[PATCH] KVM: fix bogus pagefault on writable pages
[deliverable/linux.git] / drivers / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20 /*
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
23 */
24
25 #if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #else
38 #define PT_MAX_FULL_LEVELS 2
39 #endif
40 #elif PTTYPE == 32
41 #define pt_element_t u32
42 #define guest_walker guest_walker32
43 #define FNAME(name) paging##32_##name
44 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
45 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
46 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
47 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
48 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
49 #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
50 #define PT_MAX_FULL_LEVELS 2
51 #else
52 #error Invalid PTTYPE value
53 #endif
54
55 /*
56 * The guest_walker structure emulates the behavior of the hardware page
57 * table walker.
58 */
59 struct guest_walker {
60 int level;
61 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
62 pt_element_t *table;
63 pt_element_t *ptep;
64 pt_element_t inherited_ar;
65 gfn_t gfn;
66 };
67
68 /*
69 * Fetch a guest pte for a guest virtual address
70 */
71 static void FNAME(walk_addr)(struct guest_walker *walker,
72 struct kvm_vcpu *vcpu, gva_t addr)
73 {
74 hpa_t hpa;
75 struct kvm_memory_slot *slot;
76 pt_element_t *ptep;
77 pt_element_t root;
78 gfn_t table_gfn;
79
80 pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
81 walker->level = vcpu->mmu.root_level;
82 walker->table = NULL;
83 root = vcpu->cr3;
84 #if PTTYPE == 64
85 if (!is_long_mode(vcpu)) {
86 walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
87 root = *walker->ptep;
88 if (!(root & PT_PRESENT_MASK))
89 return;
90 --walker->level;
91 }
92 #endif
93 table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
94 walker->table_gfn[walker->level - 1] = table_gfn;
95 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
96 walker->level - 1, table_gfn);
97 slot = gfn_to_memslot(vcpu->kvm, table_gfn);
98 hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
99 walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
100
101 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
102 (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
103
104 walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
105
106 for (;;) {
107 int index = PT_INDEX(addr, walker->level);
108 hpa_t paddr;
109
110 ptep = &walker->table[index];
111 ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
112 ((unsigned long)ptep & PAGE_MASK));
113
114 if (is_present_pte(*ptep) && !(*ptep & PT_ACCESSED_MASK))
115 *ptep |= PT_ACCESSED_MASK;
116
117 if (!is_present_pte(*ptep))
118 break;
119
120 if (walker->level == PT_PAGE_TABLE_LEVEL) {
121 walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
122 >> PAGE_SHIFT;
123 break;
124 }
125
126 if (walker->level == PT_DIRECTORY_LEVEL
127 && (*ptep & PT_PAGE_SIZE_MASK)
128 && (PTTYPE == 64 || is_pse(vcpu))) {
129 walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
130 >> PAGE_SHIFT;
131 walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
132 break;
133 }
134
135 if (walker->level != 3 || is_long_mode(vcpu))
136 walker->inherited_ar &= walker->table[index];
137 table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
138 paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
139 kunmap_atomic(walker->table, KM_USER0);
140 walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
141 KM_USER0);
142 --walker->level;
143 walker->table_gfn[walker->level - 1 ] = table_gfn;
144 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
145 walker->level - 1, table_gfn);
146 }
147 walker->ptep = ptep;
148 pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
149 }
150
151 static void FNAME(release_walker)(struct guest_walker *walker)
152 {
153 if (walker->table)
154 kunmap_atomic(walker->table, KM_USER0);
155 }
156
157 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, u64 guest_pte,
158 u64 *shadow_pte, u64 access_bits, gfn_t gfn)
159 {
160 ASSERT(*shadow_pte == 0);
161 access_bits &= guest_pte;
162 *shadow_pte = (guest_pte & PT_PTE_COPY_MASK);
163 set_pte_common(vcpu, shadow_pte, guest_pte & PT_BASE_ADDR_MASK,
164 guest_pte & PT_DIRTY_MASK, access_bits, gfn);
165 }
166
167 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, u64 guest_pde,
168 u64 *shadow_pte, u64 access_bits, gfn_t gfn)
169 {
170 gpa_t gaddr;
171
172 ASSERT(*shadow_pte == 0);
173 access_bits &= guest_pde;
174 gaddr = (gpa_t)gfn << PAGE_SHIFT;
175 if (PTTYPE == 32 && is_cpuid_PSE36())
176 gaddr |= (guest_pde & PT32_DIR_PSE36_MASK) <<
177 (32 - PT32_DIR_PSE36_SHIFT);
178 *shadow_pte = guest_pde & PT_PTE_COPY_MASK;
179 set_pte_common(vcpu, shadow_pte, gaddr,
180 guest_pde & PT_DIRTY_MASK, access_bits, gfn);
181 }
182
183 /*
184 * Fetch a shadow pte for a specific level in the paging hierarchy.
