KVM: SVM: support writing 0 to K8 performance counter control registers
[deliverable/linux.git] / drivers / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16 #include "x86.h"
17 #include "kvm_svm.h"
18 #include "x86_emulate.h"
19 #include "irq.h"
20
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/vmalloc.h>
24 #include <linux/highmem.h>
25 #include <linux/sched.h>
26
27 #include <asm/desc.h>
28
29 MODULE_AUTHOR("Qumranet");
30 MODULE_LICENSE("GPL");
31
32 #define IOPM_ALLOC_ORDER 2
33 #define MSRPM_ALLOC_ORDER 1
34
35 #define DB_VECTOR 1
36 #define UD_VECTOR 6
37 #define GP_VECTOR 13
38
39 #define DR7_GD_MASK (1 << 13)
40 #define DR6_BD_MASK (1 << 13)
41
42 #define SEG_TYPE_LDT 2
43 #define SEG_TYPE_BUSY_TSS16 3
44
45 #define SVM_FEATURE_NPT (1 << 0)
46 #define SVM_FEATURE_LBRV (1 << 1)
47 #define SVM_DEATURE_SVML (1 << 2)
48
49 static void kvm_reput_irq(struct vcpu_svm *svm);
50
51 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
52 {
53 return container_of(vcpu, struct vcpu_svm, vcpu);
54 }
55
56 unsigned long iopm_base;
57 unsigned long msrpm_base;
58
59 struct kvm_ldttss_desc {
60 u16 limit0;
61 u16 base0;
62 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
63 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
64 u32 base3;
65 u32 zero1;
66 } __attribute__((packed));
67
68 struct svm_cpu_data {
69 int cpu;
70
71 u64 asid_generation;
72 u32 max_asid;
73 u32 next_asid;
74 struct kvm_ldttss_desc *tss_desc;
75
76 struct page *save_area;
77 };
78
79 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
80 static uint32_t svm_features;
81
82 struct svm_init_data {
83 int cpu;
84 int r;
85 };
86
87 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
88
89 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
90 #define MSRS_RANGE_SIZE 2048
91 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
92
93 #define MAX_INST_SIZE 15
94
95 static inline u32 svm_has(u32 feat)
96 {
97 return svm_features & feat;
98 }
99
100 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
101 {
102 int word_index = __ffs(vcpu->irq_summary);
103 int bit_index = __ffs(vcpu->irq_pending[word_index]);
104 int irq = word_index * BITS_PER_LONG + bit_index;
105
106 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
107 if (!vcpu->irq_pending[word_index])
108 clear_bit(word_index, &vcpu->irq_summary);
109 return irq;
110 }
111
112 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
113 {
114 set_bit(irq, vcpu->irq_pending);
115 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
116 }
117
118 static inline void clgi(void)
119 {
120 asm volatile (SVM_CLGI);
121 }
122
123 static inline void stgi(void)
124 {
125 asm volatile (SVM_STGI);
126 }
127
128 static inline void invlpga(unsigned long addr, u32 asid)
129 {
130 asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
131 }
132
133 static inline unsigned long kvm_read_cr2(void)
134 {
135 unsigned long cr2;
136
137 asm volatile ("mov %%cr2, %0" : "=r" (cr2));
138 return cr2;
139 }
140
141 static inline void kvm_write_cr2(unsigned long val)
142 {
143 asm volatile ("mov %0, %%cr2" :: "r" (val));
144 }
145
146 static inline unsigned long read_dr6(void)
147 {
148 unsigned long dr6;
149
150 asm volatile ("mov %%dr6, %0" : "=r" (dr6));
151 return dr6;
152 }
153
154 static inline void write_dr6(unsigned long val)
155 {
156 asm volatile ("mov %0, %%dr6" :: "r" (val));
157 }
158
159 static inline unsigned long read_dr7(void)
160 {
161 unsigned long dr7;
162
163 asm volatile ("mov %%dr7, %0" : "=r" (dr7));
164 return dr7;
165 }
166
167 static inline void write_dr7(unsigned long val)
168 {
169 asm volatile ("mov %0, %%dr7" :: "r" (val));
170 }
171
172 static inline void force_new_asid(struct kvm_vcpu *vcpu)
173 {
174 to_svm(vcpu)->asid_generation--;
175 }
176
177 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
178 {
179 force_new_asid(vcpu);
180 }
181
182 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
183 {
184 if (!(efer & EFER_LMA))
185 efer &= ~EFER_LME;
186
187 to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
188 vcpu->shadow_efer = efer;
189 }
190
191 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
192 bool has_error_code, u32 error_code)
193 {
194 struct vcpu_svm *svm = to_svm(vcpu);
195
196 svm->vmcb->control.event_inj = nr
197 | SVM_EVTINJ_VALID
198 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
199 | SVM_EVTINJ_TYPE_EXEPT;
200 svm->vmcb->control.event_inj_err = error_code;
201 }
202
203 static bool svm_exception_injected(struct kvm_vcpu *vcpu)
204 {
205 struct vcpu_svm *svm = to_svm(vcpu);
206
207 return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
208 }
209
210 static int is_external_interrupt(u32 info)
211 {
212 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
213 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
214 }
215
216 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
217 {
218 struct vcpu_svm *svm = to_svm(vcpu);
219
220 if (!svm->next_rip) {
221 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
222 return;
223 }
224 if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE)
225 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
226 __FUNCTION__,
227 svm->vmcb->save.rip,
228 svm->next_rip);
229
230 vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
231 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
232
233 vcpu->interrupt_window_open = 1;
234 }
235
236 static int has_svm(void)
237 {
238 uint32_t eax, ebx, ecx, edx;
239
240 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
241 printk(KERN_INFO "has_svm: not amd\n");
242 return 0;
243 }
244
245 cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
246 if (eax < SVM_CPUID_FUNC) {
247 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
248 return 0;
249 }
250
251 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
252 if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
253 printk(KERN_DEBUG "has_svm: svm not available\n");
254 return 0;
255 }
256 return 1;
