KVM: MMU: Move dirty bit updates to a separate function
[deliverable/linux.git] / drivers / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20 /*
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
23 */
24
25 #if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #else
38 #define PT_MAX_FULL_LEVELS 2
39 #endif
40 #elif PTTYPE == 32
41 #define pt_element_t u32
42 #define guest_walker guest_walker32
43 #define FNAME(name) paging##32_##name
44 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
45 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
46 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
47 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
48 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
49 #define PT_LEVEL_BITS PT32_LEVEL_BITS
50 #define PT_MAX_FULL_LEVELS 2
51 #else
52 #error Invalid PTTYPE value
53 #endif
54
55 /*
56 * The guest_walker structure emulates the behavior of the hardware page
57 * table walker.
58 */
59 struct guest_walker {
60 int level;
61 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
62 pt_element_t *table;
63 pt_element_t pte;
64 pt_element_t *ptep;
65 struct page *page;
66 int index;
67 pt_element_t inherited_ar;
68 gfn_t gfn;
69 u32 error_code;
70 };
71
72 static void FNAME(update_dirty_bit)(struct kvm_vcpu *vcpu,
73 int write_fault,
74 pt_element_t *ptep,
75 gfn_t table_gfn)
76 {
77 if (write_fault && !is_dirty_pte(*ptep)) {
78 mark_page_dirty(vcpu->kvm, table_gfn);
79 *ptep |= PT_DIRTY_MASK;
80 }
81 }
82
83 /*
84 * Fetch a guest pte for a guest virtual address
85 */
86 static int FNAME(walk_addr)(struct guest_walker *walker,
87 struct kvm_vcpu *vcpu, gva_t addr,
88 int write_fault, int user_fault, int fetch_fault)
89 {
90 hpa_t hpa;
91 struct kvm_memory_slot *slot;
92 pt_element_t *ptep;
93 pt_element_t root;
94 gfn_t table_gfn;
95
96 pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
97 walker->level = vcpu->mmu.root_level;
98 walker->table = NULL;
99 walker->page = NULL;
100 walker->ptep = NULL;
101 root = vcpu->cr3;
102 #if PTTYPE == 64
103 if (!is_long_mode(vcpu)) {
104 walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
105 root = *walker->ptep;
106 walker->pte = root;
107 if (!(root & PT_PRESENT_MASK))
108 goto not_present;
109 --walker->level;
110 }
111 #endif
112 table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
113 walker->table_gfn[walker->level - 1] = table_gfn;
114 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
115 walker->level - 1, table_gfn);
116 slot = gfn_to_memslot(vcpu->kvm, table_gfn);
117 hpa = safe_gpa_to_hpa(vcpu->kvm, root & PT64_BASE_ADDR_MASK);
118 walker->page = pfn_to_page(hpa >> PAGE_SHIFT);
119 walker->table = kmap_atomic(walker->page, KM_USER0);
120
121 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
122 (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
123
124 walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
125
126 for (;;) {
127 int index = PT_INDEX(addr, walker->level);
128 hpa_t paddr;
129
130 ptep = &walker->table[index];
131 walker->index = index;
132 ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
133 ((unsigned long)ptep & PAGE_MASK));
134
135 if (!is_present_pte(*ptep))
136 goto not_present;
137
138 if (write_fault && !is_writeble_pte(*ptep))
139 if (user_fault || is_write_protection(vcpu))
140 goto access_error;
141
142 if (user_fault && !(*ptep & PT_USER_MASK))
143 goto access_error;
144
145 #if PTTYPE == 64
146 if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
147 goto access_error;
148 #endif
149
150 if (!(*ptep & PT_ACCESSED_MASK)) {
151 mark_page_dirty(vcpu->kvm, table_gfn);
152 *ptep |= PT_ACCESSED_MASK;
153 }
154
155 if (walker->level == PT_PAGE_TABLE_LEVEL) {
156 walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
157 >> PAGE_SHIFT;
158 FNAME(update_dirty_bit)(vcpu, write_fault, ptep,
159 table_gfn);
160 break;
161 }
162
163 if (walker->level == PT_DIRECTORY_LEVEL
164 && (*ptep & PT_PAGE_SIZE_MASK)
165 && (PTTYPE == 64 || is_pse(vcpu))) {
166 walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
167 >> PAGE_SHIFT;
168 walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