185 */
186 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
187 struct guest_walker *walker)
188 {
189 hpa_t shadow_addr;
190 int level;
191 u64 *prev_shadow_ent = NULL;
192 pt_element_t *guest_ent = walker->ptep;
193
194 if (!is_present_pte(*guest_ent))
195 return NULL;
196
197 shadow_addr = vcpu->mmu.root_hpa;
198 level = vcpu->mmu.shadow_root_level;
199 if (level == PT32E_ROOT_LEVEL) {
200 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
201 shadow_addr &= PT64_BASE_ADDR_MASK;
202 --level;
203 }
204
205 for (; ; level--) {
206 u32 index = SHADOW_PT_INDEX(addr, level);
207 u64 *shadow_ent = ((u64 *)__va(shadow_addr)) + index;
208 struct kvm_mmu_page *shadow_page;
209 u64 shadow_pte;
210 int metaphysical;
211 gfn_t table_gfn;
212
213 if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
214 if (level == PT_PAGE_TABLE_LEVEL)
215 return shadow_ent;
216 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
217 prev_shadow_ent = shadow_ent;
218 continue;
219 }
220
221 if (level == PT_PAGE_TABLE_LEVEL) {
222
223 if (walker->level == PT_DIRECTORY_LEVEL) {
224 if (prev_shadow_ent)
225 *prev_shadow_ent |= PT_SHADOW_PS_MARK;
226 FNAME(set_pde)(vcpu, *guest_ent, shadow_ent,
227 walker->inherited_ar,
228 walker->gfn);
229 } else {
230 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
231 FNAME(set_pte)(vcpu, *guest_ent, shadow_ent,
232 walker->inherited_ar,
233 walker->gfn);
234 }
235 return shadow_ent;
236 }
237
238 if (level - 1 == PT_PAGE_TABLE_LEVEL
239 && walker->level == PT_DIRECTORY_LEVEL) {
240 metaphysical = 1;
241 table_gfn = (*guest_ent & PT_BASE_ADDR_MASK)
242 >> PAGE_SHIFT;
243 } else {
244 metaphysical = 0;
245 table_gfn = walker->table_gfn[level - 2];
246 }
247 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
248 metaphysical, shadow_ent);
249 shadow_addr = shadow_page->page_hpa;
250 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
251 | PT_WRITABLE_MASK | PT_USER_MASK;
252 *shadow_ent = shadow_pte;
253 prev_shadow_ent = shadow_ent;
254 }
255 }
256
257 /*
258 * The guest faulted for write. We need to
259 *
260 * - check write permissions
261 * - update the guest pte dirty bit
262 * - update our own dirty page tracking structures
263 */
264 static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu,
265 u64 *shadow_ent,
266 struct guest_walker *walker,
267 gva_t addr,
268 int user,
269 int *write_pt)
270 {
271 pt_element_t *guest_ent;
272 int writable_shadow;
273 gfn_t gfn;
274 struct kvm_mmu_page *page;
275
276 if (is_writeble_pte(*shadow_ent))
277 return !user || (*shadow_ent & PT_USER_MASK);
278
279 writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK;
280 if (user) {
281 /*
282 * User mode access. Fail if it's a kernel page or a read-only
283 * page.
284 */
285 if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow)
286 return 0;
287 ASSERT(*shadow_ent & PT_USER_MASK);
288 } else
289 /*
290 * Kernel mode access. Fail if it's a read-only page and
291 * supervisor write protection is enabled.
292 */
293 if (!writable_shadow) {
294 if (is_write_protection(vcpu))
295 return 0;
296 *shadow_ent &= ~PT_USER_MASK;
297 }
298
299 guest_ent = walker->ptep;
300
301 if (!is_present_pte(*guest_ent)) {
302 *shadow_ent = 0;
303 return 0;
304 }
305
306 gfn = walker->gfn;
307
308 if (user) {
309 /*
310 * Usermode page faults won't be for page table updates.
311 */
312 while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
313 pgprintk("%s: zap %lx %x\n",
314 __FUNCTION__, gfn, page->role.word);
315 kvm_mmu_zap_page(vcpu, page);
316 }
317 } else if (kvm_mmu_lookup_page(vcpu, gfn)) {
318 pgprintk("%s: found shadow page for %lx, marking ro\n",
319 __FUNCTION__, gfn);
320 *guest_ent |= PT_DIRTY_MASK;
321 *write_pt = 1;
322 return 0;
323 }
324 mark_page_dirty(vcpu->kvm, gfn);
325 *shadow_ent |= PT_WRITABLE_MASK;
326 *guest_ent |= PT_DIRTY_MASK;
327 rmap_add(vcpu, shadow_ent);
328
329 return 1;
330 }
331
332 /*
333 * Page fault handler. There are several causes for a page fault:
334 * - there is no shadow pte for the guest pte
335 * - write access through a shadow pte marked read only so that we can set
336 * the dirty bit
337 * - write access to a shadow pte marked read only so we can update the page
338 * dirty bitmap, when userspace requests it
339 * - mmio access; in this case we will never install a present shadow pte
340 * - normal guest page fault due to the guest pte marked not present, not
341 * writable, or not executable
342 *
343 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
344 * a negative value on error.