257 }
258
259 static void svm_hardware_disable(void *garbage)
260 {
261 struct svm_cpu_data *svm_data
262 = per_cpu(svm_data, raw_smp_processor_id());
263
264 if (svm_data) {
265 uint64_t efer;
266
267 wrmsrl(MSR_VM_HSAVE_PA, 0);
268 rdmsrl(MSR_EFER, efer);
269 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
270 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
271 __free_page(svm_data->save_area);
272 kfree(svm_data);
273 }
274 }
275
276 static void svm_hardware_enable(void *garbage)
277 {
278
279 struct svm_cpu_data *svm_data;
280 uint64_t efer;
281 #ifdef CONFIG_X86_64
282 struct desc_ptr gdt_descr;
283 #else
284 struct desc_ptr gdt_descr;
285 #endif
286 struct desc_struct *gdt;
287 int me = raw_smp_processor_id();
288
289 if (!has_svm()) {
290 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
291 return;
292 }
293 svm_data = per_cpu(svm_data, me);
294
295 if (!svm_data) {
296 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
297 me);
298 return;
299 }
300
301 svm_data->asid_generation = 1;
302 svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
303 svm_data->next_asid = svm_data->max_asid + 1;
304 svm_features = cpuid_edx(SVM_CPUID_FUNC);
305
306 asm volatile ("sgdt %0" : "=m"(gdt_descr));
307 gdt = (struct desc_struct *)gdt_descr.address;
308 svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
309
310 rdmsrl(MSR_EFER, efer);
311 wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
312
313 wrmsrl(MSR_VM_HSAVE_PA,
314 page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
315 }
316
317 static int svm_cpu_init(int cpu)
318 {
319 struct svm_cpu_data *svm_data;
320 int r;
321
322 svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
323 if (!svm_data)
324 return -ENOMEM;
325 svm_data->cpu = cpu;
326 svm_data->save_area = alloc_page(GFP_KERNEL);
327 r = -ENOMEM;
328 if (!svm_data->save_area)
329 goto err_1;
330
331 per_cpu(svm_data, cpu) = svm_data;
332
333 return 0;
334
335 err_1:
336 kfree(svm_data);
337 return r;
338
339 }
340
341 static void set_msr_interception(u32 *msrpm, unsigned msr,
342 int read, int write)
343 {
344 int i;
345
346 for (i = 0; i < NUM_MSR_MAPS; i++) {
347 if (msr >= msrpm_ranges[i] &&
348 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
349 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
350 msrpm_ranges[i]) * 2;
351
352 u32 *base = msrpm + (msr_offset / 32);
353 u32 msr_shift = msr_offset % 32;
354 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
355 *base = (*base & ~(0x3 << msr_shift)) |
356 (mask << msr_shift);
357 return;
358 }
359 }
360 BUG();
361 }
362
363 static __init int svm_hardware_setup(void)
364 {
365 int cpu;
366 struct page *iopm_pages;
367 struct page *msrpm_pages;
368 void *iopm_va, *msrpm_va;
369 int r;
370
371 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
372
373 if (!iopm_pages)
374 return -ENOMEM;
375
376 iopm_va = page_address(iopm_pages);
377 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
378 clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
379 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
380
381
382 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
383
384 r = -ENOMEM;
385 if (!msrpm_pages)
386 goto err_1;
387
388 msrpm_va = page_address(msrpm_pages);
389 memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
390 msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
391
392 #ifdef CONFIG_X86_64
393 set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
394 set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
395 set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
396 set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
397 set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
398 set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
399 #endif
400 set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
401 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
402 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
403 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
404
405 for_each_online_cpu(cpu) {
406 r = svm_cpu_init(cpu);
407 if (r)
408 goto err_2;
409 }
410 return 0;
411
412 err_2:
413 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
414 msrpm_base = 0;
415 err_1:
416 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
417 iopm_base = 0;
418 return r;
419 }
420
421 static __exit void svm_hardware_unsetup(void)
422 {
423 __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
424 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
425 iopm_base = msrpm_base = 0;
426 }
427
428 static void init_seg(struct vmcb_seg *seg)
429 {
430 seg->selector = 0;
431 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
432 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
433 seg->limit = 0xffff;
434 seg->base = 0;
435 }
436
437 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
438 {
439 seg->selector = 0;
440 seg->attrib = SVM_SELECTOR_P_MASK | type;
441 seg->limit = 0xffff;
442 seg->base = 0;
443 }
444
445 static void init_vmcb(struct vmcb *vmcb)
446 {
447 struct vmcb_control_area *control = &vmcb->control;
448 struct vmcb_save_area *save = &vmcb->save;
449
450 control->intercept_cr_read = INTERCEPT_CR0_MASK |
451 INTERCEPT_CR3_MASK |
452 INTERCEPT_CR4_MASK |
453 INTERCEPT_CR8_MASK;
454
455 control->intercept_cr_write = INTERCEPT_CR0_MASK |
456 INTERCEPT_CR3_MASK |
457 INTERCEPT_CR4_MASK |
458 INTERCEPT_CR8_MASK;
459
460 control->intercept_dr_read = INTERCEPT_DR0_MASK |
461 INTERCEPT_DR1_MASK |
462 INTERCEPT_DR2_MASK |
463 INTERCEPT_DR3_MASK;
464
465 control->intercept_dr_write = INTERCEPT_DR0_MASK |
466 INTERCEPT_DR1_MASK |
467 INTERCEPT_DR2_MASK |
468 INTERCEPT_DR3_MASK |
469 INTERCEPT_DR5_MASK |
470 INTERCEPT_DR7_MASK;
471
472 control->intercept_exceptions = (1 << PF_VECTOR) |
473 (1 << UD_VECTOR);
474
475
476 control->intercept = (1ULL << INTERCEPT_INTR) |
477 (1ULL << INTERCEPT_NMI) |
478 (1ULL << INTERCEPT_SMI) |
479 /*
480 * selective cr0 intercept bug?
