
1496 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1497 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1498 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1499 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1500 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1501 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1502
1503 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1504 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1505
1506 kvm_arch_ops->get_idt(vcpu, &dt);
1507 sregs->idt.limit = dt.limit;
1508 sregs->idt.base = dt.base;
1509 kvm_arch_ops->get_gdt(vcpu, &dt);
1510 sregs->gdt.limit = dt.limit;
1511 sregs->gdt.base = dt.base;
1512
1513 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1514 sregs->cr0 = vcpu->cr0;
1515 sregs->cr2 = vcpu->cr2;
1516 sregs->cr3 = vcpu->cr3;
1517 sregs->cr4 = vcpu->cr4;
1518 sregs->cr8 = vcpu->cr8;
1519 sregs->efer = vcpu->shadow_efer;
1520 sregs->apic_base = vcpu->apic_base;
1521
1522 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1523 sizeof sregs->interrupt_bitmap);
1524
1525 vcpu_put(vcpu);
1526
1527 return 0;
1528 }
1529
1530 static void set_segment(struct kvm_vcpu *vcpu,
1531 struct kvm_segment *var, int seg)
1532 {
1533 return kvm_arch_ops->set_segment(vcpu, var, seg);
1534 }
1535
1536 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1537 {
1538 struct kvm_vcpu *vcpu;
1539 int mmu_reset_needed = 0;
1540 int i;
1541 struct descriptor_table dt;
1542
1543 if (!valid_vcpu(sregs->vcpu))
1544 return -EINVAL;
1545 vcpu = vcpu_load(kvm, sregs->vcpu);
1546 if (!vcpu)
1547 return -ENOENT;
1548
1549 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1550 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1551 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1552 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1553 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1554 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1555
1556 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1557 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1558
1559 dt.limit = sregs->idt.limit;
1560 dt.base = sregs->idt.base;
1561 kvm_arch_ops->set_idt(vcpu, &dt);
1562 dt.limit = sregs->gdt.limit;
1563 dt.base = sregs->gdt.base;
1564 kvm_arch_ops->set_gdt(vcpu, &dt);
1565
1566 vcpu->cr2 = sregs->cr2;
1567 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1568 vcpu->cr3 = sregs->cr3;
1569
1570 vcpu->cr8 = sregs->cr8;
1571
1572 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1573 #ifdef CONFIG_X86_64
1574 kvm_arch_ops->set_efer(vcpu, sregs->efer);
1575 #endif
1576 vcpu->apic_base = sregs->apic_base;
1577
1578 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1579
1580 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1581 kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1582
1583 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1584 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1585 if (!is_long_mode(vcpu) && is_pae(vcpu))
1586 load_pdptrs(vcpu, vcpu->cr3);
1587
1588 if (mmu_reset_needed)
1589 kvm_mmu_reset_context(vcpu);
1590
1591 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1592 sizeof vcpu->irq_pending);
1593 vcpu->irq_summary = 0;
1594 for (i = 0; i < NR_IRQ_WORDS; ++i)
1595 if (vcpu->irq_pending[i])
1596 __set_bit(i, &vcpu->irq_summary);
1597
1598 vcpu_put(vcpu);
1599
1600 return 0;
1601 }
1602
1603 /*
1604 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1605 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1606 *
1607 * This list is modified at module load time to reflect the
1608 * capabilities of the host cpu.
1609 */
1610 static u32 msrs_to_save[] = {
1611 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1612 MSR_K6_STAR,
1613 #ifdef CONFIG_X86_64
1614 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1615 #endif
1616 MSR_IA32_TIME_STAMP_COUNTER,
1617 };
1618
1619 static unsigned num_msrs_to_save;
1620
1621 static u32 emulated_msrs[] = {
1622 MSR_IA32_MISC_ENABLE,
1623 };
1624
1625 static __init void kvm_init_msr_list(void)
1626 {
1627 u32 dummy[2];
1628 unsigned i, j;
1629
1630 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1631 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1632 continue;
1633 if (j < i)
1634 msrs_to_save[j] = msrs_to_save[i];
1635 j++;
1636 }
1637 num_msrs_to_save = j;
1638 }
1639
1640 /*
1641 * Adapt set_msr() to msr_io()'s calling convention
1642 */
1643 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1644 {
1645 return set_msr(vcpu, index, *data);
1646 }
1647
1648 /*
1649 * Read or write a bunch of msrs. All parameters are kernel addresses.
