KVM: MMU: Move pte access calculation into a helper function
[deliverable/linux.git] / drivers / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20 /*
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
23 */
24
25 #if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #define CMPXCHG cmpxchg
38 #else
39 #define CMPXCHG cmpxchg64
40 #define PT_MAX_FULL_LEVELS 2
41 #endif
42 #elif PTTYPE == 32
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
48 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
49 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
50 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
51 #define PT_LEVEL_BITS PT32_LEVEL_BITS
52 #define PT_MAX_FULL_LEVELS 2
53 #define CMPXCHG cmpxchg
54 #else
55 #error Invalid PTTYPE value
56 #endif
57
58 #define gpte_to_gfn FNAME(gpte_to_gfn)
59 #define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde)
60
61 /*
62 * The guest_walker structure emulates the behavior of the hardware page
63 * table walker.
64 */
65 struct guest_walker {
66 int level;
67 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
68 pt_element_t pte;
69 unsigned pt_access;
70 unsigned pte_access;
71 gfn_t gfn;
72 u32 error_code;
73 };
74
75 static gfn_t gpte_to_gfn(pt_element_t gpte)
76 {
77 return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
78 }
79
80 static gfn_t gpte_to_gfn_pde(pt_element_t gpte)
81 {
82 return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
83 }
84
85 static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
86 gfn_t table_gfn, unsigned index,
87 pt_element_t orig_pte, pt_element_t new_pte)
88 {
89 pt_element_t ret;
90 pt_element_t *table;
91 struct page *page;
92
93 page = gfn_to_page(kvm, table_gfn);
94 table = kmap_atomic(page, KM_USER0);
95
96 ret = CMPXCHG(&table[index], orig_pte, new_pte);
97
98 kunmap_atomic(table, KM_USER0);
99
100 kvm_release_page_dirty(page);
101
102 return (ret != orig_pte);
103 }
104
105 static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
106 {
107 unsigned access;
108
109 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
110 #if PTTYPE == 64
111 if (is_nx(vcpu))
112 access &= ~(gpte >> PT64_NX_SHIFT);
113 #endif
114 return access;
115 }
116
117 /*
118 * Fetch a guest pte for a guest virtual address
119 */
120 static int FNAME(walk_addr)(struct guest_walker *walker,
121 struct kvm_vcpu *vcpu, gva_t addr,
122 int write_fault, int user_fault, int fetch_fault)
123 {
124 pt_element_t pte;
125 gfn_t table_gfn;
126 unsigned index, pt_access, pte_access;
127 gpa_t pte_gpa;
128
129 pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
130 walk:
131 walker->level = vcpu->mmu.root_level;
132 pte = vcpu->cr3;
133 #if PTTYPE == 64
134 if (!is_long_mode(vcpu)) {
135 pte = vcpu->pdptrs[(addr >> 30) & 3];
136 if (!is_present_pte(pte))
137 goto not_present;
138 --walker->level;
139 }
140 #endif
141 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
142 (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
143
144 pt_access = ACC_ALL;
145
146 for (;;) {
147 index = PT_INDEX(addr, walker->level);
148
149 table_gfn = gpte_to_gfn(pte);
150 pte_gpa = gfn_to_gpa(table_gfn);
151 pte_gpa += index * sizeof(pt_element_t);
152 walker->table_gfn[walker->level - 1] = table_gfn;
153 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
154 walker->level - 1, table_gfn);
155
156 kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
157
158 if (!is_present_pte(pte))
159 goto not_present;
160
161 if (write_fault && !is_writeble_pte(pte))
162 if (user_fault || is_write_protection(vcpu))
163 goto access_error;
164
165 if (user_fault && !(pte & PT_USER_MASK))
166 goto access_error;
167
168 #if PTTYPE == 64
169 if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
170 goto access_error;
171 #endif
172
173 if (!(pte & PT_ACCESSED_MASK)) {
174 mark_page_dirty(vcpu->kvm, table_gfn);
175 if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
176 index, pte, pte|PT_ACCESSED_MASK))
177 goto walk;
178 pte |= PT_ACCESSED_MASK;
179 }
180
181 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
182
183 if (walker->level == PT_PAGE_TABLE_LEVEL) {
184 walker->gfn = gpte_to_gfn(pte);
185 break;
186 }
187
188 if (walker->level == PT_DIRECTORY_LEVEL
189 && (pte & PT_PAGE_SIZE_MASK)
190 && (PTTYPE == 64 || is_pse(vcpu))) {
191 walker->gfn = gpte_to_gfn_pde(pte);
192 walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
193 if (PTTYPE == 32 && is_cpuid_PSE36())
194 walker->gfn += pse36_gfn_delta(pte);
195 break;
196 }
197
198 pt_access = pte_access;
199 --walker->level;
200 }
201
202 if (write_fault && !is_dirty_pte(pte)) {
203 bool ret;
204
205 mark_page_dirty(vcpu->kvm, table_gfn);
206 ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
207 pte|PT_DIRTY_MASK);
208 if (ret)
209 goto walk;
210 pte |= PT_DIRTY_MASK;
211 kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte));
212 }
213
214 walker->pte = pte;
215 walker->pt_access = pt_access;
216 walker->pte_access = pte_access;
217 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
218 __FUNCTION__, (u64)pte, pt_access, pte_access);
219 return 1;
220
221 not_present:
222 walker->error_code = 0;
223 goto err;
224
225 access_error:
226 walker->error_code = PFERR_PRESENT_MASK;
227
228 err:
229 if (write_fault)
230 walker->error_code |= PFERR_WRITE_MASK;
231 if (user_fault)
232 walker->error_code |= PFERR_USER_MASK;
233 if (fetch_fault)
234 walker->error_code |= PFERR_FETCH_MASK;
235 return 0;
236 }
237
238 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
239 u64 *shadow_pte, unsigned pt_access,
240 unsigned pte_access,
241 int user_fault, int write_fault,
242 int *ptwrite, struct guest_walker *walker,
243 gfn_t gfn)
244 {
245 int dirty = gpte & PT_DIRTY_MASK;
246 u64 spte;
247 int was_rmapped = is_rmap_pte(*shadow_pte);
248 struct page *page;
249
250 pgprintk("%s: spte %llx gpte %llx access %x write_fault %d"
251 " user_fault %d gfn %lx\n",
252 __FUNCTION__, *shadow_pte, (u64)gpte, pt_access,
253 write_fault, user_fault, gfn);
254
255 /*
256 * We don't set the accessed bit, since we sometimes want to see
257 * whether the guest actually used the pte (in order to detect
258 * demand paging).
