KVM: MMU: Adjust mmu_set_spte() debug code for gpte removal
[deliverable/linux.git] / drivers / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20 #include "vmx.h"
21 #include "kvm.h"
22 #include "x86.h"
23
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30
31 #include <asm/page.h>
32 #include <asm/cmpxchg.h>
33 #include <asm/io.h>
34
35 #undef MMU_DEBUG
36
37 #undef AUDIT
38
39 #ifdef AUDIT
40 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
41 #else
42 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
43 #endif
44
45 #ifdef MMU_DEBUG
46
47 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
48 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
49
50 #else
51
52 #define pgprintk(x...) do { } while (0)
53 #define rmap_printk(x...) do { } while (0)
54
55 #endif
56
57 #if defined(MMU_DEBUG) || defined(AUDIT)
58 static int dbg = 1;
59 #endif
60
61 #ifndef MMU_DEBUG
62 #define ASSERT(x) do { } while (0)
63 #else
64 #define ASSERT(x) \
65 if (!(x)) { \
66 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
67 __FILE__, __LINE__, #x); \
68 }
69 #endif
70
71 #define PT64_PT_BITS 9
72 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
73 #define PT32_PT_BITS 10
74 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
75
76 #define PT_WRITABLE_SHIFT 1
77
78 #define PT_PRESENT_MASK (1ULL << 0)
79 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
80 #define PT_USER_MASK (1ULL << 2)
81 #define PT_PWT_MASK (1ULL << 3)
82 #define PT_PCD_MASK (1ULL << 4)
83 #define PT_ACCESSED_MASK (1ULL << 5)
84 #define PT_DIRTY_MASK (1ULL << 6)
85 #define PT_PAGE_SIZE_MASK (1ULL << 7)
86 #define PT_PAT_MASK (1ULL << 7)
87 #define PT_GLOBAL_MASK (1ULL << 8)
88 #define PT64_NX_SHIFT 63
89 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
90
91 #define PT_PAT_SHIFT 7
92 #define PT_DIR_PAT_SHIFT 12
93 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
94
95 #define PT32_DIR_PSE36_SIZE 4
96 #define PT32_DIR_PSE36_SHIFT 13
97 #define PT32_DIR_PSE36_MASK \
98 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
99
100
101 #define PT_FIRST_AVAIL_BITS_SHIFT 9
102 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
103
104 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
105
106 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
107
108 #define PT64_LEVEL_BITS 9
109
110 #define PT64_LEVEL_SHIFT(level) \
111 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
112
113 #define PT64_LEVEL_MASK(level) \
114 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
115
116 #define PT64_INDEX(address, level)\
117 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
118
119
120 #define PT32_LEVEL_BITS 10
121
122 #define PT32_LEVEL_SHIFT(level) \
123 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
124
125 #define PT32_LEVEL_MASK(level) \
126 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
127
128 #define PT32_INDEX(address, level)\
129 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
130
131
132 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
133 #define PT64_DIR_BASE_ADDR_MASK \
134 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
135
136 #define PT32_BASE_ADDR_MASK PAGE_MASK
137 #define PT32_DIR_BASE_ADDR_MASK \
138 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
139
140 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
141 | PT64_NX_MASK)
142
143 #define PFERR_PRESENT_MASK (1U << 0)
144 #define PFERR_WRITE_MASK (1U << 1)
145 #define PFERR_USER_MASK (1U << 2)
146 #define PFERR_FETCH_MASK (1U << 4)
147
148 #define PT64_ROOT_LEVEL 4
149 #define PT32_ROOT_LEVEL 2
150 #define PT32E_ROOT_LEVEL 3
151
152 #define PT_DIRECTORY_LEVEL 2
153 #define PT_PAGE_TABLE_LEVEL 1
154
155 #define RMAP_EXT 4
156
157 #define ACC_EXEC_MASK 1
158 #define ACC_WRITE_MASK PT_WRITABLE_MASK
159 #define ACC_USER_MASK PT_USER_MASK
160 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
161
162 struct kvm_rmap_desc {
163 u64 *shadow_ptes[RMAP_EXT];
164 struct kvm_rmap_desc *more;
165 };
166
167 static struct kmem_cache *pte_chain_cache;
168 static struct kmem_cache *rmap_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170
171 static u64 __read_mostly shadow_trap_nonpresent_pte;
172 static u64 __read_mostly shadow_notrap_nonpresent_pte;
173
174 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
175 {
176 shadow_trap_nonpresent_pte = trap_pte;
177 shadow_notrap_nonpresent_pte = notrap_pte;
178 }
179 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
180
181 static int is_write_protection(struct kvm_vcpu *vcpu)
182 {
183 return vcpu->cr0 & X86_CR0_WP;
184 }
185
186 static int is_cpuid_PSE36(void)
187 {
188 return 1;
189 }
190
191 static int is_nx(struct kvm_vcpu *vcpu)
192 {
193 return vcpu->shadow_efer & EFER_NX;
194 }
195
196 static int is_present_pte(unsigned long pte)
197 {
198 return pte & PT_PRESENT_MASK;
199 }
200
201 static int is_shadow_present_pte(u64 pte)
202 {
203 pte &= ~PT_SHADOW_IO_MARK;
204 return pte != shadow_trap_nonpresent_pte
205 && pte != shadow_notrap_nonpresent_pte;
206 }
207
208 static int is_writeble_pte(unsigned long pte)
209 {
210 return pte & PT_WRITABLE_MASK;
211 }
212
213 static int is_dirty_pte(unsigned long pte)
214 {
215 return pte & PT_DIRTY_MASK;
216 }
217
218 static int is_io_pte(unsigned long pte)
219 {
220 return pte & PT_SHADOW_IO_MARK;
221 }
222
223 static int is_rmap_pte(u64 pte)
224 {
225 return pte != shadow_trap_nonpresent_pte
226 && pte != shadow_notrap_nonpresent_pte;
227 }
228
229 static gfn_t pse36_gfn_delta(u32 gpte)
230 {
231 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
232
233 return (gpte & PT32_DIR_PSE36_MASK) << shift;
234 }
235
236 static void set_shadow_pte(u64 *sptep, u64 spte)
237 {
238 #ifdef CONFIG_X86_64
239 set_64bit((unsigned long *)sptep, spte);
240 #else
241 set_64bit((unsigned long long *)sptep, spte);
242 #endif
243 }
244
245 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