1650 *
1651 * @return number of msrs set successfully.
1652 */
1653 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1654 struct kvm_msr_entry *entries,
1655 int (*do_msr)(struct kvm_vcpu *vcpu,
1656 unsigned index, u64 *data))
1657 {
1658 struct kvm_vcpu *vcpu;
1659 int i;
1660
1661 if (!valid_vcpu(msrs->vcpu))
1662 return -EINVAL;
1663
1664 vcpu = vcpu_load(kvm, msrs->vcpu);
1665 if (!vcpu)
1666 return -ENOENT;
1667
1668 for (i = 0; i < msrs->nmsrs; ++i)
1669 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1670 break;
1671
1672 vcpu_put(vcpu);
1673
1674 return i;
1675 }
1676
1677 /*
1678 * Read or write a bunch of msrs. Parameters are user addresses.
1679 *
1680 * @return number of msrs set successfully.
1681 */
1682 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1683 int (*do_msr)(struct kvm_vcpu *vcpu,
1684 unsigned index, u64 *data),
1685 int writeback)
1686 {
1687 struct kvm_msrs msrs;
1688 struct kvm_msr_entry *entries;
1689 int r, n;
1690 unsigned size;
1691
1692 r = -EFAULT;
1693 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1694 goto out;
1695
1696 r = -E2BIG;
1697 if (msrs.nmsrs >= MAX_IO_MSRS)
1698 goto out;
1699
1700 r = -ENOMEM;
1701 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1702 entries = vmalloc(size);
1703 if (!entries)
1704 goto out;
1705
1706 r = -EFAULT;
1707 if (copy_from_user(entries, user_msrs->entries, size))
1708 goto out_free;
1709
1710 r = n = __msr_io(kvm, &msrs, entries, do_msr);
1711 if (r < 0)
1712 goto out_free;
1713
1714 r = -EFAULT;
1715 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1716 goto out_free;
1717
1718 r = n;
1719
1720 out_free:
1721 vfree(entries);
1722 out:
1723 return r;
1724 }
1725
1726 /*
1727 * Translate a guest virtual address to a guest physical address.
1728 */
1729 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1730 {
1731 unsigned long vaddr = tr->linear_address;
1732 struct kvm_vcpu *vcpu;
1733 gpa_t gpa;
1734
1735 vcpu = vcpu_load(kvm, tr->vcpu);
1736 if (!vcpu)
1737 return -ENOENT;
1738 spin_lock(&kvm->lock);
1739 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1740 tr->physical_address = gpa;
1741 tr->valid = gpa != UNMAPPED_GVA;
1742 tr->writeable = 1;
1743 tr->usermode = 0;
1744 spin_unlock(&kvm->lock);
1745 vcpu_put(vcpu);
1746
1747 return 0;
1748 }
1749
1750 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1751 {
1752 struct kvm_vcpu *vcpu;
1753
1754 if (!valid_vcpu(irq->vcpu))
1755 return -EINVAL;
1756 if (irq->irq < 0 || irq->irq >= 256)
1757 return -EINVAL;
1758 vcpu = vcpu_load(kvm, irq->vcpu);
1759 if (!vcpu)
1760 return -ENOENT;
1761
1762 set_bit(irq->irq, vcpu->irq_pending);
1763 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1764
1765 vcpu_put(vcpu);
1766
1767 return 0;
1768 }
1769
1770 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1771 struct kvm_debug_guest *dbg)
1772 {
1773 struct kvm_vcpu *vcpu;
1774 int r;
1775
1776 if (!valid_vcpu(dbg->vcpu))
1777 return -EINVAL;
1778 vcpu = vcpu_load(kvm, dbg->vcpu);
1779 if (!vcpu)
1780 return -ENOENT;
1781
1782 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1783
1784 vcpu_put(vcpu);
1785
1786 return r;
1787 }
1788
1789 static long kvm_dev_ioctl(struct file *filp,
1790 unsigned int ioctl, unsigned long arg)
1791 {
1792 struct kvm *kvm = filp->private_data;
1793 void __user *argp = (void __user *)arg;
1794 int r = -EINVAL;
1795
1796 switch (ioctl) {
1797 case KVM_GET_API_VERSION:
1798 r = KVM_API_VERSION;
1799 break;
1800 case KVM_CREATE_VCPU:
1801 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1802 if (r)
1803 goto out;
1804 break;
1805 case KVM_RUN: {
1806 struct kvm_run kvm_run;
1807
1808 r = -EFAULT;
