KVM: MMU: Adjust page_header_update_slot() to accept a gfn instead of a gpa
[deliverable/linux.git] / drivers / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20 /*
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
23 */
24
25 #if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #else
38 #define PT_MAX_FULL_LEVELS 2
39 #endif
40 #elif PTTYPE == 32
41 #define pt_element_t u32
42 #define guest_walker guest_walker32
43 #define FNAME(name) paging##32_##name
44 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
45 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
46 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
47 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
48 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
49 #define PT_LEVEL_BITS PT32_LEVEL_BITS
50 #define PT_MAX_FULL_LEVELS 2
51 #else
52 #error Invalid PTTYPE value
53 #endif
54
55 #define gpte_to_gfn FNAME(gpte_to_gfn)
56 #define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde)
57
58 /*
59 * The guest_walker structure emulates the behavior of the hardware page
60 * table walker.
61 */
62 struct guest_walker {
63 int level;
64 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
65 pt_element_t pte;
66 pt_element_t inherited_ar;
67 gfn_t gfn;
68 u32 error_code;
69 };
70
71 static gfn_t gpte_to_gfn(pt_element_t gpte)
72 {
73 return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
74 }
75
76 static gfn_t gpte_to_gfn_pde(pt_element_t gpte)
77 {
78 return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
79 }
80
81 /*
82 * Fetch a guest pte for a guest virtual address
83 */
84 static int FNAME(walk_addr)(struct guest_walker *walker,
85 struct kvm_vcpu *vcpu, gva_t addr,
86 int write_fault, int user_fault, int fetch_fault)
87 {
88 pt_element_t pte;
89 gfn_t table_gfn;
90 unsigned index;
91 gpa_t pte_gpa;
92
93 pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
94 walker->level = vcpu->mmu.root_level;
95 pte = vcpu->cr3;
96 #if PTTYPE == 64
97 if (!is_long_mode(vcpu)) {
98 pte = vcpu->pdptrs[(addr >> 30) & 3];
99 if (!is_present_pte(pte))
100 goto not_present;
101 --walker->level;
102 }
103 #endif
104 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
105 (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
106
107 walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
108
109 for (;;) {
110 index = PT_INDEX(addr, walker->level);
111
112 table_gfn = gpte_to_gfn(pte);
113 pte_gpa = table_gfn << PAGE_SHIFT;
114 pte_gpa += index * sizeof(pt_element_t);
115 walker->table_gfn[walker->level - 1] = table_gfn;
116 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
117 walker->level - 1, table_gfn);
118
119 kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
120
121 if (!is_present_pte(pte))
122 goto not_present;
123
124 if (write_fault && !is_writeble_pte(pte))
125 if (user_fault || is_write_protection(vcpu))
126 goto access_error;
127
128 if (user_fault && !(pte & PT_USER_MASK))
129 goto access_error;
130
131 #if PTTYPE == 64
132 if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
133 goto access_error;
134 #endif
135
136 if (!(pte & PT_ACCESSED_MASK)) {
137 mark_page_dirty(vcpu->kvm, table_gfn);
138 pte |= PT_ACCESSED_MASK;
139 kvm_write_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
140 }
141
142 if (walker->level == PT_PAGE_TABLE_LEVEL) {
143 walker->gfn = gpte_to_gfn(pte);
144 break;
145 }
146
147 if (walker->level == PT_DIRECTORY_LEVEL
148 && (pte & PT_PAGE_SIZE_MASK)
149 && (PTTYPE == 64 || is_pse(vcpu))) {
150 walker->gfn = gpte_to_gfn_pde(pte);
151 walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
152 if (PTTYPE == 32 && is_cpuid_PSE36())
153 walker->gfn += pse36_gfn_delta(pte);
154 break;
155 }
156
157 walker->inherited_ar &= pte;
158 --walker->level;
159 }
160
161 if (write_fault && !is_dirty_pte(pte)) {
162 mark_page_dirty(vcpu->kvm, table_gfn);
163 pte |= PT_DIRTY_MASK;
164 kvm_write_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
165 kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte));
166 }
167
168 walker->pte = pte;
169 pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)pte);
170 return 1;
171
172 not_present:
173 walker->error_code = 0;
174 goto err;
175
176 access_error:
177 walker->error_code = PFERR_PRESENT_MASK;
178
179 err:
180 if (write_fault)
181 walker->error_code |= PFERR_WRITE_MASK;
182 if (user_fault)
183 walker->error_code |= PFERR_USER_MASK;
184 if (fetch_fault)
185 walker->error_code |= PFERR_FETCH_MASK;
186 return 0;
187 }
188
189 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
190 u64 *shadow_pte, u64 access_bits,
191 int user_fault, int write_fault,
192 int *ptwrite, struct guest_walker *walker,
193 gfn_t gfn)
194 {
195 int dirty = gpte & PT_DIRTY_MASK;
196 u64 spte;
197 int was_rmapped = is_rmap_pte(*shadow_pte);
198 struct page *page;
199
200 pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
201 " user_fault %d gfn %lx\n",
202 __FUNCTION__, *shadow_pte, (u64)gpte, access_bits,
203 write_fault, user_fault, gfn);
204
205 access_bits &= gpte;
206 /*
207 * We don't set the accessed bit, since we sometimes want to see
208 * whether the guest actually used the pte (in order to detect
209 * demand paging).