246 struct kmem_cache *base_cache, int min)
247 {
248 void *obj;
249
250 if (cache->nobjs >= min)
251 return 0;
252 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
253 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
254 if (!obj)
255 return -ENOMEM;
256 cache->objects[cache->nobjs++] = obj;
257 }
258 return 0;
259 }
260
261 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
262 {
263 while (mc->nobjs)
264 kfree(mc->objects[--mc->nobjs]);
265 }
266
267 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
268 int min)
269 {
270 struct page *page;
271
272 if (cache->nobjs >= min)
273 return 0;
274 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
275 page = alloc_page(GFP_KERNEL);
276 if (!page)
277 return -ENOMEM;
278 set_page_private(page, 0);
279 cache->objects[cache->nobjs++] = page_address(page);
280 }
281 return 0;
282 }
283
284 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
285 {
286 while (mc->nobjs)
287 free_page((unsigned long)mc->objects[--mc->nobjs]);
288 }
289
290 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
291 {
292 int r;
293
294 kvm_mmu_free_some_pages(vcpu);
295 r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
296 pte_chain_cache, 4);
297 if (r)
298 goto out;
299 r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
300 rmap_desc_cache, 1);
301 if (r)
302 goto out;
303 r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 8);
304 if (r)
305 goto out;
306 r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
307 mmu_page_header_cache, 4);
308 out:
309 return r;
310 }
311
312 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
313 {
314 mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
315 mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
316 mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
317 mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
318 }
319
320 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
321 size_t size)
322 {
323 void *p;
324
325 BUG_ON(!mc->nobjs);
326 p = mc->objects[--mc->nobjs];
327 memset(p, 0, size);
328 return p;
329 }
330
331 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
332 {
333 return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
334 sizeof(struct kvm_pte_chain));
335 }
336
337 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
338 {
339 kfree(pc);
340 }
341
342 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
343 {
344 return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
345 sizeof(struct kvm_rmap_desc));
346 }
347
348 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
349 {
350 kfree(rd);
351 }
352
353 /*
354 * Take gfn and return the reverse mapping to it.
355 * Note: gfn must be unaliased before this function get called
356 */
357
358 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
359 {
360 struct kvm_memory_slot *slot;
361
362 slot = gfn_to_memslot(kvm, gfn);
363 return &slot->rmap[gfn - slot->base_gfn];
364 }
365
366 /*
367 * Reverse mapping data structures:
368 *
369 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
370 * that points to page_address(page).
371 *
372 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
373 * containing more mappings.
374 */
375 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
376 {
377 struct kvm_mmu_page *sp;
378 struct kvm_rmap_desc *desc;
379 unsigned long *rmapp;
380 int i;
381
382 if (!is_rmap_pte(*spte))
383 return;
384 gfn = unalias_gfn(vcpu->kvm, gfn);
385 sp = page_header(__pa(spte));
386 sp->gfns[spte - sp->spt] = gfn;
387 rmapp = gfn_to_rmap(vcpu->kvm, gfn);
388 if (!*rmapp) {
389 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
390 *rmapp = (unsigned long)spte;
391 } else if (!(*rmapp & 1)) {
392 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
393 desc = mmu_alloc_rmap_desc(vcpu);
394 desc->shadow_ptes[0] = (u64 *)*rmapp;
395 desc->shadow_ptes[1] = spte;
396 *rmapp = (unsigned long)desc | 1;
397 } else {
398 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
399 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
400 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
401 desc = desc->more;
402 if (desc->shadow_ptes[RMAP_EXT-1]) {
403 desc->more = mmu_alloc_rmap_desc(vcpu);
404 desc = desc->more;
405 }
406 for (i = 0; desc->shadow_ptes[i]; ++i)
407 ;
408 desc->shadow_ptes[i] = spte;
409 }
410 }
411
412 static void rmap_desc_remove_entry(unsigned long *rmapp,
413 struct kvm_rmap_desc *desc,
414 int i,
415 struct kvm_rmap_desc *prev_desc)
416 {
417 int j;
418
419 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
420 ;
421 desc->shadow_ptes[i] = desc->shadow_ptes[j];
422 desc->shadow_ptes[j] = NULL;
423 if (j != 0)
424 return;
425 if (!prev_desc && !desc->more)
426 *rmapp = (unsigned long)desc->shadow_ptes[0];
427 else
428 if (prev_desc)
429 prev_desc->more = desc->more;
430 else
431 *rmapp = (unsigned long)desc->more | 1;
432 mmu_free_rmap_desc(desc);
433 }
434
435 static void rmap_remove(struct kvm *kvm, u64 *spte)
436 {
437 struct kvm_rmap_desc *desc;
438 struct kvm_rmap_desc *prev_desc;
439 struct kvm_mmu_page *sp;
440 struct page *page;
441 unsigned long *rmapp;
442 int i;
443
444 if (!is_rmap_pte(*spte))
445 return;
446 sp = page_header(__pa(spte));
447 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
448 mark_page_accessed(page);
449 if (is_writeble_pte(*spte))
450 kvm_release_page_dirty(page);
451 else
452 kvm_release_page_clean(page);
453 rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt]);
454 if (!*rmapp) {
455 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
456 BUG();
457 } else if (!(*rmapp & 1)) {
458 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
459 if ((u64 *)*rmapp != spte) {
460 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
461 spte, *spte);
462 BUG();
463 }
464 *rmapp = 0;
465 } else {
466 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