259 */
260 spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
261 spte |= gpte & PT64_NX_MASK;
262 if (!dirty)
263 pte_access &= ~ACC_WRITE_MASK;
264 if (!(pte_access & ACC_EXEC_MASK))
265 spte |= PT64_NX_MASK;
266
267 page = gfn_to_page(vcpu->kvm, gfn);
268
269 spte |= PT_PRESENT_MASK;
270 if (pte_access & ACC_USER_MASK)
271 spte |= PT_USER_MASK;
272
273 if (is_error_page(page)) {
274 set_shadow_pte(shadow_pte,
275 shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
276 kvm_release_page_clean(page);
277 return;
278 }
279
280 spte |= page_to_phys(page);
281
282 if ((pte_access & ACC_WRITE_MASK)
283 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
284 struct kvm_mmu_page *shadow;
285
286 spte |= PT_WRITABLE_MASK;
287 if (user_fault) {
288 mmu_unshadow(vcpu->kvm, gfn);
289 goto unshadowed;
290 }
291
292 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
293 if (shadow) {
294 pgprintk("%s: found shadow page for %lx, marking ro\n",
295 __FUNCTION__, gfn);
296 pte_access &= ~ACC_WRITE_MASK;
297 if (is_writeble_pte(spte)) {
298 spte &= ~PT_WRITABLE_MASK;
299 kvm_x86_ops->tlb_flush(vcpu);
300 }
301 if (write_fault)
302 *ptwrite = 1;
303 }
304 }
305
306 unshadowed:
307
308 if (pte_access & ACC_WRITE_MASK)
309 mark_page_dirty(vcpu->kvm, gfn);
310
311 pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
312 set_shadow_pte(shadow_pte, spte);
313 page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
314 if (!was_rmapped) {
315 rmap_add(vcpu, shadow_pte, gfn);
316 if (!is_rmap_pte(*shadow_pte))
317 kvm_release_page_clean(page);
318 }
319 else
320 kvm_release_page_clean(page);
321 if (!ptwrite || !*ptwrite)
322 vcpu->last_pte_updated = shadow_pte;
323 }
324
325 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
326 u64 *spte, const void *pte, int bytes,
327 int offset_in_pte)
328 {
329 pt_element_t gpte;
330
331 gpte = *(const pt_element_t *)pte;
332 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
333 if (!offset_in_pte && !is_present_pte(gpte))
334 set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
335 return;
336 }
337 if (bytes < sizeof(pt_element_t))
338 return;
339 pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
340 FNAME(set_pte)(vcpu, gpte, spte, ACC_ALL, ACC_ALL,
341 0, 0, NULL, NULL, gpte_to_gfn(gpte));
342 }
343
344 /*
345 * Fetch a shadow pte for a specific level in the paging hierarchy.