210 */
211 spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
212 spte |= gpte & PT64_NX_MASK;
213 if (!dirty)
214 access_bits &= ~PT_WRITABLE_MASK;
215
216 page = gfn_to_page(vcpu->kvm, gfn);
217
218 spte |= PT_PRESENT_MASK;
219 if (access_bits & PT_USER_MASK)
220 spte |= PT_USER_MASK;
221
222 if (is_error_page(page)) {
223 set_shadow_pte(shadow_pte,
224 shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
225 kvm_release_page_clean(page);
226 return;
227 }
228
229 spte |= page_to_phys(page);
230
231 if ((access_bits & PT_WRITABLE_MASK)
232 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
233 struct kvm_mmu_page *shadow;
234
235 spte |= PT_WRITABLE_MASK;
236 if (user_fault) {
237 mmu_unshadow(vcpu->kvm, gfn);
238 goto unshadowed;
239 }
240
241 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
242 if (shadow) {
243 pgprintk("%s: found shadow page for %lx, marking ro\n",
244 __FUNCTION__, gfn);
245 access_bits &= ~PT_WRITABLE_MASK;
246 if (is_writeble_pte(spte)) {
247 spte &= ~PT_WRITABLE_MASK;
248 kvm_x86_ops->tlb_flush(vcpu);
249 }
250 if (write_fault)
251 *ptwrite = 1;
252 }
253 }
254
255 unshadowed:
256
257 if (access_bits & PT_WRITABLE_MASK)
258 mark_page_dirty(vcpu->kvm, gfn);
259
260 pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
261 set_shadow_pte(shadow_pte, spte);
262 page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
263 if (!was_rmapped) {
264 rmap_add(vcpu, shadow_pte, gfn);
265 if (!is_rmap_pte(*shadow_pte))
266 kvm_release_page_clean(page);
267 }
268 else
269 kvm_release_page_clean(page);
270 if (!ptwrite || !*ptwrite)
271 vcpu->last_pte_updated = shadow_pte;
272 }
273
274 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
275 u64 *spte, const void *pte, int bytes,
276 int offset_in_pte)
277 {
278 pt_element_t gpte;
279
280 gpte = *(const pt_element_t *)pte;
281 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
282 if (!offset_in_pte && !is_present_pte(gpte))
283 set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
284 return;
285 }
286 if (bytes < sizeof(pt_element_t))
287 return;
288 pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
289 FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
290 0, NULL, NULL, gpte_to_gfn(gpte));
291 }
292
293 /*
294 * Fetch a shadow pte for a specific level in the paging hierarchy.
295 */
296 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
297 struct guest_walker *walker,
298 int user_fault, int write_fault, int *ptwrite)
299 {
300 hpa_t shadow_addr;
301 int level;
302 u64 *shadow_ent;
303 u64 *prev_shadow_ent = NULL;
304
305 if (!is_present_pte(walker->pte))
306 return NULL;
307
308 shadow_addr = vcpu->mmu.root_hpa;
309 level = vcpu->mmu.shadow_root_level;
310 if (level == PT32E_ROOT_LEVEL) {
311 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
312 shadow_addr &= PT64_BASE_ADDR_MASK;
313 --level;
314 }
315
316 for (; ; level--) {
317 u32 index = SHADOW_PT_INDEX(addr, level);
318 struct kvm_mmu_page *shadow_page;
319 u64 shadow_pte;
320 int metaphysical;
321 gfn_t table_gfn;
322 unsigned hugepage_access = 0;
323
324 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
325 if (is_shadow_present_pte(*shadow_ent)) {
326 if (level == PT_PAGE_TABLE_LEVEL)
327 break;
328 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
329 prev_shadow_ent = shadow_ent;
330 continue;
331 }
332
333 if (level == PT_PAGE_TABLE_LEVEL)
334 break;
335
336 if (level - 1 == PT_PAGE_TABLE_LEVEL
337 && walker->level == PT_DIRECTORY_LEVEL) {
338 metaphysical = 1;
339 hugepage_access = walker->pte;
340 hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
341 if (!is_dirty_pte(walker->pte))
342 hugepage_access &= ~PT_WRITABLE_MASK;
343 hugepage_access >>= PT_WRITABLE_SHIFT;
344 if (walker->pte & PT64_NX_MASK)
345 hugepage_access |= (1 << 2);
346 table_gfn = gpte_to_gfn(walker->pte);
347 } else {
348 metaphysical = 0;
349 table_gfn = walker->table_gfn[level - 2];
350 }
351 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