467 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
468 prev_desc = NULL;
469 while (desc) {
470 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
471 if (desc->shadow_ptes[i] == spte) {
472 rmap_desc_remove_entry(rmapp,
473 desc, i,
474 prev_desc);
475 return;
476 }
477 prev_desc = desc;
478 desc = desc->more;
479 }
480 BUG();
481 }
482 }
483
484 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
485 {
486 struct kvm_rmap_desc *desc;
487 struct kvm_rmap_desc *prev_desc;
488 u64 *prev_spte;
489 int i;
490
491 if (!*rmapp)
492 return NULL;
493 else if (!(*rmapp & 1)) {
494 if (!spte)
495 return (u64 *)*rmapp;
496 return NULL;
497 }
498 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
499 prev_desc = NULL;
500 prev_spte = NULL;
501 while (desc) {
502 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
503 if (prev_spte == spte)
504 return desc->shadow_ptes[i];
505 prev_spte = desc->shadow_ptes[i];
506 }
507 desc = desc->more;
508 }
509 return NULL;
510 }
511
512 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
513 {
514 unsigned long *rmapp;
515 u64 *spte;
516
517 gfn = unalias_gfn(kvm, gfn);
518 rmapp = gfn_to_rmap(kvm, gfn);
519
520 spte = rmap_next(kvm, rmapp, NULL);
521 while (spte) {
522 BUG_ON(!spte);
523 BUG_ON(!(*spte & PT_PRESENT_MASK));
524 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
525 if (is_writeble_pte(*spte))
526 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
527 kvm_flush_remote_tlbs(kvm);
528 spte = rmap_next(kvm, rmapp, spte);
529 }
530 }
531
532 #ifdef MMU_DEBUG
533 static int is_empty_shadow_page(u64 *spt)
534 {
535 u64 *pos;
536 u64 *end;
537
538 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
539 if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
540 printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
541 pos, *pos);
542 return 0;
543 }
544 return 1;
545 }
546 #endif
547
548 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
549 {
550 ASSERT(is_empty_shadow_page(sp->spt));
551 list_del(&sp->link);
552 __free_page(virt_to_page(sp->spt));
553 __free_page(virt_to_page(sp->gfns));
554 kfree(sp);
555 ++kvm->n_free_mmu_pages;
556 }
557
558 static unsigned kvm_page_table_hashfn(gfn_t gfn)
559 {
560 return gfn;
561 }
562
563 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
564 u64 *parent_pte)
565 {
566 struct kvm_mmu_page *sp;
567
568 if (!vcpu->kvm->n_free_mmu_pages)
569 return NULL;
570
571 sp = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache, sizeof *sp);
572 sp->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
573 sp->gfns = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
574 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
575 list_add(&sp->link, &vcpu->kvm->active_mmu_pages);
576 ASSERT(is_empty_shadow_page(sp->spt));
577 sp->slot_bitmap = 0;
578 sp->multimapped = 0;
579 sp->parent_pte = parent_pte;
580 --vcpu->kvm->n_free_mmu_pages;
581 return sp;
582 }
583
584 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
585 struct kvm_mmu_page *sp, u64 *parent_pte)
586 {
587 struct kvm_pte_chain *pte_chain;
588 struct hlist_node *node;
589 int i;
590
591 if (!parent_pte)
592 return;
593 if (!sp->multimapped) {
594 u64 *old = sp->parent_pte;
595
596 if (!old) {
597 sp->parent_pte = parent_pte;
598 return;
599 }
600 sp->multimapped = 1;
601 pte_chain = mmu_alloc_pte_chain(vcpu);
602 INIT_HLIST_HEAD(&sp->parent_ptes);
603 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
604 pte_chain->parent_ptes[0] = old;
605 }
606 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
607 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
608 continue;
609 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
610 if (!pte_chain->parent_ptes[i]) {
611 pte_chain->parent_ptes[i] = parent_pte;
612 return;
613 }
614 }
615 pte_chain = mmu_alloc_pte_chain(vcpu);
616 BUG_ON(!pte_chain);
617 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
618 pte_chain->parent_ptes[0] = parent_pte;
619 }
620
621 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
622 u64 *parent_pte)
623 {
624 struct kvm_pte_chain *pte_chain;
625 struct hlist_node *node;
626 int i;
627
628 if (!sp->multimapped) {
629 BUG_ON(sp->parent_pte != parent_pte);
630 sp->parent_pte = NULL;
631 return;
632 }
633 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
634 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
635 if (!pte_chain->parent_ptes[i])
636 break;
637 if (pte_chain->parent_ptes[i] != parent_pte)
638 continue;
639 while (i + 1 < NR_PTE_CHAIN_ENTRIES
640 && pte_chain->parent_ptes[i + 1]) {
641 pte_chain->parent_ptes[i]
642 = pte_chain->parent_ptes[i + 1];
643 ++i;
644 }
645 pte_chain->parent_ptes[i] = NULL;
646 if (i == 0) {
647 hlist_del(&pte_chain->link);
648 mmu_free_pte_chain(pte_chain);
649 if (hlist_empty(&sp->parent_ptes)) {
650 sp->multimapped = 0;
651 sp->parent_pte = NULL;
652 }
653 }
654 return;
655 }
656 BUG();
657 }
658
659 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
660 {
661 unsigned index;
662 struct hlist_head *bucket;
663 struct kvm_mmu_page *sp;
664 struct hlist_node *node;
665
666 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
667 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
668 bucket = &kvm->mmu_page_hash[index];
669 hlist_for_each_entry(sp, node, bucket, hash_link)
670 if (sp->gfn == gfn && !sp->role.metaphysical) {
671 pgprintk("%s: found role %x\n",
672 __FUNCTION__, sp->role.word);
673 return sp;
674 }
675 return NULL;
676 }
677
678 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
679 gfn_t gfn,
680 gva_t gaddr,
681 unsigned level,
682 int metaphysical,
683 unsigned access,
684 u64 *parent_pte)
685 {
686 union kvm_mmu_page_role role;
687 unsigned index;
688 unsigned quadrant;
689 struct hlist_head *bucket;
690 struct kvm_mmu_page *sp;
691 struct hlist_node *node;
692
693 role.word = 0;
694 role.glevels = vcpu->mmu.root_level;
