KVM: MMU: Simplify page table walker
[deliverable/linux.git] / drivers / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20 /*
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
23 */
24
25 #if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #else
38 #define PT_MAX_FULL_LEVELS 2
39 #endif
40 #elif PTTYPE == 32
41 #define pt_element_t u32
42 #define guest_walker guest_walker32
43 #define FNAME(name) paging##32_##name
44 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
45 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
46 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
47 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
48 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
49 #define PT_LEVEL_BITS PT32_LEVEL_BITS
50 #define PT_MAX_FULL_LEVELS 2
51 #else
52 #error Invalid PTTYPE value
53 #endif
54
55 /*
56 * The guest_walker structure emulates the behavior of the hardware page
57 * table walker.
58 */
59 struct guest_walker {
60 int level;
61 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
62 pt_element_t pte;
63 pt_element_t inherited_ar;
64 gfn_t gfn;
65 u32 error_code;
66 };
67
68 /*
69 * Fetch a guest pte for a guest virtual address
70 */
71 static int FNAME(walk_addr)(struct guest_walker *walker,
72 struct kvm_vcpu *vcpu, gva_t addr,
73 int write_fault, int user_fault, int fetch_fault)
74 {
75 hpa_t hpa;
76 struct kvm_memory_slot *slot;
77 struct page *page;
78 pt_element_t *table;
79 pt_element_t pte;
80 gfn_t table_gfn;
81 unsigned index;
82 gpa_t pte_gpa;
83
84 pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
85 walker->level = vcpu->mmu.root_level;
86 pte = vcpu->cr3;
87 #if PTTYPE == 64
88 if (!is_long_mode(vcpu)) {
89 pte = vcpu->pdptrs[(addr >> 30) & 3];
90 if (!is_present_pte(pte))
91 goto not_present;
92 --walker->level;
93 }
94 #endif
95 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
96 (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
97
98 walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
99
100 for (;;) {
101 index = PT_INDEX(addr, walker->level);
102
103 table_gfn = (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
104 walker->table_gfn[walker->level - 1] = table_gfn;
105 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
106 walker->level - 1, table_gfn);
107
108 slot = gfn_to_memslot(vcpu->kvm, table_gfn);
109 hpa = safe_gpa_to_hpa(vcpu->kvm, pte & PT64_BASE_ADDR_MASK);
110 page = pfn_to_page(hpa >> PAGE_SHIFT);
111
112 table = kmap_atomic(page, KM_USER0);
113 pte = table[index];
114 kunmap_atomic(table, KM_USER0);
115
116 if (!is_present_pte(pte))
117 goto not_present;
118
119 if (write_fault && !is_writeble_pte(pte))
120 if (user_fault || is_write_protection(vcpu))
121 goto access_error;
122
123 if (user_fault && !(pte & PT_USER_MASK))
124 goto access_error;
125
126 #if PTTYPE == 64
127 if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
128 goto access_error;
129 #endif
130
131 if (!(pte & PT_ACCESSED_MASK)) {
132 mark_page_dirty(vcpu->kvm, table_gfn);
133 pte |= PT_ACCESSED_MASK;
134 table = kmap_atomic(page, KM_USER0);
135 table[index] = pte;
136 kunmap_atomic(table, KM_USER0);
137 }
138
139 if (walker->level == PT_PAGE_TABLE_LEVEL) {
140 walker->gfn = (pte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
141 break;
142 }
143
144 if (walker->level == PT_DIRECTORY_LEVEL
145 && (pte & PT_PAGE_SIZE_MASK)
146 && (PTTYPE == 64 || is_pse(vcpu))) {
147 walker->gfn = (pte & PT_DIR_BASE_ADDR_MASK)
148 >> PAGE_SHIFT;
149 walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
150 break;
151 }
152
153 walker->inherited_ar &= pte;
154 --walker->level;
155 }
156
157 if (write_fault && !is_dirty_pte(pte)) {
158 mark_page_dirty(vcpu->kvm, table_gfn);
159 pte |= PT_DIRTY_MASK;
160 table = kmap_atomic(page, KM_USER0);
161 table[index] = pte;