1809 if (copy_from_user(&kvm_run, argp, sizeof kvm_run))
1810 goto out;
1811 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1812 if (r < 0 && r != -EINTR)
1813 goto out;
1814 if (copy_to_user(argp, &kvm_run, sizeof kvm_run)) {
1815 r = -EFAULT;
1816 goto out;
1817 }
1818 break;
1819 }
1820 case KVM_GET_REGS: {
1821 struct kvm_regs kvm_regs;
1822
1823 r = -EFAULT;
1824 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
1825 goto out;
1826 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1827 if (r)
1828 goto out;
1829 r = -EFAULT;
1830 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
1831 goto out;
1832 r = 0;
1833 break;
1834 }
1835 case KVM_SET_REGS: {
1836 struct kvm_regs kvm_regs;
1837
1838 r = -EFAULT;
1839 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
1840 goto out;
1841 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1842 if (r)
1843 goto out;
1844 r = 0;
1845 break;
1846 }
1847 case KVM_GET_SREGS: {
1848 struct kvm_sregs kvm_sregs;
1849
1850 r = -EFAULT;
1851 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1852 goto out;
1853 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1854 if (r)
1855 goto out;
1856 r = -EFAULT;
1857 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
1858 goto out;
1859 r = 0;
1860 break;
1861 }
1862 case KVM_SET_SREGS: {
1863 struct kvm_sregs kvm_sregs;
1864
1865 r = -EFAULT;
1866 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1867 goto out;
1868 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1869 if (r)
1870 goto out;
1871 r = 0;
1872 break;
1873 }
1874 case KVM_TRANSLATE: {
1875 struct kvm_translation tr;
1876
1877 r = -EFAULT;
1878 if (copy_from_user(&tr, argp, sizeof tr))
1879 goto out;
1880 r = kvm_dev_ioctl_translate(kvm, &tr);
1881 if (r)
1882 goto out;
1883 r = -EFAULT;
1884 if (copy_to_user(argp, &tr, sizeof tr))
1885 goto out;
1886 r = 0;
1887 break;
1888 }
1889 case KVM_INTERRUPT: {
1890 struct kvm_interrupt irq;
1891
1892 r = -EFAULT;
1893 if (copy_from_user(&irq, argp, sizeof irq))
1894 goto out;
1895 r = kvm_dev_ioctl_interrupt(kvm, &irq);
1896 if (r)
1897 goto out;
1898 r = 0;
1899 break;
1900 }
1901 case KVM_DEBUG_GUEST: {
1902 struct kvm_debug_guest dbg;
1903
1904 r = -EFAULT;
1905 if (copy_from_user(&dbg, argp, sizeof dbg))
1906 goto out;
1907 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
1908 if (r)
1909 goto out;
1910 r = 0;
1911 break;
1912 }
1913 case KVM_SET_MEMORY_REGION: {
1914 struct kvm_memory_region kvm_mem;
1915
1916 r = -EFAULT;
1917 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1918 goto out;
1919 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
1920 if (r)
1921 goto out;
1922 break;
1923 }
1924 case KVM_GET_DIRTY_LOG: {
1925 struct kvm_dirty_log log;
1926
1927 r = -EFAULT;
1928 if (copy_from_user(&log, argp, sizeof log))
1929 goto out;
1930 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
1931 if (r)
1932 goto out;
1933 break;
1934 }
1935 case KVM_GET_MSRS:
1936 r = msr_io(kvm, argp, get_msr, 1);
1937 break;
1938 case KVM_SET_MSRS:
1939 r = msr_io(kvm, argp, do_set_msr, 0);
1940 break;
1941 case KVM_GET_MSR_INDEX_LIST: {
1942 struct kvm_msr_list __user *user_msr_list = argp;
1943 struct kvm_msr_list msr_list;
1944 unsigned n;
1945
1946 r = -EFAULT;
1947 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1948 goto out;
1949 n = msr_list.nmsrs;
1950 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1951 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1952 goto out;
1953 r = -E2BIG;
1954 if (n < num_msrs_to_save)
1955 goto out;
1956 r = -EFAULT;
1957 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1958 num_msrs_to_save * sizeof(u32)))