169 FNAME(update_dirty_bit)(vcpu, write_fault, ptep,
170 table_gfn);
171 break;
172 }
173
174 walker->inherited_ar &= walker->table[index];
175 table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
176 kunmap_atomic(walker->table, KM_USER0);
177 paddr = safe_gpa_to_hpa(vcpu->kvm, table_gfn << PAGE_SHIFT);
178 walker->page = pfn_to_page(paddr >> PAGE_SHIFT);
179 walker->table = kmap_atomic(walker->page, KM_USER0);
180 --walker->level;
181 walker->table_gfn[walker->level - 1] = table_gfn;
182 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
183 walker->level - 1, table_gfn);
184 }
185 walker->pte = *ptep;
186 if (walker->page)
187 walker->ptep = NULL;
188 if (walker->table)
189 kunmap_atomic(walker->table, KM_USER0);
190 pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
191 return 1;
192
193 not_present:
194 walker->error_code = 0;
195 goto err;
196
197 access_error:
198 walker->error_code = PFERR_PRESENT_MASK;
199
200 err:
201 if (write_fault)
202 walker->error_code |= PFERR_WRITE_MASK;
203 if (user_fault)
204 walker->error_code |= PFERR_USER_MASK;
205 if (fetch_fault)
206 walker->error_code |= PFERR_FETCH_MASK;
207 if (walker->table)
208 kunmap_atomic(walker->table, KM_USER0);
209 return 0;
210 }
211
212 static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
213 u64 *shadow_pte,
214 gpa_t gaddr,
215 pt_element_t gpte,
216 u64 access_bits,
217 int user_fault,
218 int write_fault,
219 int *ptwrite,
220 struct guest_walker *walker,
221 gfn_t gfn)
222 {
223 hpa_t paddr;
224 int dirty = gpte & PT_DIRTY_MASK;
225 u64 spte;
226 int was_rmapped = is_rmap_pte(*shadow_pte);
227
228 pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
229 " user_fault %d gfn %lx\n",
230 __FUNCTION__, *shadow_pte, (u64)gpte, access_bits,
231 write_fault, user_fault, gfn);
232
233 /*
234 * We don't set the accessed bit, since we sometimes want to see
235 * whether the guest actually used the pte (in order to detect
236 * demand paging).
237 */
238 spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
239 spte |= gpte & PT64_NX_MASK;
240 if (!dirty)
241 access_bits &= ~PT_WRITABLE_MASK;
242
243 paddr = gpa_to_hpa(vcpu->kvm, gaddr & PT64_BASE_ADDR_MASK);
244
245 spte |= PT_PRESENT_MASK;
246 if (access_bits & PT_USER_MASK)
247 spte |= PT_USER_MASK;
248
249 if (is_error_hpa(paddr)) {
250 set_shadow_pte(shadow_pte,
251 shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
252 return;
253 }
254
255 spte |= paddr;
256
257 if ((access_bits & PT_WRITABLE_MASK)
258 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
259 struct kvm_mmu_page *shadow;
260
261 spte |= PT_WRITABLE_MASK;
262 if (user_fault) {
263 mmu_unshadow(vcpu->kvm, gfn);
264 goto unshadowed;
265 }
266
267 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
268 if (shadow) {
269 pgprintk("%s: found shadow page for %lx, marking ro\n",
270 __FUNCTION__, gfn);
271 access_bits &= ~PT_WRITABLE_MASK;
272 if (is_writeble_pte(spte)) {
273 spte &= ~PT_WRITABLE_MASK;
274 kvm_x86_ops->tlb_flush(vcpu);
275 }
276 if (write_fault)
277 *ptwrite = 1;
278 }
279 }
280
281 unshadowed:
282
283 if (access_bits & PT_WRITABLE_MASK)
284 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
285
286 pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
287 set_shadow_pte(shadow_pte, spte);
288 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
289 if (!was_rmapped)
290 rmap_add(vcpu, shadow_pte, (gaddr & PT64_BASE_ADDR_MASK)
291 >> PAGE_SHIFT);
292 if (!ptwrite || !*ptwrite)
293 vcpu->last_pte_updated = shadow_pte;
294 }
295
296 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
297 u64 *shadow_pte, u64 access_bits,
298 int user_fault, int write_fault, int *ptwrite,
299 struct guest_walker *walker, gfn_t gfn)
300 {
301 access_bits &= gpte;
302 FNAME(set_pte_common)(vcpu, shadow_pte, gpte & PT_BASE_ADDR_MASK,
303 gpte, access_bits, user_fault, write_fault,
304 ptwrite, walker, gfn);
305 }
306
307 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
308 u64 *spte, const void *pte, int bytes,
309 int offset_in_pte)
310 {
311 pt_element_t gpte;
312
313 gpte = *(const pt_element_t *)pte;