481 * 0: 0f 22 d8 mov %eax,%cr3
482 * 3: 0f 20 c0 mov %cr0,%eax
483 * 6: 0d 00 00 00 80 or $0x80000000,%eax
484 * b: 0f 22 c0 mov %eax,%cr0
485 * set cr3 ->interception
486 * get cr0 ->interception
487 * set cr0 -> no interception
488 */
489 /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
490 (1ULL << INTERCEPT_CPUID) |
491 (1ULL << INTERCEPT_INVD) |
492 (1ULL << INTERCEPT_HLT) |
493 (1ULL << INTERCEPT_INVLPGA) |
494 (1ULL << INTERCEPT_IOIO_PROT) |
495 (1ULL << INTERCEPT_MSR_PROT) |
496 (1ULL << INTERCEPT_TASK_SWITCH) |
497 (1ULL << INTERCEPT_SHUTDOWN) |
498 (1ULL << INTERCEPT_VMRUN) |
499 (1ULL << INTERCEPT_VMMCALL) |
500 (1ULL << INTERCEPT_VMLOAD) |
501 (1ULL << INTERCEPT_VMSAVE) |
502 (1ULL << INTERCEPT_STGI) |
503 (1ULL << INTERCEPT_CLGI) |
504 (1ULL << INTERCEPT_SKINIT) |
505 (1ULL << INTERCEPT_WBINVD) |
506 (1ULL << INTERCEPT_MONITOR) |
507 (1ULL << INTERCEPT_MWAIT);
508
509 control->iopm_base_pa = iopm_base;
510 control->msrpm_base_pa = msrpm_base;
511 control->tsc_offset = 0;
512 control->int_ctl = V_INTR_MASKING_MASK;
513
514 init_seg(&save->es);
515 init_seg(&save->ss);
516 init_seg(&save->ds);
517 init_seg(&save->fs);
518 init_seg(&save->gs);
519
520 save->cs.selector = 0xf000;
521 /* Executable/Readable Code Segment */
522 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
523 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
524 save->cs.limit = 0xffff;
525 /*
526 * cs.base should really be 0xffff0000, but vmx can't handle that, so
527 * be consistent with it.
528 *
529 * Replace when we have real mode working for vmx.
530 */
531 save->cs.base = 0xf0000;
532
533 save->gdtr.limit = 0xffff;
534 save->idtr.limit = 0xffff;
535
536 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
537 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
538
539 save->efer = MSR_EFER_SVME_MASK;
540 save->dr6 = 0xffff0ff0;
541 save->dr7 = 0x400;
542 save->rflags = 2;
543 save->rip = 0x0000fff0;
544
545 /*
546 * cr0 val on cpu init should be 0x60000010, we enable cpu
547 * cache by default. the orderly way is to enable cache in bios.
548 */
549 save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
550 save->cr4 = X86_CR4_PAE;
551 /* rdx = ?? */
552 }
553
554 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
555 {
556 struct vcpu_svm *svm = to_svm(vcpu);
557
558 init_vmcb(svm->vmcb);
559
560 if (vcpu->vcpu_id != 0) {
561 svm->vmcb->save.rip = 0;
562 svm->vmcb->save.cs.base = svm->vcpu.sipi_vector << 12;
563 svm->vmcb->save.cs.selector = svm->vcpu.sipi_vector << 8;
564 }
565
566 return 0;
567 }
568
569 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
570 {
571 struct vcpu_svm *svm;
572 struct page *page;
573 int err;
574
575 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
576 if (!svm) {
577 err = -ENOMEM;
578 goto out;
579 }
580
581 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
582 if (err)
583 goto free_svm;
584
585 page = alloc_page(GFP_KERNEL);
586 if (!page) {
587 err = -ENOMEM;
588 goto uninit;
589 }
590
591 svm->vmcb = page_address(page);
592 clear_page(svm->vmcb);
593 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
594 svm->asid_generation = 0;
595 memset(svm->db_regs, 0, sizeof(svm->db_regs));
596 init_vmcb(svm->vmcb);
597
598 fx_init(&svm->vcpu);
599 svm->vcpu.fpu_active = 1;
600 svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
601 if (svm->vcpu.vcpu_id == 0)
602 svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
603
604 return &svm->vcpu;
605
606 uninit:
607 kvm_vcpu_uninit(&svm->vcpu);
608 free_svm:
609 kmem_cache_free(kvm_vcpu_cache, svm);
610 out:
611 return ERR_PTR(err);
612 }
613
614 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
615 {
616 struct vcpu_svm *svm = to_svm(vcpu);
617
618 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
619 kvm_vcpu_uninit(vcpu);
620 kmem_cache_free(kvm_vcpu_cache, svm);
621 }
622
623 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
624 {
625 struct vcpu_svm *svm = to_svm(vcpu);
626 int i;
627
628 if (unlikely(cpu != vcpu->cpu)) {
629 u64 tsc_this, delta;
630
631 /*
632 * Make sure that the guest sees a monotonically
633 * increasing TSC.