345 */
346 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
347 u32 error_code)
348 {
349 int write_fault = error_code & PFERR_WRITE_MASK;
350 int pte_present = error_code & PFERR_PRESENT_MASK;
351 int user_fault = error_code & PFERR_USER_MASK;
352 struct guest_walker walker;
353 u64 *shadow_pte;
354 int fixed;
355 int write_pt = 0;
356 int r;
357
358 pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
359 kvm_mmu_audit(vcpu, "pre page fault");
360
361 r = mmu_topup_memory_caches(vcpu);
362 if (r)
363 return r;
364
365 /*
366 * Look up the shadow pte for the faulting address.
367 */
368 FNAME(walk_addr)(&walker, vcpu, addr);
369 shadow_pte = FNAME(fetch)(vcpu, addr, &walker);
370
371 /*
372 * The page is not mapped by the guest. Let the guest handle it.
373 */
374 if (!shadow_pte) {
375 pgprintk("%s: not mapped\n", __FUNCTION__);
376 inject_page_fault(vcpu, addr, error_code);
377 FNAME(release_walker)(&walker);
378 return 0;
379 }
380
381 pgprintk("%s: shadow pte %p %llx\n", __FUNCTION__,
382 shadow_pte, *shadow_pte);
383
384 /*
385 * Update the shadow pte.
386 */
387 if (write_fault)
388 fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr,
389 user_fault, &write_pt);
390 else
391 fixed = fix_read_pf(shadow_pte);
392
393 pgprintk("%s: updated shadow pte %p %llx\n", __FUNCTION__,
394 shadow_pte, *shadow_pte);
395
396 FNAME(release_walker)(&walker);
397
398 /*
399 * mmio: emulate if accessible, otherwise its a guest fault.
400 */
401 if (is_io_pte(*shadow_pte)) {
402 if (may_access(*shadow_pte, write_fault, user_fault))
403 return 1;
404 pgprintk("%s: io work, no access\n", __FUNCTION__);
405 inject_page_fault(vcpu, addr,
406 error_code | PFERR_PRESENT_MASK);
407 kvm_mmu_audit(vcpu, "post page fault (io)");
408 return 0;
409 }
410
411 /*
412 * pte not present, guest page fault.
413 */
414 if (pte_present && !fixed && !write_pt) {
415 inject_page_fault(vcpu, addr, error_code);
416 kvm_mmu_audit(vcpu, "post page fault (guest)");
417 return 0;
418 }
419
420 ++kvm_stat.pf_fixed;
421 kvm_mmu_audit(vcpu, "post page fault (fixed)");
422
423 return write_pt;
424 }
425
426 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
427 {
428 struct guest_walker walker;
429 pt_element_t guest_pte;
430 gpa_t gpa;
431
432 FNAME(walk_addr)(&walker, vcpu, vaddr);
433 guest_pte = *walker.ptep;
434 FNAME(release_walker)(&walker);
435
436 if (!is_present_pte(guest_pte))
437 return UNMAPPED_GVA;
438
439 if (walker.level == PT_DIRECTORY_LEVEL) {
440 ASSERT((guest_pte & PT_PAGE_SIZE_MASK));
441 ASSERT(PTTYPE == 64 || is_pse(vcpu));
442
443 gpa = (guest_pte & PT_DIR_BASE_ADDR_MASK) | (vaddr &
444 (PT_LEVEL_MASK(PT_PAGE_TABLE_LEVEL) | ~PAGE_MASK));
445
446 if (PTTYPE == 32 && is_cpuid_PSE36())
447 gpa |= (guest_pte & PT32_DIR_PSE36_MASK) <<
448 (32 - PT32_DIR_PSE36_SHIFT);
449 } else {
450 gpa = (guest_pte & PT_BASE_ADDR_MASK);
451 gpa |= (vaddr & ~PAGE_MASK);
452 }
453
454 return gpa;
455 }
456
457 #undef pt_element_t
458 #undef guest_walker
459 #undef FNAME
460 #undef PT_BASE_ADDR_MASK
461 #undef PT_INDEX
462 #undef SHADOW_PT_INDEX
463 #undef PT_LEVEL_MASK
464 #undef PT_PTE_COPY_MASK
465 #undef PT_NON_PTE_COPY_MASK
466 #undef PT_DIR_BASE_ADDR_MASK
467 #undef PT_MAX_FULL_LEVELS
This page took 0.116513 seconds and 5 git commands to generate.