695 role.level = level;
696 role.metaphysical = metaphysical;
697 role.access = access;
698 if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
699 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
700 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
701 role.quadrant = quadrant;
702 }
703 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
704 gfn, role.word);
705 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
706 bucket = &vcpu->kvm->mmu_page_hash[index];
707 hlist_for_each_entry(sp, node, bucket, hash_link)
708 if (sp->gfn == gfn && sp->role.word == role.word) {
709 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
710 pgprintk("%s: found\n", __FUNCTION__);
711 return sp;
712 }
713 sp = kvm_mmu_alloc_page(vcpu, parent_pte);
714 if (!sp)
715 return sp;
716 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
717 sp->gfn = gfn;
718 sp->role = role;
719 hlist_add_head(&sp->hash_link, bucket);
720 vcpu->mmu.prefetch_page(vcpu, sp);
721 if (!metaphysical)
722 rmap_write_protect(vcpu->kvm, gfn);
723 return sp;
724 }
725
726 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
727 struct kvm_mmu_page *sp)
728 {
729 unsigned i;
730 u64 *pt;
731 u64 ent;
732
733 pt = sp->spt;
734
735 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
736 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
737 if (is_shadow_present_pte(pt[i]))
738 rmap_remove(kvm, &pt[i]);
739 pt[i] = shadow_trap_nonpresent_pte;
740 }
741 kvm_flush_remote_tlbs(kvm);
742 return;
743 }
744
745 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
746 ent = pt[i];
747
748 pt[i] = shadow_trap_nonpresent_pte;
749 if (!is_shadow_present_pte(ent))
750 continue;
751 ent &= PT64_BASE_ADDR_MASK;
752 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
753 }
754 kvm_flush_remote_tlbs(kvm);
755 }
756
757 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
758 {
759 mmu_page_remove_parent_pte(sp, parent_pte);
760 }
761
762 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
763 {
764 int i;
765
766 for (i = 0; i < KVM_MAX_VCPUS; ++i)
767 if (kvm->vcpus[i])
768 kvm->vcpus[i]->last_pte_updated = NULL;
769 }
770
771 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
772 {
773 u64 *parent_pte;
774
775 ++kvm->stat.mmu_shadow_zapped;
776 while (sp->multimapped || sp->parent_pte) {
777 if (!sp->multimapped)
778 parent_pte = sp->parent_pte;
779 else {
780 struct kvm_pte_chain *chain;
781
782 chain = container_of(sp->parent_ptes.first,
783 struct kvm_pte_chain, link);
784 parent_pte = chain->parent_ptes[0];
785 }
786 BUG_ON(!parent_pte);
787 kvm_mmu_put_page(sp, parent_pte);
788 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
789 }
790 kvm_mmu_page_unlink_children(kvm, sp);
791 if (!sp->root_count) {
792 hlist_del(&sp->hash_link);
793 kvm_mmu_free_page(kvm, sp);
794 } else
795 list_move(&sp->link, &kvm->active_mmu_pages);
796 kvm_mmu_reset_last_pte_updated(kvm);
797 }
798
799 /*
800 * Changing the number of mmu pages allocated to the vm
801 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
802 */
803 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
804 {
805 /*
806 * If we set the number of mmu pages to be smaller be than the
807 * number of actived pages , we must to free some mmu pages before we
808 * change the value
809 */
810
811 if ((kvm->n_alloc_mmu_pages - kvm->n_free_mmu_pages) >
812 kvm_nr_mmu_pages) {
813 int n_used_mmu_pages = kvm->n_alloc_mmu_pages
814 - kvm->n_free_mmu_pages;
815
816 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
817 struct kvm_mmu_page *page;
818
819 page = container_of(kvm->active_mmu_pages.prev,
820 struct kvm_mmu_page, link);
821 kvm_mmu_zap_page(kvm, page);
822 n_used_mmu_pages--;
823 }
824 kvm->n_free_mmu_pages = 0;
825 }
826 else
827 kvm->n_free_mmu_pages += kvm_nr_mmu_pages
828 - kvm->n_alloc_mmu_pages;
829
830 kvm->n_alloc_mmu_pages = kvm_nr_mmu_pages;
831 }
832
833 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
834 {
835 unsigned index;
836 struct hlist_head *bucket;
837 struct kvm_mmu_page *sp;
838 struct hlist_node *node, *n;
839 int r;
840
841 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
842 r = 0;
843 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
844 bucket = &kvm->mmu_page_hash[index];
845 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
846 if (sp->gfn == gfn && !sp->role.metaphysical) {
847 pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
848 sp->role.word);
849 kvm_mmu_zap_page(kvm, sp);
850 r = 1;
851 }
852 return r;
853 }
854
855 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
856 {
857 struct kvm_mmu_page *sp;
858
859 while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
860 pgprintk("%s: zap %lx %x\n", __FUNCTION__, gfn, sp->role.word);
861 kvm_mmu_zap_page(kvm, sp);
862 }
863 }
864
865 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
866 {
867 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
868 struct kvm_mmu_page *sp = page_header(__pa(pte));
869
870 __set_bit(slot, &sp->slot_bitmap);
871 }
872
873 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
874 {
875 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
876
877 if (gpa == UNMAPPED_GVA)
878 return NULL;
879 return gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
880 }
881
882 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
883 unsigned pt_access, unsigned pte_access,
884 int user_fault, int write_fault, int dirty,
885 int *ptwrite, gfn_t gfn)
886 {
887 u64 spte;
888 int was_rmapped = is_rmap_pte(*shadow_pte);
889 struct page *page;
890
891 pgprintk("%s: spte %llx access %x write_fault %d"
892 " user_fault %d gfn %lx\n",
893 __FUNCTION__, *shadow_pte, pt_access,
894 write_fault, user_fault, gfn);
895
896 /*
897 * We don't set the accessed bit, since we sometimes want to see
898 * whether the guest actually used the pte (in order to detect
899 * demand paging).