314 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
315 if (!offset_in_pte && !is_present_pte(gpte))
316 set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
317 return;
318 }
319 if (bytes < sizeof(pt_element_t))
320 return;
321 pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
322 FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
323 0, NULL, NULL,
324 (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
325 }
326
327 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t gpde,
328 u64 *shadow_pte, u64 access_bits,
329 int user_fault, int write_fault, int *ptwrite,
330 struct guest_walker *walker, gfn_t gfn)
331 {
332 gpa_t gaddr;
333
334 access_bits &= gpde;
335 gaddr = (gpa_t)gfn << PAGE_SHIFT;
336 if (PTTYPE == 32 && is_cpuid_PSE36())
337 gaddr |= (gpde & PT32_DIR_PSE36_MASK) <<
338 (32 - PT32_DIR_PSE36_SHIFT);
339 FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
340 gpde, access_bits, user_fault, write_fault,
341 ptwrite, walker, gfn);
342 }
343
344 /*
345 * Fetch a shadow pte for a specific level in the paging hierarchy.
346 */
347 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
348 struct guest_walker *walker,
349 int user_fault, int write_fault, int *ptwrite)
350 {
351 hpa_t shadow_addr;
352 int level;
353 u64 *shadow_ent;
354 u64 *prev_shadow_ent = NULL;
355
356 if (!is_present_pte(walker->pte))
357 return NULL;
358
359 shadow_addr = vcpu->mmu.root_hpa;
360 level = vcpu->mmu.shadow_root_level;
361 if (level == PT32E_ROOT_LEVEL) {
362 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
363 shadow_addr &= PT64_BASE_ADDR_MASK;
364 --level;
365 }
366
367 for (; ; level--) {
368 u32 index = SHADOW_PT_INDEX(addr, level);
369 struct kvm_mmu_page *shadow_page;
370 u64 shadow_pte;
371 int metaphysical;
372 gfn_t table_gfn;
373 unsigned hugepage_access = 0;
374
375 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
376 if (is_shadow_present_pte(*shadow_ent)) {
377 if (level == PT_PAGE_TABLE_LEVEL)
378 break;
379 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
380 prev_shadow_ent = shadow_ent;
381 continue;
382 }
383
384 if (level == PT_PAGE_TABLE_LEVEL)
385 break;
386
387 if (level - 1 == PT_PAGE_TABLE_LEVEL
388 && walker->level == PT_DIRECTORY_LEVEL) {
389 metaphysical = 1;
390 hugepage_access = walker->pte;
391 hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
392 if (!is_dirty_pte(walker->pte))
393 hugepage_access &= ~PT_WRITABLE_MASK;
394 hugepage_access >>= PT_WRITABLE_SHIFT;
395 if (walker->pte & PT64_NX_MASK)
396 hugepage_access |= (1 << 2);
397 table_gfn = (walker->pte & PT_BASE_ADDR_MASK)
398 >> PAGE_SHIFT;
399 } else {
400 metaphysical = 0;
401 table_gfn = walker->table_gfn[level - 2];
402 }
403 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
404 metaphysical, hugepage_access,
405 shadow_ent);
406 shadow_addr = __pa(shadow_page->spt);
407 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
408 | PT_WRITABLE_MASK | PT_USER_MASK;
409 *shadow_ent = shadow_pte;
410 prev_shadow_ent = shadow_ent;
411 }
412
413 if (walker->level == PT_DIRECTORY_LEVEL) {
414 FNAME(set_pde)(vcpu, walker->pte, shadow_ent,
415 walker->inherited_ar, user_fault, write_fault,
416 ptwrite, walker, walker->gfn);
417 } else {
418 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
419 FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
420 walker->inherited_ar, user_fault, write_fault,
421 ptwrite, walker, walker->gfn);
422 }
423 return shadow_ent;
424 }
425
426 /*
427 * Page fault handler. There are several causes for a page fault:
428 * - there is no shadow pte for the guest pte
429 * - write access through a shadow pte marked read only so that we can set
430 * the dirty bit
431 * - write access to a shadow pte marked read only so we can update the page
432 * dirty bitmap, when userspace requests it
433 * - mmio access; in this case we will never install a present shadow pte
434 * - normal guest page fault due to the guest pte marked not present, not
435 * writable, or not executable
436 *
437 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
438 * a negative value on error.