634 */
635 rdtscll(tsc_this);
636 delta = vcpu->host_tsc - tsc_this;
637 svm->vmcb->control.tsc_offset += delta;
638 vcpu->cpu = cpu;
639 kvm_migrate_apic_timer(vcpu);
640 }
641
642 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
643 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
644 }
645
646 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
647 {
648 struct vcpu_svm *svm = to_svm(vcpu);
649 int i;
650
651 ++vcpu->stat.host_state_reload;
652 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
653 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
654
655 rdtscll(vcpu->host_tsc);
656 }
657
658 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
659 {
660 }
661
662 static void svm_cache_regs(struct kvm_vcpu *vcpu)
663 {
664 struct vcpu_svm *svm = to_svm(vcpu);
665
666 vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
667 vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
668 vcpu->rip = svm->vmcb->save.rip;
669 }
670
671 static void svm_decache_regs(struct kvm_vcpu *vcpu)
672 {
673 struct vcpu_svm *svm = to_svm(vcpu);
674 svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
675 svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
676 svm->vmcb->save.rip = vcpu->rip;
677 }
678
679 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
680 {
681 return to_svm(vcpu)->vmcb->save.rflags;
682 }
683
684 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
685 {
686 to_svm(vcpu)->vmcb->save.rflags = rflags;
687 }
688
689 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
690 {
691 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
692
693 switch (seg) {
694 case VCPU_SREG_CS: return &save->cs;
695 case VCPU_SREG_DS: return &save->ds;
696 case VCPU_SREG_ES: return &save->es;
697 case VCPU_SREG_FS: return &save->fs;
698 case VCPU_SREG_GS: return &save->gs;
699 case VCPU_SREG_SS: return &save->ss;
700 case VCPU_SREG_TR: return &save->tr;
701 case VCPU_SREG_LDTR: return &save->ldtr;
702 }
703 BUG();
704 return NULL;
705 }
706
707 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
708 {
709 struct vmcb_seg *s = svm_seg(vcpu, seg);
710
711 return s->base;
712 }
713
714 static void svm_get_segment(struct kvm_vcpu *vcpu,
715 struct kvm_segment *var, int seg)
716 {
717 struct vmcb_seg *s = svm_seg(vcpu, seg);
718
719 var->base = s->base;
720 var->limit = s->limit;
721 var->selector = s->selector;
722 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
723 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
724 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
725 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
726 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
727 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
728 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
729 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
730 var->unusable = !var->present;
731 }
732
733 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
734 {
735 struct vcpu_svm *svm = to_svm(vcpu);
736
737 dt->limit = svm->vmcb->save.idtr.limit;
738 dt->base = svm->vmcb->save.idtr.base;
739 }
740
741 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
742 {
743 struct vcpu_svm *svm = to_svm(vcpu);
744
745 svm->vmcb->save.idtr.limit = dt->limit;
746 svm->vmcb->save.idtr.base = dt->base ;
747 }
748
749 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
750 {
751 struct vcpu_svm *svm = to_svm(vcpu);
752
753 dt->limit = svm->vmcb->save.gdtr.limit;
754 dt->base = svm->vmcb->save.gdtr.base;
755 }
756
757 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
758 {
759 struct vcpu_svm *svm = to_svm(vcpu);
760
761 svm->vmcb->save.gdtr.limit = dt->limit;
762 svm->vmcb->save.gdtr.base = dt->base ;
763 }
764
765 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
766 {
767 }
768
769 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
770 {
771 struct vcpu_svm *svm = to_svm(vcpu);
772
773 #ifdef CONFIG_X86_64
774 if (vcpu->shadow_efer & EFER_LME) {
775 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
776 vcpu->shadow_efer |= EFER_LMA;
777 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
778 }
779
780 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
781 vcpu->shadow_efer &= ~EFER_LMA;
782 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
783 }
784 }
785 #endif
786 if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
787 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
788 vcpu->fpu_active = 1;
789 }
790
791 vcpu->cr0 = cr0;
792 cr0 |= X86_CR0_PG | X86_CR0_WP;
793 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
794 svm->vmcb->save.cr0 = cr0;
795 }
796
797 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
798 {
799 vcpu->cr4 = cr4;
800 to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
801 }
802
803 static void svm_set_segment(struct kvm_vcpu *vcpu,
804 struct kvm_segment *var, int seg)
805 {
806 struct vcpu_svm *svm = to_svm(vcpu);
807 struct vmcb_seg *s = svm_seg(vcpu, seg);
808
809 s->base = var->base;
810 s->limit = var->limit;
811 s->selector = var->selector;
812 if (var->unusable)
813 s->attrib = 0;
814 else {
815 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
816 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
817 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
818 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
819 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
820 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
821 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
822 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
823 }
824 if (seg == VCPU_SREG_CS)
825 svm->vmcb->save.cpl
826 = (svm->vmcb->save.cs.attrib
827 >> SVM_SELECTOR_DPL_SHIFT) & 3;
828
829 }
830
831 /* FIXME:
832
833 svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
