[PATCH] KVM: MMU: Make kvm_mmu_alloc_page() return a kvm_mmu_page pointer
[deliverable/linux.git] / drivers / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20 /*
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
23 */
24
25 #if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
35 #elif PTTYPE == 32
36 #define pt_element_t u32
37 #define guest_walker guest_walker32
38 #define FNAME(name) paging##32_##name
39 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
40 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
41 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
42 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
43 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
44 #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
45 #else
46 #error Invalid PTTYPE value
47 #endif
48
49 /*
50 * The guest_walker structure emulates the behavior of the hardware page
51 * table walker.
52 */
53 struct guest_walker {
54 int level;
55 gfn_t table_gfn;
56 pt_element_t *table;
57 pt_element_t *ptep;
58 pt_element_t inherited_ar;
59 };
60
61 /*
62 * Fetch a guest pte for a guest virtual address
63 */
64 static void FNAME(walk_addr)(struct guest_walker *walker,
65 struct kvm_vcpu *vcpu, gva_t addr)
66 {
67 hpa_t hpa;
68 struct kvm_memory_slot *slot;
69 pt_element_t *ptep;
70 pt_element_t root;
71
72 walker->level = vcpu->mmu.root_level;
73 walker->table = NULL;
74 root = vcpu->cr3;
75 #if PTTYPE == 64
76 if (!is_long_mode(vcpu)) {
77 walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
78 root = *walker->ptep;
79 if (!(root & PT_PRESENT_MASK))
80 return;
81 --walker->level;
82 }
83 #endif
84 walker->table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
85 slot = gfn_to_memslot(vcpu->kvm, walker->table_gfn);
86 hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
87 walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
88
89 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
90 (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
91
92 walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
93
94 for (;;) {
95 int index = PT_INDEX(addr, walker->level);
96 hpa_t paddr;
97
98 ptep = &walker->table[index];
99 ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
100 ((unsigned long)ptep & PAGE_MASK));
101
102 if (is_present_pte(*ptep) && !(*ptep & PT_ACCESSED_MASK))
103 *ptep |= PT_ACCESSED_MASK;
104
105 if (!is_present_pte(*ptep) ||
106 walker->level == PT_PAGE_TABLE_LEVEL ||
107 (walker->level == PT_DIRECTORY_LEVEL &&
108 (*ptep & PT_PAGE_SIZE_MASK) &&
109 (PTTYPE == 64 || is_pse(vcpu))))
110 break;
111
112 if (walker->level != 3 || is_long_mode(vcpu))
113 walker->inherited_ar &= walker->table[index];
114 walker->table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
115 paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
116 kunmap_atomic(walker->table, KM_USER0);
117 walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
118 KM_USER0);
119 --walker->level;
120 }
121 walker->ptep = ptep;
122 }
123
124 static void FNAME(release_walker)(struct guest_walker *walker)
125 {
126 if (walker->table)
127 kunmap_atomic(walker->table, KM_USER0);
128 }
129
130 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, u64 guest_pte,
131 u64 *shadow_pte, u64 access_bits)
132 {
133 ASSERT(*shadow_pte == 0);
134 access_bits &= guest_pte;
135 *shadow_pte = (guest_pte & PT_PTE_COPY_MASK);
136 set_pte_common(vcpu, shadow_pte, guest_pte & PT_BASE_ADDR_MASK,
137 guest_pte & PT_DIRTY_MASK, access_bits);
138 }
139
140 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, u64 guest_pde,
141 u64 *shadow_pte, u64 access_bits,
142 int index)
143 {
144 gpa_t gaddr;
145
146 ASSERT(*shadow_pte == 0);
147 access_bits &= guest_pde;
148 gaddr = (guest_pde & PT_DIR_BASE_ADDR_MASK) + PAGE_SIZE * index;
149 if (PTTYPE == 32 && is_cpuid_PSE36())
150 gaddr |= (guest_pde & PT32_DIR_PSE36_MASK) <<
151 (32 - PT32_DIR_PSE36_SHIFT);
152 *shadow_pte = guest_pde & PT_PTE_COPY_MASK;
153 set_pte_common(vcpu, shadow_pte, gaddr,
154 guest_pde & PT_DIRTY_MASK, access_bits);
155 }
156
157 /*
158 * Fetch a shadow pte for a specific level in the paging hierarchy.