900 */
901 spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
902 if (!dirty)
903 pte_access &= ~ACC_WRITE_MASK;
904 if (!(pte_access & ACC_EXEC_MASK))
905 spte |= PT64_NX_MASK;
906
907 page = gfn_to_page(vcpu->kvm, gfn);
908
909 spte |= PT_PRESENT_MASK;
910 if (pte_access & ACC_USER_MASK)
911 spte |= PT_USER_MASK;
912
913 if (is_error_page(page)) {
914 set_shadow_pte(shadow_pte,
915 shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
916 kvm_release_page_clean(page);
917 return;
918 }
919
920 spte |= page_to_phys(page);
921
922 if ((pte_access & ACC_WRITE_MASK)
923 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
924 struct kvm_mmu_page *shadow;
925
926 spte |= PT_WRITABLE_MASK;
927 if (user_fault) {
928 mmu_unshadow(vcpu->kvm, gfn);
929 goto unshadowed;
930 }
931
932 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
933 if (shadow) {
934 pgprintk("%s: found shadow page for %lx, marking ro\n",
935 __FUNCTION__, gfn);
936 pte_access &= ~ACC_WRITE_MASK;
937 if (is_writeble_pte(spte)) {
938 spte &= ~PT_WRITABLE_MASK;
939 kvm_x86_ops->tlb_flush(vcpu);
940 }
941 if (write_fault)
942 *ptwrite = 1;
943 }
944 }
945
946 unshadowed:
947
948 if (pte_access & ACC_WRITE_MASK)
949 mark_page_dirty(vcpu->kvm, gfn);
950
951 pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
952 set_shadow_pte(shadow_pte, spte);
953 page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
954 if (!was_rmapped) {
955 rmap_add(vcpu, shadow_pte, gfn);
956 if (!is_rmap_pte(*shadow_pte))
957 kvm_release_page_clean(page);
958 }
959 else
960 kvm_release_page_clean(page);
961 if (!ptwrite || !*ptwrite)
962 vcpu->last_pte_updated = shadow_pte;
963 }
964
965 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
966 {
967 }
968
969 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, struct page *page)
970 {
971 int level = PT32E_ROOT_LEVEL;
972 hpa_t table_addr = vcpu->mmu.root_hpa;
973
974 for (; ; level--) {
975 u32 index = PT64_INDEX(v, level);
976 u64 *table;
977 u64 pte;
978
979 ASSERT(VALID_PAGE(table_addr));
980 table = __va(table_addr);
981
982 if (level == 1) {
983 int was_rmapped;
984
985 pte = table[index];
986 was_rmapped = is_rmap_pte(pte);
987 if (is_shadow_present_pte(pte) && is_writeble_pte(pte)) {
988 kvm_release_page_clean(page);
989 return 0;
990 }
991 mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
992 page_header_update_slot(vcpu->kvm, table,
993 v >> PAGE_SHIFT);
994 table[index] = page_to_phys(page)
995 | PT_PRESENT_MASK | PT_WRITABLE_MASK
996 | PT_USER_MASK;
997 if (!was_rmapped)
998 rmap_add(vcpu, &table[index], v >> PAGE_SHIFT);
999 else
1000 kvm_release_page_clean(page);
1001
1002 return 0;
1003 }
1004
1005 if (table[index] == shadow_trap_nonpresent_pte) {
1006 struct kvm_mmu_page *new_table;
1007 gfn_t pseudo_gfn;
1008
1009 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1010 >> PAGE_SHIFT;
1011 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1012 v, level - 1,
1013 1, ACC_ALL, &table[index]);
1014 if (!new_table) {
1015 pgprintk("nonpaging_map: ENOMEM\n");
1016 kvm_release_page_clean(page);
1017 return -ENOMEM;
1018 }
1019
1020 table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
1021 | PT_WRITABLE_MASK | PT_USER_MASK;
1022 }
1023 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1024 }
1025 }
1026
1027 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1028 struct kvm_mmu_page *sp)
1029 {
1030 int i;
1031
1032 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1033 sp->spt[i] = shadow_trap_nonpresent_pte;
1034 }
1035
1036 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1037 {
1038 int i;
1039 struct kvm_mmu_page *sp;
1040
1041 if (!VALID_PAGE(vcpu->mmu.root_hpa))
1042 return;
1043 #ifdef CONFIG_X86_64
1044 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1045 hpa_t root = vcpu->mmu.root_hpa;
1046
1047 sp = page_header(root);
1048 --sp->root_count;
1049 vcpu->mmu.root_hpa = INVALID_PAGE;
1050 return;
1051 }
1052 #endif
1053 for (i = 0; i < 4; ++i) {
1054 hpa_t root = vcpu->mmu.pae_root[i];
1055
1056 if (root) {
1057 root &= PT64_BASE_ADDR_MASK;
1058 sp = page_header(root);
1059 --sp->root_count;
1060 }
1061 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1062 }
1063 vcpu->mmu.root_hpa = INVALID_PAGE;
1064 }
1065
1066 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1067 {
1068 int i;
1069 gfn_t root_gfn;
1070 struct kvm_mmu_page *sp;
1071
1072 root_gfn = vcpu->cr3 >> PAGE_SHIFT;
1073
1074 #ifdef CONFIG_X86_64
1075 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1076 hpa_t root = vcpu->mmu.root_hpa;
1077
1078 ASSERT(!VALID_PAGE(root));
1079 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1080 PT64_ROOT_LEVEL, 0, ACC_ALL, NULL);
1081 root = __pa(sp->spt);
1082 ++sp->root_count;
1083 vcpu->mmu.root_hpa = root;
1084 return;
1085 }
1086 #endif
1087 for (i = 0; i < 4; ++i) {
1088 hpa_t root = vcpu->mmu.pae_root[i];
1089
1090 ASSERT(!VALID_PAGE(root));
1091 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
1092 if (!is_present_pte(vcpu->pdptrs[i])) {
1093 vcpu->mmu.pae_root[i] = 0;
1094 continue;
1095 }
1096 root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
1097 } else if (vcpu->mmu.root_level == 0)
1098 root_gfn = 0;
1099 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1100 PT32_ROOT_LEVEL, !is_paging(vcpu),
1101 ACC_ALL, NULL);
1102 root = __pa(sp->spt);
1103 ++sp->root_count;
1104 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
1105 }
1106 vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
1107 }
1108
1109 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1110 {
1111 return vaddr;
1112 }
1113
1114 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1115 u32 error_code)
1116 {
1117 struct page *page;
1118 int r;
1119
1120 r = mmu_topup_memory_caches(vcpu);
1121 if (r)
1122 return r;
1123
1124 ASSERT(vcpu);
1125 ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
1126
1127 page = gfn_to_page(vcpu->kvm, gva >> PAGE_SHIFT);
1128
1129 if (is_error_page(page)) {
1130 kvm_release_page_clean(page);
1131 return 1;
1132 }
1133
1134 return nonpaging_map(vcpu, gva & PAGE_MASK, page);
1135 }
1136
1137 static void nonpaging_free(struct kvm_vcpu *vcpu)
1138 {
1139 mmu_free_roots(vcpu);
1140 }
1141
1142 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1143 {
1144 struct kvm_mmu *context = &vcpu->mmu;
1145
1146 context->new_cr3 = nonpaging_new_cr3;
1147 context->page_fault = nonpaging_page_fault;
1148 context->gva_to_gpa = nonpaging_gva_to_gpa;
1149 context->free = nonpaging_free;
1150 context->prefetch_page = nonpaging_prefetch_page;
1151 context->root_level = 0;
1152 context->shadow_root_level = PT32E_ROOT_LEVEL;
1153 context->root_hpa = INVALID_PAGE;