1959 goto out;
1960 if (copy_to_user(user_msr_list->indices
1961 + num_msrs_to_save * sizeof(u32),
1962 &emulated_msrs,
1963 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1964 goto out;
1965 r = 0;
1966 break;
1967 }
1968 default:
1969 ;
1970 }
1971 out:
1972 return r;
1973 }
1974
1975 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
1976 unsigned long address,
1977 int *type)
1978 {
1979 struct kvm *kvm = vma->vm_file->private_data;
1980 unsigned long pgoff;
1981 struct kvm_memory_slot *slot;
1982 struct page *page;
1983
1984 *type = VM_FAULT_MINOR;
1985 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1986 slot = gfn_to_memslot(kvm, pgoff);
1987 if (!slot)
1988 return NOPAGE_SIGBUS;
1989 page = gfn_to_page(slot, pgoff);
1990 if (!page)
1991 return NOPAGE_SIGBUS;
1992 get_page(page);
1993 return page;
1994 }
1995
1996 static struct vm_operations_struct kvm_dev_vm_ops = {
1997 .nopage = kvm_dev_nopage,
1998 };
1999
2000 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
2001 {
2002 vma->vm_ops = &kvm_dev_vm_ops;
2003 return 0;
2004 }
2005
2006 static struct file_operations kvm_chardev_ops = {
2007 .open = kvm_dev_open,
2008 .release = kvm_dev_release,
2009 .unlocked_ioctl = kvm_dev_ioctl,
2010 .compat_ioctl = kvm_dev_ioctl,
2011 .mmap = kvm_dev_mmap,
2012 };
2013
2014 static struct miscdevice kvm_dev = {
2015 MISC_DYNAMIC_MINOR,
2016 "kvm",
2017 &kvm_chardev_ops,
2018 };
2019
2020 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2021 void *v)
2022 {
2023 if (val == SYS_RESTART) {
2024 /*
2025 * Some (well, at least mine) BIOSes hang on reboot if
2026 * in vmx root mode.
2027 */
2028 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2029 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2030 }
2031 return NOTIFY_OK;
2032 }
2033
2034 static struct notifier_block kvm_reboot_notifier = {
2035 .notifier_call = kvm_reboot,
2036 .priority = 0,
2037 };
2038
2039 /*
2040 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2041 * cached on it.
2042 */
2043 static void decache_vcpus_on_cpu(int cpu)
2044 {
2045 struct kvm *vm;
2046 struct kvm_vcpu *vcpu;
2047 int i;
2048
2049 spin_lock(&kvm_lock);
2050 list_for_each_entry(vm, &vm_list, vm_list)
2051 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2052 vcpu = &vm->vcpus[i];
2053 /*
2054 * If the vcpu is locked, then it is running on some
2055 * other cpu and therefore it is not cached on the
2056 * cpu in question.
2057 *
2058 * If it's not locked, check the last cpu it executed
2059 * on.
2060 */
2061 if (mutex_trylock(&vcpu->mutex)) {
2062 if (vcpu->cpu == cpu) {
2063 kvm_arch_ops->vcpu_decache(vcpu);
2064 vcpu->cpu = -1;
2065 }
2066 mutex_unlock(&vcpu->mutex);
2067 }
2068 }
2069 spin_unlock(&kvm_lock);
2070 }
2071
2072 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2073 void *v)
2074 {
2075 int cpu = (long)v;
2076
2077 switch (val) {
2078 case CPU_DOWN_PREPARE:
2079 case CPU_UP_CANCELED:
2080 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2081 cpu);
2082 decache_vcpus_on_cpu(cpu);
2083 smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
2084 NULL, 0, 1);
2085 break;
2086 case CPU_ONLINE:
2087 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2088 cpu);
2089 smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
2090 NULL, 0, 1);
2091 break;
2092 }
2093 return NOTIFY_OK;
2094 }
2095
2096 static struct notifier_block kvm_cpu_notifier = {
2097 .notifier_call = kvm_cpu_hotplug,
2098 .priority = 20, /* must be > scheduler priority */
2099 };
2100
2101 static __init void kvm_init_debug(void)
2102 {
2103 struct kvm_stats_debugfs_item *p;
2104
2105 debugfs_dir = debugfs_create_dir("kvm", NULL);