346 */
347 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
348 struct guest_walker *walker,
349 int user_fault, int write_fault, int *ptwrite)
350 {
351 hpa_t shadow_addr;
352 int level;
353 u64 *shadow_ent;
354 unsigned access = walker->pt_access;
355
356 if (!is_present_pte(walker->pte))
357 return NULL;
358
359 shadow_addr = vcpu->mmu.root_hpa;
360 level = vcpu->mmu.shadow_root_level;
361 if (level == PT32E_ROOT_LEVEL) {
362 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
363 shadow_addr &= PT64_BASE_ADDR_MASK;
364 --level;
365 }
366
367 for (; ; level--) {
368 u32 index = SHADOW_PT_INDEX(addr, level);
369 struct kvm_mmu_page *shadow_page;
370 u64 shadow_pte;
371 int metaphysical;
372 gfn_t table_gfn;
373
374 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
375 if (is_shadow_present_pte(*shadow_ent)) {
376 if (level == PT_PAGE_TABLE_LEVEL)
377 break;
378 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
379 continue;
380 }
381
382 if (level == PT_PAGE_TABLE_LEVEL)
383 break;
384
385 if (level - 1 == PT_PAGE_TABLE_LEVEL
386 && walker->level == PT_DIRECTORY_LEVEL) {
387 metaphysical = 1;
388 if (!is_dirty_pte(walker->pte))
389 access &= ~ACC_WRITE_MASK;
390 table_gfn = gpte_to_gfn(walker->pte);
391 } else {
392 metaphysical = 0;
393 table_gfn = walker->table_gfn[level - 2];
394 }
395 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
396 metaphysical, access,
397 shadow_ent);
398 shadow_addr = __pa(shadow_page->spt);
399 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
400 | PT_WRITABLE_MASK | PT_USER_MASK;
401 *shadow_ent = shadow_pte;
402 }
403
404 FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
405 access, walker->pte_access & access,
406 user_fault, write_fault,
407 ptwrite, walker, walker->gfn);
408
409 return shadow_ent;
410 }
411
412 /*
413 * Page fault handler. There are several causes for a page fault:
414 * - there is no shadow pte for the guest pte
415 * - write access through a shadow pte marked read only so that we can set
416 * the dirty bit
417 * - write access to a shadow pte marked read only so we can update the page
418 * dirty bitmap, when userspace requests it
419 * - mmio access; in this case we will never install a present shadow pte
420 * - normal guest page fault due to the guest pte marked not present, not
421 * writable, or not executable
422 *
423 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
424 * a negative value on error.
425 */
426 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
427 u32 error_code)
428 {
429 int write_fault = error_code & PFERR_WRITE_MASK;
430 int user_fault = error_code & PFERR_USER_MASK;
431 int fetch_fault = error_code & PFERR_FETCH_MASK;
432 struct guest_walker walker;
433 u64 *shadow_pte;
434 int write_pt = 0;
435 int r;
436
437 pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
438 kvm_mmu_audit(vcpu, "pre page fault");
439
440 r = mmu_topup_memory_caches(vcpu);
441 if (r)
442 return r;
443
444 /*
445 * Look up the shadow pte for the faulting address.
446 */
447 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
448 fetch_fault);
449
450 /*
451 * The page is not mapped by the guest. Let the guest handle it.
452 */
453 if (!r) {
454 pgprintk("%s: guest page fault\n", __FUNCTION__);
455 inject_page_fault(vcpu, addr, walker.error_code);
456 vcpu->last_pt_write_count = 0; /* reset fork detector */
457 return 0;
458 }
459
460 shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
461 &write_pt);
462 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
463 shadow_pte, *shadow_pte, write_pt);
464
465 if (!write_pt)
466 vcpu->last_pt_write_count = 0; /* reset fork detector */
467
468 /*
469 * mmio: emulate if accessible, otherwise its a guest fault.
470 */
471 if (is_io_pte(*shadow_pte))
472 return 1;
473
474 ++vcpu->stat.pf_fixed;
475 kvm_mmu_audit(vcpu, "post page fault (fixed)");
476
477 return write_pt;
478 }
479
480 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
481 {
482 struct guest_walker walker;
483 gpa_t gpa = UNMAPPED_GVA;
484 int r;
485
486 r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
487
488 if (r) {
489 gpa = gfn_to_gpa(walker.gfn);
490 gpa |= vaddr & ~PAGE_MASK;
491 }
492
493 return gpa;
494 }
495
496 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
497 struct kvm_mmu_page *sp)
498 {
499 int i, offset = 0;
500 pt_element_t *gpt;
501 struct page *page;
502
503 if (sp->role.metaphysical
504 || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
505 nonpaging_prefetch_page(vcpu, sp);
506 return;
507 }
508
509 if (PTTYPE == 32)
510 offset = sp->role.quadrant << PT64_LEVEL_BITS;
511 page = gfn_to_page(vcpu->kvm, sp->gfn);
512 gpt = kmap_atomic(page, KM_USER0);
513 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
514 if (is_present_pte(gpt[offset + i]))
515 sp->spt[i] = shadow_trap_nonpresent_pte;
516 else
517 sp->spt[i] = shadow_notrap_nonpresent_pte;
518 kunmap_atomic(gpt, KM_USER0);
519 kvm_release_page_clean(page);
520 }
521
522 #undef pt_element_t
523 #undef guest_walker
524 #undef FNAME
525 #undef PT_BASE_ADDR_MASK
526 #undef PT_INDEX
527 #undef SHADOW_PT_INDEX
528 #undef PT_LEVEL_MASK
529 #undef PT_DIR_BASE_ADDR_MASK
530 #undef PT_LEVEL_BITS
531 #undef PT_MAX_FULL_LEVELS
532 #undef gpte_to_gfn
533 #undef gpte_to_gfn_pde
534 #undef CMPXCHG
This page took 0.05704 seconds and 5 git commands to generate.