1154 return 0;
1155 }
1156
1157 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1158 {
1159 ++vcpu->stat.tlb_flush;
1160 kvm_x86_ops->tlb_flush(vcpu);
1161 }
1162
1163 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1164 {
1165 pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
1166 mmu_free_roots(vcpu);
1167 }
1168
1169 static void inject_page_fault(struct kvm_vcpu *vcpu,
1170 u64 addr,
1171 u32 err_code)
1172 {
1173 kvm_inject_page_fault(vcpu, addr, err_code);
1174 }
1175
1176 static void paging_free(struct kvm_vcpu *vcpu)
1177 {
1178 nonpaging_free(vcpu);
1179 }
1180
1181 #define PTTYPE 64
1182 #include "paging_tmpl.h"
1183 #undef PTTYPE
1184
1185 #define PTTYPE 32
1186 #include "paging_tmpl.h"
1187 #undef PTTYPE
1188
1189 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1190 {
1191 struct kvm_mmu *context = &vcpu->mmu;
1192
1193 ASSERT(is_pae(vcpu));
1194 context->new_cr3 = paging_new_cr3;
1195 context->page_fault = paging64_page_fault;
1196 context->gva_to_gpa = paging64_gva_to_gpa;
1197 context->prefetch_page = paging64_prefetch_page;
1198 context->free = paging_free;
1199 context->root_level = level;
1200 context->shadow_root_level = level;
1201 context->root_hpa = INVALID_PAGE;
1202 return 0;
1203 }
1204
1205 static int paging64_init_context(struct kvm_vcpu *vcpu)
1206 {
1207 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1208 }
1209
1210 static int paging32_init_context(struct kvm_vcpu *vcpu)
1211 {
1212 struct kvm_mmu *context = &vcpu->mmu;
1213
1214 context->new_cr3 = paging_new_cr3;
1215 context->page_fault = paging32_page_fault;
1216 context->gva_to_gpa = paging32_gva_to_gpa;
1217 context->free = paging_free;
1218 context->prefetch_page = paging32_prefetch_page;
1219 context->root_level = PT32_ROOT_LEVEL;
1220 context->shadow_root_level = PT32E_ROOT_LEVEL;
1221 context->root_hpa = INVALID_PAGE;
1222 return 0;
1223 }
1224
1225 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1226 {
1227 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1228 }
1229
1230 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1231 {
1232 ASSERT(vcpu);
1233 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1234
1235 if (!is_paging(vcpu))
1236 return nonpaging_init_context(vcpu);
1237 else if (is_long_mode(vcpu))
1238 return paging64_init_context(vcpu);
1239 else if (is_pae(vcpu))
1240 return paging32E_init_context(vcpu);
1241 else
1242 return paging32_init_context(vcpu);
1243 }
1244
1245 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1246 {
1247 ASSERT(vcpu);
1248 if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1249 vcpu->mmu.free(vcpu);
1250 vcpu->mmu.root_hpa = INVALID_PAGE;
1251 }
1252 }
1253
1254 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1255 {
1256 destroy_kvm_mmu(vcpu);
1257 return init_kvm_mmu(vcpu);
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1260
1261 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1262 {
1263 int r;
1264
1265 mutex_lock(&vcpu->kvm->lock);
1266 r = mmu_topup_memory_caches(vcpu);
1267 if (r)
1268 goto out;
1269 mmu_alloc_roots(vcpu);
1270 kvm_x86_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
1271 kvm_mmu_flush_tlb(vcpu);
1272 out:
1273 mutex_unlock(&vcpu->kvm->lock);
1274 return r;
1275 }
1276 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1277
1278 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1279 {
1280 mmu_free_roots(vcpu);
1281 }
1282
1283 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1284 struct kvm_mmu_page *sp,
1285 u64 *spte)
1286 {
1287 u64 pte;
1288 struct kvm_mmu_page *child;
1289
1290 pte = *spte;
1291 if (is_shadow_present_pte(pte)) {
1292 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
1293 rmap_remove(vcpu->kvm, spte);
1294 else {
1295 child = page_header(pte & PT64_BASE_ADDR_MASK);
1296 mmu_page_remove_parent_pte(child, spte);
1297 }
1298 }
1299 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1300 }
1301
1302 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1303 struct kvm_mmu_page *sp,
1304 u64 *spte,
1305 const void *new, int bytes,
1306 int offset_in_pte)
1307 {
1308 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
1309 ++vcpu->kvm->stat.mmu_pde_zapped;
1310 return;
1311 }
1312
1313 ++vcpu->kvm->stat.mmu_pte_updated;
1314 if (sp->role.glevels == PT32_ROOT_LEVEL)
1315 paging32_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
1316 else
1317 paging64_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
1318 }
1319
1320 static bool need_remote_flush(u64 old, u64 new)
1321 {
1322 if (!is_shadow_present_pte(old))
1323 return false;
1324 if (!is_shadow_present_pte(new))
1325 return true;
1326 if ((old ^ new) & PT64_BASE_ADDR_MASK)
1327 return true;
1328 old ^= PT64_NX_MASK;
1329 new ^= PT64_NX_MASK;
1330 return (old & ~new & PT64_PERM_MASK) != 0;
1331 }
1332
1333 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1334 {
1335 if (need_remote_flush(old, new))
1336 kvm_flush_remote_tlbs(vcpu->kvm);
1337 else
1338 kvm_mmu_flush_tlb(vcpu);
1339 }
1340
1341 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1342 {
1343 u64 *spte = vcpu->last_pte_updated;
1344
1345 return !!(spte && (*spte & PT_ACCESSED_MASK));
1346 }
1347
1348 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1349 const u8 *new, int bytes)
1350 {
1351 gfn_t gfn = gpa >> PAGE_SHIFT;
1352 struct kvm_mmu_page *sp;
1353 struct hlist_node *node, *n;
1354 struct hlist_head *bucket;
1355 unsigned index;
1356 u64 entry;
1357 u64 *spte;
1358 unsigned offset = offset_in_page(gpa);
1359 unsigned pte_size;
1360 unsigned page_offset;
1361 unsigned misaligned;
1362 unsigned quadrant;
1363 int level;
1364 int flooded = 0;
1365 int npte;
1366
1367 pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1368 ++vcpu->kvm->stat.mmu_pte_write;
1369 kvm_mmu_audit(vcpu, "pre pte write");
1370 if (gfn == vcpu->last_pt_write_gfn
1371 && !last_updated_pte_accessed(vcpu)) {
1372 ++vcpu->last_pt_write_count;
1373 if (vcpu->last_pt_write_count >= 3)
1374 flooded = 1;
1375 } else {
1376 vcpu->last_pt_write_gfn = gfn;
1377 vcpu->last_pt_write_count = 1;
1378 vcpu->last_pte_updated = NULL;
1379 }
1380 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1381 bucket = &vcpu->kvm->mmu_page_hash[index];
1382 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1383 if (sp->gfn != gfn || sp->role.metaphysical)
1384 continue;
1385 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1386 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1387 misaligned |= bytes < 4;
1388 if (misaligned || flooded) {
1389 /*
1390 * Misaligned accesses are too much trouble to fix
1391 * up; also, they usually indicate a page is not used
1392 * as a page table.