834 svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
835
836 */
837
838 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
839 {
840 return -EOPNOTSUPP;
841 }
842
843 static int svm_get_irq(struct kvm_vcpu *vcpu)
844 {
845 struct vcpu_svm *svm = to_svm(vcpu);
846 u32 exit_int_info = svm->vmcb->control.exit_int_info;
847
848 if (is_external_interrupt(exit_int_info))
849 return exit_int_info & SVM_EVTINJ_VEC_MASK;
850 return -1;
851 }
852
853 static void load_host_msrs(struct kvm_vcpu *vcpu)
854 {
855 #ifdef CONFIG_X86_64
856 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
857 #endif
858 }
859
860 static void save_host_msrs(struct kvm_vcpu *vcpu)
861 {
862 #ifdef CONFIG_X86_64
863 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
864 #endif
865 }
866
867 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
868 {
869 if (svm_data->next_asid > svm_data->max_asid) {
870 ++svm_data->asid_generation;
871 svm_data->next_asid = 1;
872 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
873 }
874
875 svm->vcpu.cpu = svm_data->cpu;
876 svm->asid_generation = svm_data->asid_generation;
877 svm->vmcb->control.asid = svm_data->next_asid++;
878 }
879
880 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
881 {
882 return to_svm(vcpu)->db_regs[dr];
883 }
884
885 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
886 int *exception)
887 {
888 struct vcpu_svm *svm = to_svm(vcpu);
889
890 *exception = 0;
891
892 if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
893 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
894 svm->vmcb->save.dr6 |= DR6_BD_MASK;
895 *exception = DB_VECTOR;
896 return;
897 }
898
899 switch (dr) {
900 case 0 ... 3:
901 svm->db_regs[dr] = value;
902 return;
903 case 4 ... 5:
904 if (vcpu->cr4 & X86_CR4_DE) {
905 *exception = UD_VECTOR;
906 return;
907 }
908 case 7: {
909 if (value & ~((1ULL << 32) - 1)) {
910 *exception = GP_VECTOR;
911 return;
912 }
913 svm->vmcb->save.dr7 = value;
914 return;
915 }
916 default:
917 printk(KERN_DEBUG "%s: unexpected dr %u\n",
918 __FUNCTION__, dr);
919 *exception = UD_VECTOR;
920 return;
921 }
922 }
923
924 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
925 {
926 u32 exit_int_info = svm->vmcb->control.exit_int_info;
927 struct kvm *kvm = svm->vcpu.kvm;
928 u64 fault_address;
929 u32 error_code;
930
931 if (!irqchip_in_kernel(kvm) &&
932 is_external_interrupt(exit_int_info))
933 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
934
935 fault_address = svm->vmcb->control.exit_info_2;
936 error_code = svm->vmcb->control.exit_info_1;
937 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
938 }
939
940 static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
941 {
942 int er;
943
944 er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0);
945 if (er != EMULATE_DONE)
946 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
947 return 1;
948 }
949
950 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
951 {
952 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
953 if (!(svm->vcpu.cr0 & X86_CR0_TS))
954 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
955 svm->vcpu.fpu_active = 1;
956
957 return 1;
958 }
959
960 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
961 {
962 /*
963 * VMCB is undefined after a SHUTDOWN intercept
964 * so reinitialize it.
965 */
966 clear_page(svm->vmcb);
967 init_vmcb(svm->vmcb);
968
969 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
970 return 0;
971 }
972
973 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
974 {
975 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
976 int size, down, in, string, rep;
977 unsigned port;
978
979 ++svm->vcpu.stat.io_exits;
980
981 svm->next_rip = svm->vmcb->control.exit_info_2;
982
983 string = (io_info & SVM_IOIO_STR_MASK) != 0;
984
985 if (string) {
986 if (emulate_instruction(&svm->vcpu,
987 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
988 return 0;
989 return 1;
990 }
991
992 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
993 port = io_info >> 16;
994 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
995 rep = (io_info & SVM_IOIO_REP_MASK) != 0;
996 down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
997
998 return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
999 }
1000
1001 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1002 {
1003 return 1;
1004 }
1005
1006 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1007 {
1008 svm->next_rip = svm->vmcb->save.rip + 1;
1009 skip_emulated_instruction(&svm->vcpu);
1010 return kvm_emulate_halt(&svm->vcpu);
1011 }
1012
1013 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1014 {
1015 svm->next_rip = svm->vmcb->save.rip + 3;
1016 skip_emulated_instruction(&svm->vcpu);
1017 kvm_emulate_hypercall(&svm->vcpu);
1018 return 1;
1019 }
1020
1021 static int invalid_op_interception(struct vcpu_svm *svm,
1022 struct kvm_run *kvm_run)
1023 {
1024 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1025 return 1;
1026 }
1027
1028 static int task_switch_interception(struct vcpu_svm *svm,
1029 struct kvm_run *kvm_run)
1030 {
1031 pr_unimpl(&svm->vcpu, "%s: task switch is unsupported\n", __FUNCTION__);
1032 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1033 return 0;
1034 }
1035
1036 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1037 {
1038 svm->next_rip = svm->vmcb->save.rip + 2;
1039 kvm_emulate_cpuid(&svm->vcpu);
1040 return 1;
1041 }
1042
1043 static int emulate_on_interception(struct vcpu_svm *svm,
1044 struct kvm_run *kvm_run)
1045 {
1046 if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
1047 pr_unimpl(&svm->vcpu, "%s: failed\n", __FUNCTION__);
1048 return 1;
1049 }
1050
1051 static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1052 {
1053 emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