162 kunmap_atomic(table, KM_USER0);
163 pte_gpa = table_gfn << PAGE_SHIFT;
164 pte_gpa += index * sizeof(pt_element_t);
165 kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte));
166 }
167
168 walker->pte = pte;
169 pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)pte);
170 return 1;
171
172 not_present:
173 walker->error_code = 0;
174 goto err;
175
176 access_error:
177 walker->error_code = PFERR_PRESENT_MASK;
178
179 err:
180 if (write_fault)
181 walker->error_code |= PFERR_WRITE_MASK;
182 if (user_fault)
183 walker->error_code |= PFERR_USER_MASK;
184 if (fetch_fault)
185 walker->error_code |= PFERR_FETCH_MASK;
186 return 0;
187 }
188
189 static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
190 u64 *shadow_pte,
191 gpa_t gaddr,
192 pt_element_t gpte,
193 u64 access_bits,
194 int user_fault,
195 int write_fault,
196 int *ptwrite,
197 struct guest_walker *walker,
198 gfn_t gfn)
199 {
200 hpa_t paddr;
201 int dirty = gpte & PT_DIRTY_MASK;
202 u64 spte;
203 int was_rmapped = is_rmap_pte(*shadow_pte);
204
205 pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
206 " user_fault %d gfn %lx\n",
207 __FUNCTION__, *shadow_pte, (u64)gpte, access_bits,
208 write_fault, user_fault, gfn);
209
210 /*
211 * We don't set the accessed bit, since we sometimes want to see
212 * whether the guest actually used the pte (in order to detect
213 * demand paging).
214 */
215 spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
216 spte |= gpte & PT64_NX_MASK;
217 if (!dirty)
218 access_bits &= ~PT_WRITABLE_MASK;
219
220 paddr = gpa_to_hpa(vcpu->kvm, gaddr & PT64_BASE_ADDR_MASK);
221
222 spte |= PT_PRESENT_MASK;
223 if (access_bits & PT_USER_MASK)
224 spte |= PT_USER_MASK;
225
226 if (is_error_hpa(paddr)) {
227 set_shadow_pte(shadow_pte,
228 shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
229 return;
230 }
231
232 spte |= paddr;
233
234 if ((access_bits & PT_WRITABLE_MASK)
235 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
236 struct kvm_mmu_page *shadow;
237
238 spte |= PT_WRITABLE_MASK;
239 if (user_fault) {
240 mmu_unshadow(vcpu->kvm, gfn);
241 goto unshadowed;
242 }
243
244 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
245 if (shadow) {
246 pgprintk("%s: found shadow page for %lx, marking ro\n",
247 __FUNCTION__, gfn);
248 access_bits &= ~PT_WRITABLE_MASK;
249 if (is_writeble_pte(spte)) {
250 spte &= ~PT_WRITABLE_MASK;
251 kvm_x86_ops->tlb_flush(vcpu);
252 }
253 if (write_fault)
254 *ptwrite = 1;
255 }
256 }
257
258 unshadowed:
259
260 if (access_bits & PT_WRITABLE_MASK)
261 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
262
263 pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
264 set_shadow_pte(shadow_pte, spte);
265 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
266 if (!was_rmapped)
267 rmap_add(vcpu, shadow_pte, (gaddr & PT64_BASE_ADDR_MASK)
268 >> PAGE_SHIFT);
269 if (!ptwrite || !*ptwrite)
270 vcpu->last_pte_updated = shadow_pte;
271 }
272
273 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
274 u64 *shadow_pte, u64 access_bits,
275 int user_fault, int write_fault, int *ptwrite,
276 struct guest_walker *walker, gfn_t gfn)
277 {
278 access_bits &= gpte;
279 FNAME(set_pte_common)(vcpu, shadow_pte, gpte & PT_BASE_ADDR_MASK,
280 gpte, access_bits, user_fault, write_fault,
281 ptwrite, walker, gfn);
282 }
283
284 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
285 u64 *spte, const void *pte, int bytes,
286 int offset_in_pte)
287 {
288 pt_element_t gpte;
289
290 gpte = *(const pt_element_t *)pte;
291 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
292 if (!offset_in_pte && !is_present_pte(gpte))
293 set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
294 return;
295 }
296 if (bytes < sizeof(pt_element_t))
297 return;
298 pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