1393 *
1394 * If we're seeing too many writes to a page,
1395 * it may no longer be a page table, or we may be
1396 * forking, in which case it is better to unmap the
1397 * page.
1398 */
1399 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1400 gpa, bytes, sp->role.word);
1401 kvm_mmu_zap_page(vcpu->kvm, sp);
1402 ++vcpu->kvm->stat.mmu_flooded;
1403 continue;
1404 }
1405 page_offset = offset;
1406 level = sp->role.level;
1407 npte = 1;
1408 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1409 page_offset <<= 1; /* 32->64 */
1410 /*
1411 * A 32-bit pde maps 4MB while the shadow pdes map
1412 * only 2MB. So we need to double the offset again
1413 * and zap two pdes instead of one.
1414 */
1415 if (level == PT32_ROOT_LEVEL) {
1416 page_offset &= ~7; /* kill rounding error */
1417 page_offset <<= 1;
1418 npte = 2;
1419 }
1420 quadrant = page_offset >> PAGE_SHIFT;
1421 page_offset &= ~PAGE_MASK;
1422 if (quadrant != sp->role.quadrant)
1423 continue;
1424 }
1425 spte = &sp->spt[page_offset / sizeof(*spte)];
1426 while (npte--) {
1427 entry = *spte;
1428 mmu_pte_write_zap_pte(vcpu, sp, spte);
1429 mmu_pte_write_new_pte(vcpu, sp, spte, new, bytes,
1430 page_offset & (pte_size - 1));
1431 mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1432 ++spte;
1433 }
1434 }
1435 kvm_mmu_audit(vcpu, "post pte write");
1436 }
1437
1438 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1439 {
1440 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1441
1442 return kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1443 }
1444
1445 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1446 {
1447 while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1448 struct kvm_mmu_page *sp;
1449
1450 sp = container_of(vcpu->kvm->active_mmu_pages.prev,
1451 struct kvm_mmu_page, link);
1452 kvm_mmu_zap_page(vcpu->kvm, sp);
1453 ++vcpu->kvm->stat.mmu_recycled;
1454 }
1455 }
1456
1457 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1458 {
1459 int r;
1460 enum emulation_result er;
1461
1462 mutex_lock(&vcpu->kvm->lock);
1463 r = vcpu->mmu.page_fault(vcpu, cr2, error_code);
1464 if (r < 0)
1465 goto out;
1466
1467 if (!r) {
1468 r = 1;
1469 goto out;
1470 }
1471
1472 r = mmu_topup_memory_caches(vcpu);
1473 if (r)
1474 goto out;
1475
1476 er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1477 mutex_unlock(&vcpu->kvm->lock);
1478
1479 switch (er) {
1480 case EMULATE_DONE:
1481 return 1;
1482 case EMULATE_DO_MMIO:
1483 ++vcpu->stat.mmio_exits;
1484 return 0;
1485 case EMULATE_FAIL:
1486 kvm_report_emulation_failure(vcpu, "pagetable");
1487 return 1;
1488 default:
1489 BUG();
1490 }
1491 out:
1492 mutex_unlock(&vcpu->kvm->lock);
1493 return r;
1494 }
1495 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1496
1497 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1498 {
1499 struct kvm_mmu_page *sp;
1500
1501 while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1502 sp = container_of(vcpu->kvm->active_mmu_pages.next,
1503 struct kvm_mmu_page, link);
1504 kvm_mmu_zap_page(vcpu->kvm, sp);
1505 }
1506 free_page((unsigned long)vcpu->mmu.pae_root);
1507 }
1508
1509 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1510 {
1511 struct page *page;
1512 int i;
1513
1514 ASSERT(vcpu);
1515
1516 if (vcpu->kvm->n_requested_mmu_pages)
1517 vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_requested_mmu_pages;
1518 else
1519 vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_alloc_mmu_pages;
1520 /*
1521 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1522 * Therefore we need to allocate shadow page tables in the first
1523 * 4GB of memory, which happens to fit the DMA32 zone.
1524 */
1525 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1526 if (!page)
1527 goto error_1;
1528 vcpu->mmu.pae_root = page_address(page);
1529 for (i = 0; i < 4; ++i)
1530 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1531
1532 return 0;
1533
1534 error_1:
1535 free_mmu_pages(vcpu);
1536 return -ENOMEM;
1537 }
1538
1539 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1540 {
1541 ASSERT(vcpu);
1542 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1543
1544 return alloc_mmu_pages(vcpu);
1545 }
1546
1547 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1548 {
1549 ASSERT(vcpu);
1550 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1551
1552 return init_kvm_mmu(vcpu);
1553 }
1554
1555 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1556 {
1557 ASSERT(vcpu);
1558
1559 destroy_kvm_mmu(vcpu);
1560 free_mmu_pages(vcpu);
1561 mmu_free_memory_caches(vcpu);
1562 }
1563
1564 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1565 {
1566 struct kvm_mmu_page *sp;
1567
1568 list_for_each_entry(sp, &kvm->active_mmu_pages, link) {
1569 int i;
1570 u64 *pt;
1571
1572 if (!test_bit(slot, &sp->slot_bitmap))
1573 continue;
1574
1575 pt = sp->spt;
1576 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1577 /* avoid RMW */
1578 if (pt[i] & PT_WRITABLE_MASK)
1579 pt[i] &= ~PT_WRITABLE_MASK;
1580 }
1581 }
1582
1583 void kvm_mmu_zap_all(struct kvm *kvm)
1584 {
1585 struct kvm_mmu_page *sp, *node;
1586
1587 list_for_each_entry_safe(sp, node, &kvm->active_mmu_pages, link)
1588 kvm_mmu_zap_page(kvm, sp);
1589
1590 kvm_flush_remote_tlbs(kvm);
1591 }
1592
1593 void kvm_mmu_module_exit(void)
1594 {
1595 if (pte_chain_cache)
1596 kmem_cache_destroy(pte_chain_cache);
1597 if (rmap_desc_cache)
1598 kmem_cache_destroy(rmap_desc_cache);
1599 if (mmu_page_header_cache)
1600 kmem_cache_destroy(mmu_page_header_cache);
1601 }
1602
1603 int kvm_mmu_module_init(void)
1604 {
1605 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1606 sizeof(struct kvm_pte_chain),
1607 0, 0, NULL);
1608 if (!pte_chain_cache)
1609 goto nomem;
1610 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1611 sizeof(struct kvm_rmap_desc),
1612 0, 0, NULL);
1613 if (!rmap_desc_cache)
1614 goto nomem;
1615
1616 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1617 sizeof(struct kvm_mmu_page),
1618 0, 0, NULL);
1619 if (!mmu_page_header_cache)
1620 goto nomem;
1621
1622 return 0;
1623
1624 nomem:
1625 kvm_mmu_module_exit();
1626 return -ENOMEM;
1627 }
1628
1629 /*
1630 * Caculate mmu pages needed for kvm.