1054 if (irqchip_in_kernel(svm->vcpu.kvm))
1055 return 1;
1056 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1057 return 0;
1058 }
1059
1060 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1061 {
1062 struct vcpu_svm *svm = to_svm(vcpu);
1063
1064 switch (ecx) {
1065 case MSR_IA32_TIME_STAMP_COUNTER: {
1066 u64 tsc;
1067
1068 rdtscll(tsc);
1069 *data = svm->vmcb->control.tsc_offset + tsc;
1070 break;
1071 }
1072 case MSR_K6_STAR:
1073 *data = svm->vmcb->save.star;
1074 break;
1075 #ifdef CONFIG_X86_64
1076 case MSR_LSTAR:
1077 *data = svm->vmcb->save.lstar;
1078 break;
1079 case MSR_CSTAR:
1080 *data = svm->vmcb->save.cstar;
1081 break;
1082 case MSR_KERNEL_GS_BASE:
1083 *data = svm->vmcb->save.kernel_gs_base;
1084 break;
1085 case MSR_SYSCALL_MASK:
1086 *data = svm->vmcb->save.sfmask;
1087 break;
1088 #endif
1089 case MSR_IA32_SYSENTER_CS:
1090 *data = svm->vmcb->save.sysenter_cs;
1091 break;
1092 case MSR_IA32_SYSENTER_EIP:
1093 *data = svm->vmcb->save.sysenter_eip;
1094 break;
1095 case MSR_IA32_SYSENTER_ESP:
1096 *data = svm->vmcb->save.sysenter_esp;
1097 break;
1098 default:
1099 return kvm_get_msr_common(vcpu, ecx, data);
1100 }
1101 return 0;
1102 }
1103
1104 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1105 {
1106 u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1107 u64 data;
1108
1109 if (svm_get_msr(&svm->vcpu, ecx, &data))
1110 kvm_inject_gp(&svm->vcpu, 0);
1111 else {
1112 svm->vmcb->save.rax = data & 0xffffffff;
1113 svm->vcpu.regs[VCPU_REGS_RDX] = data >> 32;
1114 svm->next_rip = svm->vmcb->save.rip + 2;
1115 skip_emulated_instruction(&svm->vcpu);
1116 }
1117 return 1;
1118 }
1119
1120 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1121 {
1122 struct vcpu_svm *svm = to_svm(vcpu);
1123
1124 switch (ecx) {
1125 case MSR_IA32_TIME_STAMP_COUNTER: {
1126 u64 tsc;
1127
1128 rdtscll(tsc);
1129 svm->vmcb->control.tsc_offset = data - tsc;
1130 break;
1131 }
1132 case MSR_K6_STAR:
1133 svm->vmcb->save.star = data;
1134 break;
1135 #ifdef CONFIG_X86_64
1136 case MSR_LSTAR:
1137 svm->vmcb->save.lstar = data;
1138 break;
1139 case MSR_CSTAR:
1140 svm->vmcb->save.cstar = data;
1141 break;
1142 case MSR_KERNEL_GS_BASE:
1143 svm->vmcb->save.kernel_gs_base = data;
1144 break;
1145 case MSR_SYSCALL_MASK:
1146 svm->vmcb->save.sfmask = data;
1147 break;
1148 #endif
1149 case MSR_IA32_SYSENTER_CS:
1150 svm->vmcb->save.sysenter_cs = data;
1151 break;
1152 case MSR_IA32_SYSENTER_EIP:
1153 svm->vmcb->save.sysenter_eip = data;
1154 break;
1155 case MSR_IA32_SYSENTER_ESP:
1156 svm->vmcb->save.sysenter_esp = data;
1157 break;
1158 case MSR_K7_EVNTSEL0:
1159 case MSR_K7_EVNTSEL1:
1160 case MSR_K7_EVNTSEL2:
1161 case MSR_K7_EVNTSEL3:
1162 /*
1163 * only support writing 0 to the performance counters for now
1164 * to make Windows happy. Should be replaced by a real
1165 * performance counter emulation later.
1166 */
1167 if (data != 0)
1168 goto unhandled;
1169 break;
1170 default:
1171 unhandled:
1172 return kvm_set_msr_common(vcpu, ecx, data);
1173 }
1174 return 0;
1175 }
1176
1177 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1178 {
1179 u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1180 u64 data = (svm->vmcb->save.rax & -1u)
1181 | ((u64)(svm->vcpu.regs[VCPU_REGS_RDX] & -1u) << 32);
1182 svm->next_rip = svm->vmcb->save.rip + 2;
1183 if (svm_set_msr(&svm->vcpu, ecx, data))
1184 kvm_inject_gp(&svm->vcpu, 0);
1185 else
1186 skip_emulated_instruction(&svm->vcpu);
1187 return 1;
1188 }
1189
1190 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1191 {
1192 if (svm->vmcb->control.exit_info_1)
1193 return wrmsr_interception(svm, kvm_run);
1194 else
1195 return rdmsr_interception(svm, kvm_run);
1196 }
1197
1198 static int interrupt_window_interception(struct vcpu_svm *svm,
1199 struct kvm_run *kvm_run)
1200 {
1201 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1202 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1203 /*
1204 * If the user space waits to inject interrupts, exit as soon as
1205 * possible
1206 */
1207 if (kvm_run->request_interrupt_window &&
1208 !svm->vcpu.irq_summary) {
1209 ++svm->vcpu.stat.irq_window_exits;
1210 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1211 return 0;
1212 }
1213
1214 return 1;
1215 }
1216
1217 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1218 struct kvm_run *kvm_run) = {
1219 [SVM_EXIT_READ_CR0] = emulate_on_interception,
1220 [SVM_EXIT_READ_CR3] = emulate_on_interception,
1221 [SVM_EXIT_READ_CR4] = emulate_on_interception,
1222 [SVM_EXIT_READ_CR8] = emulate_on_interception,
1223 /* for now: */
1224 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
1225 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
1226 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
1227 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
1228 [SVM_EXIT_READ_DR0] = emulate_on_interception,
1229 [SVM_EXIT_READ_DR1] = emulate_on_interception,
1230 [SVM_EXIT_READ_DR2] = emulate_on_interception,
1231 [SVM_EXIT_READ_DR3] = emulate_on_interception,
1232 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
1233 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
1234 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
1235 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
1236 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
1237 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
1238 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
1239 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
1240 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
1241 [SVM_EXIT_INTR] = nop_on_interception,
1242 [SVM_EXIT_NMI] = nop_on_interception,
1243 [SVM_EXIT_SMI] = nop_on_interception,
1244 [SVM_EXIT_INIT] = nop_on_interception,