2106 for (p = debugfs_entries; p->name; ++p)
2107 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
2108 p->data);
2109 }
2110
2111 static void kvm_exit_debug(void)
2112 {
2113 struct kvm_stats_debugfs_item *p;
2114
2115 for (p = debugfs_entries; p->name; ++p)
2116 debugfs_remove(p->dentry);
2117 debugfs_remove(debugfs_dir);
2118 }
2119
2120 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2121 {
2122 decache_vcpus_on_cpu(raw_smp_processor_id());
2123 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
2124 return 0;
2125 }
2126
2127 static int kvm_resume(struct sys_device *dev)
2128 {
2129 on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
2130 return 0;
2131 }
2132
2133 static struct sysdev_class kvm_sysdev_class = {
2134 set_kset_name("kvm"),
2135 .suspend = kvm_suspend,
2136 .resume = kvm_resume,
2137 };
2138
2139 static struct sys_device kvm_sysdev = {
2140 .id = 0,
2141 .cls = &kvm_sysdev_class,
2142 };
2143
2144 hpa_t bad_page_address;
2145
2146 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
2147 {
2148 int r;
2149
2150 if (kvm_arch_ops) {
2151 printk(KERN_ERR "kvm: already loaded the other module\n");
2152 return -EEXIST;
2153 }
2154
2155 if (!ops->cpu_has_kvm_support()) {
2156 printk(KERN_ERR "kvm: no hardware support\n");
2157 return -EOPNOTSUPP;
2158 }
2159 if (ops->disabled_by_bios()) {
2160 printk(KERN_ERR "kvm: disabled by bios\n");
2161 return -EOPNOTSUPP;
2162 }
2163
2164 kvm_arch_ops = ops;
2165
2166 r = kvm_arch_ops->hardware_setup();
2167 if (r < 0)
2168 return r;
2169
2170 on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2171 r = register_cpu_notifier(&kvm_cpu_notifier);
2172 if (r)
2173 goto out_free_1;
2174 register_reboot_notifier(&kvm_reboot_notifier);
2175
2176 r = sysdev_class_register(&kvm_sysdev_class);
2177 if (r)
2178 goto out_free_2;
2179
2180 r = sysdev_register(&kvm_sysdev);
2181 if (r)
2182 goto out_free_3;
2183
2184 kvm_chardev_ops.owner = module;
2185
2186 r = misc_register(&kvm_dev);
2187 if (r) {
2188 printk (KERN_ERR "kvm: misc device register failed\n");
2189 goto out_free;
2190 }
2191
2192 return r;
2193
2194 out_free:
2195 sysdev_unregister(&kvm_sysdev);
2196 out_free_3:
2197 sysdev_class_unregister(&kvm_sysdev_class);
2198 out_free_2:
2199 unregister_reboot_notifier(&kvm_reboot_notifier);
2200 unregister_cpu_notifier(&kvm_cpu_notifier);
2201 out_free_1:
2202 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2203 kvm_arch_ops->hardware_unsetup();
2204 return r;
2205 }
2206
2207 void kvm_exit_arch(void)
2208 {
2209 misc_deregister(&kvm_dev);
2210 sysdev_unregister(&kvm_sysdev);
2211 sysdev_class_unregister(&kvm_sysdev_class);
2212 unregister_reboot_notifier(&kvm_reboot_notifier);
2213 unregister_cpu_notifier(&kvm_cpu_notifier);
2214 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2215 kvm_arch_ops->hardware_unsetup();
2216 kvm_arch_ops = NULL;
2217 }
2218
2219 static __init int kvm_init(void)
2220 {
2221 static struct page *bad_page;
2222 int r = 0;
2223
2224 kvm_init_debug();
2225
2226 kvm_init_msr_list();
2227
2228 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2229 r = -ENOMEM;
2230 goto out;
2231 }
2232
2233 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2234 memset(__va(bad_page_address), 0, PAGE_SIZE);
2235
2236 return r;
2237
2238 out:
2239 kvm_exit_debug();
2240 return r;
2241 }
2242
2243 static __exit void kvm_exit(void)
2244 {
2245 kvm_exit_debug();
2246 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2247 }
2248
2249 module_init(kvm_init)
2250 module_exit(kvm_exit)
2251
2252 EXPORT_SYMBOL_GPL(kvm_init_arch);
2253 EXPORT_SYMBOL_GPL(kvm_exit_arch);
This page took 0.07444 seconds and 6 git commands to generate.