299 FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
300 0, NULL, NULL,
301 (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
302 }
303
304 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t gpde,
305 u64 *shadow_pte, u64 access_bits,
306 int user_fault, int write_fault, int *ptwrite,
307 struct guest_walker *walker, gfn_t gfn)
308 {
309 gpa_t gaddr;
310
311 access_bits &= gpde;
312 gaddr = (gpa_t)gfn << PAGE_SHIFT;
313 if (PTTYPE == 32 && is_cpuid_PSE36())
314 gaddr |= (gpde & PT32_DIR_PSE36_MASK) <<
315 (32 - PT32_DIR_PSE36_SHIFT);
316 FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
317 gpde, access_bits, user_fault, write_fault,
318 ptwrite, walker, gfn);
319 }
320
321 /*
322 * Fetch a shadow pte for a specific level in the paging hierarchy.
323 */
324 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
325 struct guest_walker *walker,
326 int user_fault, int write_fault, int *ptwrite)
327 {
328 hpa_t shadow_addr;
329 int level;
330 u64 *shadow_ent;
331 u64 *prev_shadow_ent = NULL;
332
333 if (!is_present_pte(walker->pte))
334 return NULL;
335
336 shadow_addr = vcpu->mmu.root_hpa;
337 level = vcpu->mmu.shadow_root_level;
338 if (level == PT32E_ROOT_LEVEL) {
339 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
340 shadow_addr &= PT64_BASE_ADDR_MASK;
341 --level;
342 }
343
344 for (; ; level--) {
345 u32 index = SHADOW_PT_INDEX(addr, level);
346 struct kvm_mmu_page *shadow_page;
347 u64 shadow_pte;
348 int metaphysical;
349 gfn_t table_gfn;
350 unsigned hugepage_access = 0;
351
352 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
353 if (is_shadow_present_pte(*shadow_ent)) {
354 if (level == PT_PAGE_TABLE_LEVEL)
355 break;
356 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
357 prev_shadow_ent = shadow_ent;
358 continue;
359 }
360
361 if (level == PT_PAGE_TABLE_LEVEL)
362 break;
363
364 if (level - 1 == PT_PAGE_TABLE_LEVEL
365 && walker->level == PT_DIRECTORY_LEVEL) {
366 metaphysical = 1;
367 hugepage_access = walker->pte;
368 hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
369 if (!is_dirty_pte(walker->pte))
370 hugepage_access &= ~PT_WRITABLE_MASK;
371 hugepage_access >>= PT_WRITABLE_SHIFT;
372 if (walker->pte & PT64_NX_MASK)
373 hugepage_access |= (1 << 2);
374 table_gfn = (walker->pte & PT_BASE_ADDR_MASK)
375 >> PAGE_SHIFT;
376 } else {
377 metaphysical = 0;
378 table_gfn = walker->table_gfn[level - 2];
379 }
380 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
381 metaphysical, hugepage_access,
382 shadow_ent);
383 shadow_addr = __pa(shadow_page->spt);
384 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
385 | PT_WRITABLE_MASK | PT_USER_MASK;
386 *shadow_ent = shadow_pte;
387 prev_shadow_ent = shadow_ent;
388 }
389
390 if (walker->level == PT_DIRECTORY_LEVEL) {
391 FNAME(set_pde)(vcpu, walker->pte, shadow_ent,
392 walker->inherited_ar, user_fault, write_fault,
393 ptwrite, walker, walker->gfn);
394 } else {
395 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
396 FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
397 walker->inherited_ar, user_fault, write_fault,
398 ptwrite, walker, walker->gfn);
399 }
400 return shadow_ent;
401 }
402
403 /*
404 * Page fault handler. There are several causes for a page fault:
405 * - there is no shadow pte for the guest pte
406 * - write access through a shadow pte marked read only so that we can set
407 * the dirty bit
408 * - write access to a shadow pte marked read only so we can update the page
409 * dirty bitmap, when userspace requests it
410 * - mmio access; in this case we will never install a present shadow pte
411 * - normal guest page fault due to the guest pte marked not present, not
412 * writable, or not executable
413 *
414 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
415 * a negative value on error.