1245 [SVM_EXIT_VINTR] = interrupt_window_interception,
1246 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
1247 [SVM_EXIT_CPUID] = cpuid_interception,
1248 [SVM_EXIT_INVD] = emulate_on_interception,
1249 [SVM_EXIT_HLT] = halt_interception,
1250 [SVM_EXIT_INVLPG] = emulate_on_interception,
1251 [SVM_EXIT_INVLPGA] = invalid_op_interception,
1252 [SVM_EXIT_IOIO] = io_interception,
1253 [SVM_EXIT_MSR] = msr_interception,
1254 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
1255 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
1256 [SVM_EXIT_VMRUN] = invalid_op_interception,
1257 [SVM_EXIT_VMMCALL] = vmmcall_interception,
1258 [SVM_EXIT_VMLOAD] = invalid_op_interception,
1259 [SVM_EXIT_VMSAVE] = invalid_op_interception,
1260 [SVM_EXIT_STGI] = invalid_op_interception,
1261 [SVM_EXIT_CLGI] = invalid_op_interception,
1262 [SVM_EXIT_SKINIT] = invalid_op_interception,
1263 [SVM_EXIT_WBINVD] = emulate_on_interception,
1264 [SVM_EXIT_MONITOR] = invalid_op_interception,
1265 [SVM_EXIT_MWAIT] = invalid_op_interception,
1266 };
1267
1268
1269 static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1270 {
1271 struct vcpu_svm *svm = to_svm(vcpu);
1272 u32 exit_code = svm->vmcb->control.exit_code;
1273
1274 kvm_reput_irq(svm);
1275
1276 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1277 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1278 kvm_run->fail_entry.hardware_entry_failure_reason
1279 = svm->vmcb->control.exit_code;
1280 return 0;
1281 }
1282
1283 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1284 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1285 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1286 "exit_code 0x%x\n",
1287 __FUNCTION__, svm->vmcb->control.exit_int_info,
1288 exit_code);
1289
1290 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1291 || !svm_exit_handlers[exit_code]) {
1292 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1293 kvm_run->hw.hardware_exit_reason = exit_code;
1294 return 0;
1295 }
1296
1297 return svm_exit_handlers[exit_code](svm, kvm_run);
1298 }
1299
1300 static void reload_tss(struct kvm_vcpu *vcpu)
1301 {
1302 int cpu = raw_smp_processor_id();
1303
1304 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1305 svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
1306 load_TR_desc();
1307 }
1308
1309 static void pre_svm_run(struct vcpu_svm *svm)
1310 {
1311 int cpu = raw_smp_processor_id();
1312
1313 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1314
1315 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1316 if (svm->vcpu.cpu != cpu ||
1317 svm->asid_generation != svm_data->asid_generation)
1318 new_asid(svm, svm_data);
1319 }
1320
1321
1322 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1323 {
1324 struct vmcb_control_area *control;
1325
1326 control = &svm->vmcb->control;
1327 control->int_vector = irq;
1328 control->int_ctl &= ~V_INTR_PRIO_MASK;
1329 control->int_ctl |= V_IRQ_MASK |
1330 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1331 }
1332
1333 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
1334 {
1335 struct vcpu_svm *svm = to_svm(vcpu);
1336
1337 svm_inject_irq(svm, irq);
1338 }
1339
1340 static void svm_intr_assist(struct kvm_vcpu *vcpu)
1341 {
1342 struct vcpu_svm *svm = to_svm(vcpu);
1343 struct vmcb *vmcb = svm->vmcb;
1344 int intr_vector = -1;
1345
1346 if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1347 ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1348 intr_vector = vmcb->control.exit_int_info &
1349 SVM_EVTINJ_VEC_MASK;
1350 vmcb->control.exit_int_info = 0;
1351 svm_inject_irq(svm, intr_vector);
1352 return;
1353 }
1354
1355 if (vmcb->control.int_ctl & V_IRQ_MASK)
1356 return;
1357
1358 if (!kvm_cpu_has_interrupt(vcpu))
1359 return;
1360
1361 if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1362 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1363 (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1364 /* unable to deliver irq, set pending irq */
1365 vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1366 svm_inject_irq(svm, 0x0);
1367 return;
1368 }
1369 /* Okay, we can deliver the interrupt: grab it and update PIC state. */
1370 intr_vector = kvm_cpu_get_interrupt(vcpu);
1371 svm_inject_irq(svm, intr_vector);
1372 kvm_timer_intr_post(vcpu, intr_vector);
1373 }
1374
1375 static void kvm_reput_irq(struct vcpu_svm *svm)
1376 {
1377 struct vmcb_control_area *control = &svm->vmcb->control;
1378
1379 if ((control->int_ctl & V_IRQ_MASK)
1380 && !irqchip_in_kernel(svm->vcpu.kvm)) {
1381 control->int_ctl &= ~V_IRQ_MASK;
1382 push_irq(&svm->vcpu, control->int_vector);
1383 }
1384
1385 svm->vcpu.interrupt_window_open =
1386 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1387 }
1388
1389 static void svm_do_inject_vector(struct vcpu_svm *svm)
1390 {
1391 struct kvm_vcpu *vcpu = &svm->vcpu;
1392 int word_index = __ffs(vcpu->irq_summary);
1393 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1394 int irq = word_index * BITS_PER_LONG + bit_index;
1395
1396 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1397 if (!vcpu->irq_pending[word_index])
1398 clear_bit(word_index, &vcpu->irq_summary);
1399 svm_inject_irq(svm, irq);
1400 }
1401
1402 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1403 struct kvm_run *kvm_run)
1404 {
1405 struct vcpu_svm *svm = to_svm(vcpu);
1406 struct vmcb_control_area *control = &svm->vmcb->control;
1407
1408 svm->vcpu.interrupt_window_open =
1409 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1410 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1411
1412 if (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary)
1413 /*
1414 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1415 */
1416 svm_do_inject_vector(svm);
1417
1418 /*
1419 * Interrupts blocked. Wait for unblock.