159 */
160 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
161 struct guest_walker *walker)
162 {
163 hpa_t shadow_addr;
164 int level;
165 u64 *prev_shadow_ent = NULL;
166 pt_element_t *guest_ent = walker->ptep;
167
168 if (!is_present_pte(*guest_ent))
169 return NULL;
170
171 shadow_addr = vcpu->mmu.root_hpa;
172 level = vcpu->mmu.shadow_root_level;
173 if (level == PT32E_ROOT_LEVEL) {
174 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
175 shadow_addr &= PT64_BASE_ADDR_MASK;
176 --level;
177 }
178
179 for (; ; level--) {
180 u32 index = SHADOW_PT_INDEX(addr, level);
181 u64 *shadow_ent = ((u64 *)__va(shadow_addr)) + index;
182 struct kvm_mmu_page *shadow_page;
183 u64 shadow_pte;
184
185 if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
186 if (level == PT_PAGE_TABLE_LEVEL)
187 return shadow_ent;
188 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
189 prev_shadow_ent = shadow_ent;
190 continue;
191 }
192
193 if (level == PT_PAGE_TABLE_LEVEL) {
194
195 if (walker->level == PT_DIRECTORY_LEVEL) {
196 if (prev_shadow_ent)
197 *prev_shadow_ent |= PT_SHADOW_PS_MARK;
198 FNAME(set_pde)(vcpu, *guest_ent, shadow_ent,
199 walker->inherited_ar,
200 PT_INDEX(addr, PT_PAGE_TABLE_LEVEL));
201 } else {
202 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
203 FNAME(set_pte)(vcpu, *guest_ent, shadow_ent, walker->inherited_ar);
204 }
205 return shadow_ent;
206 }
207
208 shadow_page = kvm_mmu_alloc_page(vcpu, shadow_ent);
209 if (!shadow_page)
210 return ERR_PTR(-ENOMEM);
211 shadow_addr = shadow_page->page_hpa;
212 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
213 | PT_WRITABLE_MASK | PT_USER_MASK;
214 *shadow_ent = shadow_pte;
215 prev_shadow_ent = shadow_ent;
216 }
217 }
218
219 /*
220 * The guest faulted for write. We need to
221 *
222 * - check write permissions
223 * - update the guest pte dirty bit
224 * - update our own dirty page tracking structures
225 */
226 static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu,
227 u64 *shadow_ent,
228 struct guest_walker *walker,
229 gva_t addr,
230 int user)
231 {
232 pt_element_t *guest_ent;
233 int writable_shadow;
234 gfn_t gfn;
235
236 if (is_writeble_pte(*shadow_ent))
237 return 0;
238
239 writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK;
240 if (user) {
241 /*
242 * User mode access. Fail if it's a kernel page or a read-only
243 * page.
244 */
245 if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow)
246 return 0;
247 ASSERT(*shadow_ent & PT_USER_MASK);
248 } else
249 /*
250 * Kernel mode access. Fail if it's a read-only page and
251 * supervisor write protection is enabled.
252 */
253 if (!writable_shadow) {
254 if (is_write_protection(vcpu))
255 return 0;
256 *shadow_ent &= ~PT_USER_MASK;
257 }
258
259 guest_ent = walker->ptep;
260
261 if (!is_present_pte(*guest_ent)) {
262 *shadow_ent = 0;
263 return 0;
264 }
265
266 gfn = (*guest_ent & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
267 mark_page_dirty(vcpu->kvm, gfn);
268 *shadow_ent |= PT_WRITABLE_MASK;
269 *guest_ent |= PT_DIRTY_MASK;
270 rmap_add(vcpu->kvm, shadow_ent);
271
272 return 1;
273 }
274
275 /*
276 * Page fault handler. There are several causes for a page fault:
277 * - there is no shadow pte for the guest pte
278 * - write access through a shadow pte marked read only so that we can set
279 * the dirty bit
280 * - write access to a shadow pte marked read only so we can update the page
281 * dirty bitmap, when userspace requests it
282 * - mmio access; in this case we will never install a present shadow pte
283 * - normal guest page fault due to the guest pte marked not present, not
284 * writable, or not executable
285 *
286 * Returns: 1 if we need to emulate the instruction, 0 otherwise
287 */
288 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
289 u32 error_code)
290 {
291 int write_fault = error_code & PFERR_WRITE_MASK;
292 int pte_present = error_code & PFERR_PRESENT_MASK;
293 int user_fault = error_code & PFERR_USER_MASK;
294 struct guest_walker walker;
295 u64 *shadow_pte;
296 int fixed;
297
298 /*
299 * Look up the shadow pte for the faulting address.