416 */
417 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
418 u32 error_code)
419 {
420 int write_fault = error_code & PFERR_WRITE_MASK;
421 int user_fault = error_code & PFERR_USER_MASK;
422 int fetch_fault = error_code & PFERR_FETCH_MASK;
423 struct guest_walker walker;
424 u64 *shadow_pte;
425 int write_pt = 0;
426 int r;
427
428 pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
429 kvm_mmu_audit(vcpu, "pre page fault");
430
431 r = mmu_topup_memory_caches(vcpu);
432 if (r)
433 return r;
434
435 /*
436 * Look up the shadow pte for the faulting address.
437 */
438 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
439 fetch_fault);
440
441 /*
442 * The page is not mapped by the guest. Let the guest handle it.
443 */
444 if (!r) {
445 pgprintk("%s: guest page fault\n", __FUNCTION__);
446 inject_page_fault(vcpu, addr, walker.error_code);
447 vcpu->last_pt_write_count = 0; /* reset fork detector */
448 return 0;
449 }
450
451 shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
452 &write_pt);
453 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
454 shadow_pte, *shadow_pte, write_pt);
455
456 if (!write_pt)
457 vcpu->last_pt_write_count = 0; /* reset fork detector */
458
459 /*
460 * mmio: emulate if accessible, otherwise its a guest fault.
461 */
462 if (is_io_pte(*shadow_pte))
463 return 1;
464
465 ++vcpu->stat.pf_fixed;
466 kvm_mmu_audit(vcpu, "post page fault (fixed)");
467
468 return write_pt;
469 }
470
471 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
472 {
473 struct guest_walker walker;
474 gpa_t gpa = UNMAPPED_GVA;
475 int r;
476
477 r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
478
479 if (r) {
480 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
481 gpa |= vaddr & ~PAGE_MASK;
482 }
483
484 return gpa;
485 }
486
487 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
488 struct kvm_mmu_page *sp)
489 {
490 int i;
491 pt_element_t *gpt;
492
493 if (sp->role.metaphysical || PTTYPE == 32) {
494 nonpaging_prefetch_page(vcpu, sp);
495 return;
496 }
497
498 gpt = kmap_atomic(gfn_to_page(vcpu->kvm, sp->gfn), KM_USER0);
499 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
500 if (is_present_pte(gpt[i]))
501 sp->spt[i] = shadow_trap_nonpresent_pte;
502 else
503 sp->spt[i] = shadow_notrap_nonpresent_pte;
504 kunmap_atomic(gpt, KM_USER0);
505 }
506
507 #undef pt_element_t
508 #undef guest_walker
509 #undef FNAME
510 #undef PT_BASE_ADDR_MASK
511 #undef PT_INDEX
512 #undef SHADOW_PT_INDEX
513 #undef PT_LEVEL_MASK
514 #undef PT_DIR_BASE_ADDR_MASK
515 #undef PT_LEVEL_BITS
516 #undef PT_MAX_FULL_LEVELS
This page took 0.088762 seconds and 6 git commands to generate.