439 */
440 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
441 u32 error_code)
442 {
443 int write_fault = error_code & PFERR_WRITE_MASK;
444 int user_fault = error_code & PFERR_USER_MASK;
445 int fetch_fault = error_code & PFERR_FETCH_MASK;
446 struct guest_walker walker;
447 u64 *shadow_pte;
448 int write_pt = 0;
449 int r;
450
451 pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
452 kvm_mmu_audit(vcpu, "pre page fault");
453
454 r = mmu_topup_memory_caches(vcpu);
455 if (r)
456 return r;
457
458 /*
459 * Look up the shadow pte for the faulting address.
460 */
461 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
462 fetch_fault);
463
464 /*
465 * The page is not mapped by the guest. Let the guest handle it.
466 */
467 if (!r) {
468 pgprintk("%s: guest page fault\n", __FUNCTION__);
469 inject_page_fault(vcpu, addr, walker.error_code);
470 vcpu->last_pt_write_count = 0; /* reset fork detector */
471 return 0;
472 }
473
474 shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
475 &write_pt);
476 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
477 shadow_pte, *shadow_pte, write_pt);
478
479 if (!write_pt)
480 vcpu->last_pt_write_count = 0; /* reset fork detector */
481
482 /*
483 * mmio: emulate if accessible, otherwise its a guest fault.
484 */
485 if (is_io_pte(*shadow_pte))
486 return 1;
487
488 ++vcpu->stat.pf_fixed;
489 kvm_mmu_audit(vcpu, "post page fault (fixed)");
490
491 return write_pt;
492 }
493
494 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
495 {
496 struct guest_walker walker;
497 gpa_t gpa = UNMAPPED_GVA;
498 int r;
499
500 r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
501
502 if (r) {
503 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
504 gpa |= vaddr & ~PAGE_MASK;
505 }
506
507 return gpa;
508 }
509
510 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
511 struct kvm_mmu_page *sp)
512 {
513 int i;
514 pt_element_t *gpt;
515
516 if (sp->role.metaphysical || PTTYPE == 32) {
517 nonpaging_prefetch_page(vcpu, sp);
518 return;
519 }
520
521 gpt = kmap_atomic(gfn_to_page(vcpu->kvm, sp->gfn), KM_USER0);
522 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
523 if (is_present_pte(gpt[i]))
524 sp->spt[i] = shadow_trap_nonpresent_pte;
525 else
526 sp->spt[i] = shadow_notrap_nonpresent_pte;
527 kunmap_atomic(gpt, KM_USER0);
528 }
529
530 #undef pt_element_t
531 #undef guest_walker
532 #undef FNAME
533 #undef PT_BASE_ADDR_MASK
534 #undef PT_INDEX
535 #undef SHADOW_PT_INDEX
536 #undef PT_LEVEL_MASK
537 #undef PT_DIR_BASE_ADDR_MASK
538 #undef PT_LEVEL_BITS
539 #undef PT_MAX_FULL_LEVELS
This page took 0.632762 seconds and 6 git commands to generate.