300 */
301 for (;;) {
302 FNAME(walk_addr)(&walker, vcpu, addr);
303 shadow_pte = FNAME(fetch)(vcpu, addr, &walker);
304 if (IS_ERR(shadow_pte)) { /* must be -ENOMEM */
305 nonpaging_flush(vcpu);
306 FNAME(release_walker)(&walker);
307 continue;
308 }
309 break;
310 }
311
312 /*
313 * The page is not mapped by the guest. Let the guest handle it.
314 */
315 if (!shadow_pte) {
316 inject_page_fault(vcpu, addr, error_code);
317 FNAME(release_walker)(&walker);
318 return 0;
319 }
320
321 /*
322 * Update the shadow pte.
323 */
324 if (write_fault)
325 fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr,
326 user_fault);
327 else
328 fixed = fix_read_pf(shadow_pte);
329
330 FNAME(release_walker)(&walker);
331
332 /*
333 * mmio: emulate if accessible, otherwise its a guest fault.
334 */
335 if (is_io_pte(*shadow_pte)) {
336 if (may_access(*shadow_pte, write_fault, user_fault))
337 return 1;
338 pgprintk("%s: io work, no access\n", __FUNCTION__);
339 inject_page_fault(vcpu, addr,
340 error_code | PFERR_PRESENT_MASK);
341 return 0;
342 }
343
344 /*
345 * pte not present, guest page fault.
346 */
347 if (pte_present && !fixed) {
348 inject_page_fault(vcpu, addr, error_code);
349 return 0;
350 }
351
352 ++kvm_stat.pf_fixed;
353
354 return 0;
355 }
356
357 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
358 {
359 struct guest_walker walker;
360 pt_element_t guest_pte;
361 gpa_t gpa;
362
363 FNAME(walk_addr)(&walker, vcpu, vaddr);
364 guest_pte = *walker.ptep;
365 FNAME(release_walker)(&walker);
366
367 if (!is_present_pte(guest_pte))
368 return UNMAPPED_GVA;
369
370 if (walker.level == PT_DIRECTORY_LEVEL) {
371 ASSERT((guest_pte & PT_PAGE_SIZE_MASK));
372 ASSERT(PTTYPE == 64 || is_pse(vcpu));
373
374 gpa = (guest_pte & PT_DIR_BASE_ADDR_MASK) | (vaddr &
375 (PT_LEVEL_MASK(PT_PAGE_TABLE_LEVEL) | ~PAGE_MASK));
376
377 if (PTTYPE == 32 && is_cpuid_PSE36())
378 gpa |= (guest_pte & PT32_DIR_PSE36_MASK) <<
379 (32 - PT32_DIR_PSE36_SHIFT);
380 } else {
381 gpa = (guest_pte & PT_BASE_ADDR_MASK);
382 gpa |= (vaddr & ~PAGE_MASK);
383 }
384
385 return gpa;
386 }
387
388 #undef pt_element_t
389 #undef guest_walker
390 #undef FNAME
391 #undef PT_BASE_ADDR_MASK
392 #undef PT_INDEX
393 #undef SHADOW_PT_INDEX
394 #undef PT_LEVEL_MASK
395 #undef PT_PTE_COPY_MASK
396 #undef PT_NON_PTE_COPY_MASK
397 #undef PT_DIR_BASE_ADDR_MASK
This page took 0.043503 seconds and 5 git commands to generate.