352 metaphysical, hugepage_access,
353 shadow_ent);
354 shadow_addr = __pa(shadow_page->spt);
355 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
356 | PT_WRITABLE_MASK | PT_USER_MASK;
357 *shadow_ent = shadow_pte;
358 prev_shadow_ent = shadow_ent;
359 }
360
361 FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
362 walker->inherited_ar, user_fault, write_fault,
363 ptwrite, walker, walker->gfn);
364
365 return shadow_ent;
366 }
367
368 /*
369 * Page fault handler. There are several causes for a page fault:
370 * - there is no shadow pte for the guest pte
371 * - write access through a shadow pte marked read only so that we can set
372 * the dirty bit
373 * - write access to a shadow pte marked read only so we can update the page
374 * dirty bitmap, when userspace requests it
375 * - mmio access; in this case we will never install a present shadow pte
376 * - normal guest page fault due to the guest pte marked not present, not
377 * writable, or not executable
378 *
379 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
380 * a negative value on error.
381 */
382 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
383 u32 error_code)
384 {
385 int write_fault = error_code & PFERR_WRITE_MASK;
386 int user_fault = error_code & PFERR_USER_MASK;
387 int fetch_fault = error_code & PFERR_FETCH_MASK;
388 struct guest_walker walker;
389 u64 *shadow_pte;
390 int write_pt = 0;
391 int r;
392
393 pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
394 kvm_mmu_audit(vcpu, "pre page fault");
395
396 r = mmu_topup_memory_caches(vcpu);
397 if (r)
398 return r;
399
400 /*
401 * Look up the shadow pte for the faulting address.
402 */
403 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
404 fetch_fault);
405
406 /*
407 * The page is not mapped by the guest. Let the guest handle it.
408 */
409 if (!r) {
410 pgprintk("%s: guest page fault\n", __FUNCTION__);
411 inject_page_fault(vcpu, addr, walker.error_code);
412 vcpu->last_pt_write_count = 0; /* reset fork detector */
413 return 0;
414 }
415
416 shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
417 &write_pt);
418 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
419 shadow_pte, *shadow_pte, write_pt);
420
421 if (!write_pt)
422 vcpu->last_pt_write_count = 0; /* reset fork detector */
423
424 /*
425 * mmio: emulate if accessible, otherwise its a guest fault.
426 */
427 if (is_io_pte(*shadow_pte))
428 return 1;
429
430 ++vcpu->stat.pf_fixed;
431 kvm_mmu_audit(vcpu, "post page fault (fixed)");
432
433 return write_pt;
434 }
435
436 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
437 {
438 struct guest_walker walker;
439 gpa_t gpa = UNMAPPED_GVA;
440 int r;
441
442 r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
443
444 if (r) {
445 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
446 gpa |= vaddr & ~PAGE_MASK;
447 }
448
449 return gpa;
450 }
451
452 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
453 struct kvm_mmu_page *sp)
454 {
455 int i, offset = 0;
456 pt_element_t *gpt;
457 struct page *page;
458
459 if (sp->role.metaphysical
460 || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
461 nonpaging_prefetch_page(vcpu, sp);
462 return;
463 }
464
465 if (PTTYPE == 32)
466 offset = sp->role.quadrant << PT64_LEVEL_BITS;
467 page = gfn_to_page(vcpu->kvm, sp->gfn);
468 gpt = kmap_atomic(page, KM_USER0);
469 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
470 if (is_present_pte(gpt[offset + i]))
471 sp->spt[i] = shadow_trap_nonpresent_pte;
472 else
473 sp->spt[i] = shadow_notrap_nonpresent_pte;
474 kunmap_atomic(gpt, KM_USER0);
475 kvm_release_page_clean(page);
476 }
477
478 #undef pt_element_t
479 #undef guest_walker
480 #undef FNAME
481 #undef PT_BASE_ADDR_MASK
482 #undef PT_INDEX
483 #undef SHADOW_PT_INDEX
484 #undef PT_LEVEL_MASK
485 #undef PT_DIR_BASE_ADDR_MASK
486 #undef PT_LEVEL_BITS
487 #undef PT_MAX_FULL_LEVELS
488 #undef gpte_to_gfn
489 #undef gpte_to_gfn_pde
This page took 0.040881 seconds and 6 git commands to generate.