1631 */
1632 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
1633 {
1634 int i;
1635 unsigned int nr_mmu_pages;
1636 unsigned int nr_pages = 0;
1637
1638 for (i = 0; i < kvm->nmemslots; i++)
1639 nr_pages += kvm->memslots[i].npages;
1640
1641 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
1642 nr_mmu_pages = max(nr_mmu_pages,
1643 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
1644
1645 return nr_mmu_pages;
1646 }
1647
1648 #ifdef AUDIT
1649
1650 static const char *audit_msg;
1651
1652 static gva_t canonicalize(gva_t gva)
1653 {
1654 #ifdef CONFIG_X86_64
1655 gva = (long long)(gva << 16) >> 16;
1656 #endif
1657 return gva;
1658 }
1659
1660 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1661 gva_t va, int level)
1662 {
1663 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1664 int i;
1665 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1666
1667 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1668 u64 ent = pt[i];
1669
1670 if (ent == shadow_trap_nonpresent_pte)
1671 continue;
1672
1673 va = canonicalize(va);
1674 if (level > 1) {
1675 if (ent == shadow_notrap_nonpresent_pte)
1676 printk(KERN_ERR "audit: (%s) nontrapping pte"
1677 " in nonleaf level: levels %d gva %lx"
1678 " level %d pte %llx\n", audit_msg,
1679 vcpu->mmu.root_level, va, level, ent);
1680
1681 audit_mappings_page(vcpu, ent, va, level - 1);
1682 } else {
1683 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1684 struct page *page = gpa_to_page(vcpu, gpa);
1685 hpa_t hpa = page_to_phys(page);
1686
1687 if (is_shadow_present_pte(ent)
1688 && (ent & PT64_BASE_ADDR_MASK) != hpa)
1689 printk(KERN_ERR "xx audit error: (%s) levels %d"
1690 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
1691 audit_msg, vcpu->mmu.root_level,
1692 va, gpa, hpa, ent,
1693 is_shadow_present_pte(ent));
1694 else if (ent == shadow_notrap_nonpresent_pte
1695 && !is_error_hpa(hpa))
1696 printk(KERN_ERR "audit: (%s) notrap shadow,"
1697 " valid guest gva %lx\n", audit_msg, va);
1698 kvm_release_page_clean(page);
1699
1700 }
1701 }
1702 }
1703
1704 static void audit_mappings(struct kvm_vcpu *vcpu)
1705 {
1706 unsigned i;
1707
1708 if (vcpu->mmu.root_level == 4)
1709 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1710 else
1711 for (i = 0; i < 4; ++i)
1712 if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1713 audit_mappings_page(vcpu,
1714 vcpu->mmu.pae_root[i],
1715 i << 30,
1716 2);
1717 }
1718
1719 static int count_rmaps(struct kvm_vcpu *vcpu)
1720 {
1721 int nmaps = 0;
1722 int i, j, k;
1723
1724 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1725 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1726 struct kvm_rmap_desc *d;
1727
1728 for (j = 0; j < m->npages; ++j) {
1729 unsigned long *rmapp = &m->rmap[j];
1730
1731 if (!*rmapp)
1732 continue;
1733 if (!(*rmapp & 1)) {
1734 ++nmaps;
1735 continue;
1736 }
1737 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
1738 while (d) {
1739 for (k = 0; k < RMAP_EXT; ++k)
1740 if (d->shadow_ptes[k])
1741 ++nmaps;
1742 else
1743 break;
1744 d = d->more;
1745 }
1746 }
1747 }
1748 return nmaps;
1749 }
1750
1751 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1752 {
1753 int nmaps = 0;
1754 struct kvm_mmu_page *sp;
1755 int i;
1756
1757 list_for_each_entry(sp, &vcpu->kvm->active_mmu_pages, link) {
1758 u64 *pt = sp->spt;
1759
1760 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
1761 continue;
1762
1763 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1764 u64 ent = pt[i];
1765
1766 if (!(ent & PT_PRESENT_MASK))
1767 continue;
1768 if (!(ent & PT_WRITABLE_MASK))
1769 continue;
1770 ++nmaps;
1771 }
1772 }
1773 return nmaps;
1774 }
1775
1776 static void audit_rmap(struct kvm_vcpu *vcpu)
1777 {
1778 int n_rmap = count_rmaps(vcpu);
1779 int n_actual = count_writable_mappings(vcpu);
1780
1781 if (n_rmap != n_actual)
1782 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1783 __FUNCTION__, audit_msg, n_rmap, n_actual);
1784 }
1785
1786 static void audit_write_protection(struct kvm_vcpu *vcpu)
1787 {
1788 struct kvm_mmu_page *sp;
1789 struct kvm_memory_slot *slot;
1790 unsigned long *rmapp;
1791 gfn_t gfn;
1792
1793 list_for_each_entry(sp, &vcpu->kvm->active_mmu_pages, link) {
1794 if (sp->role.metaphysical)
1795 continue;
1796
1797 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
1798 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
1799 rmapp = &slot->rmap[gfn - slot->base_gfn];
1800 if (*rmapp)
1801 printk(KERN_ERR "%s: (%s) shadow page has writable"
1802 " mappings: gfn %lx role %x\n",
1803 __FUNCTION__, audit_msg, sp->gfn,
1804 sp->role.word);
1805 }
1806 }
1807
1808 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1809 {
1810 int olddbg = dbg;
1811
1812 dbg = 0;
1813 audit_msg = msg;
1814 audit_rmap(vcpu);
1815 audit_write_protection(vcpu);
1816 audit_mappings(vcpu);
1817 dbg = olddbg;
1818 }
1819
1820 #endif
This page took 0.076446 seconds and 6 git commands to generate.