1420 */
1421 if (!svm->vcpu.interrupt_window_open &&
1422 (svm->vcpu.irq_summary || kvm_run->request_interrupt_window))
1423 control->intercept |= 1ULL << INTERCEPT_VINTR;
1424 else
1425 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1426 }
1427
1428 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
1429 {
1430 return 0;
1431 }
1432
1433 static void save_db_regs(unsigned long *db_regs)
1434 {
1435 asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1436 asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1437 asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1438 asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1439 }
1440
1441 static void load_db_regs(unsigned long *db_regs)
1442 {
1443 asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1444 asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1445 asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1446 asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1447 }
1448
1449 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1450 {
1451 force_new_asid(vcpu);
1452 }
1453
1454 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1455 {
1456 }
1457
1458 static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1459 {
1460 struct vcpu_svm *svm = to_svm(vcpu);
1461 u16 fs_selector;
1462 u16 gs_selector;
1463 u16 ldt_selector;
1464
1465 pre_svm_run(svm);
1466
1467 save_host_msrs(vcpu);
1468 fs_selector = read_fs();
1469 gs_selector = read_gs();
1470 ldt_selector = read_ldt();
1471 svm->host_cr2 = kvm_read_cr2();
1472 svm->host_dr6 = read_dr6();
1473 svm->host_dr7 = read_dr7();
1474 svm->vmcb->save.cr2 = vcpu->cr2;
1475
1476 if (svm->vmcb->save.dr7 & 0xff) {
1477 write_dr7(0);
1478 save_db_regs(svm->host_db_regs);
1479 load_db_regs(svm->db_regs);
1480 }
1481
1482 clgi();
1483
1484 local_irq_enable();
1485
1486 asm volatile (
1487 #ifdef CONFIG_X86_64
1488 "push %%rbp; \n\t"
1489 #else
1490 "push %%ebp; \n\t"
1491 #endif
1492
1493 #ifdef CONFIG_X86_64
1494 "mov %c[rbx](%[svm]), %%rbx \n\t"
1495 "mov %c[rcx](%[svm]), %%rcx \n\t"
1496 "mov %c[rdx](%[svm]), %%rdx \n\t"
1497 "mov %c[rsi](%[svm]), %%rsi \n\t"
1498 "mov %c[rdi](%[svm]), %%rdi \n\t"
1499 "mov %c[rbp](%[svm]), %%rbp \n\t"
1500 "mov %c[r8](%[svm]), %%r8 \n\t"
1501 "mov %c[r9](%[svm]), %%r9 \n\t"
1502 "mov %c[r10](%[svm]), %%r10 \n\t"
1503 "mov %c[r11](%[svm]), %%r11 \n\t"
1504 "mov %c[r12](%[svm]), %%r12 \n\t"
1505 "mov %c[r13](%[svm]), %%r13 \n\t"
1506 "mov %c[r14](%[svm]), %%r14 \n\t"
1507 "mov %c[r15](%[svm]), %%r15 \n\t"
1508 #else
1509 "mov %c[rbx](%[svm]), %%ebx \n\t"
1510 "mov %c[rcx](%[svm]), %%ecx \n\t"
1511 "mov %c[rdx](%[svm]), %%edx \n\t"
1512 "mov %c[rsi](%[svm]), %%esi \n\t"
1513 "mov %c[rdi](%[svm]), %%edi \n\t"
1514 "mov %c[rbp](%[svm]), %%ebp \n\t"
1515 #endif
1516
1517 #ifdef CONFIG_X86_64
1518 /* Enter guest mode */
1519 "push %%rax \n\t"
1520 "mov %c[vmcb](%[svm]), %%rax \n\t"
1521 SVM_VMLOAD "\n\t"
1522 SVM_VMRUN "\n\t"
1523 SVM_VMSAVE "\n\t"
1524 "pop %%rax \n\t"
1525 #else
1526 /* Enter guest mode */
1527 "push %%eax \n\t"
1528 "mov %c[vmcb](%[svm]), %%eax \n\t"
1529 SVM_VMLOAD "\n\t"
1530 SVM_VMRUN "\n\t"
1531 SVM_VMSAVE "\n\t"
1532 "pop %%eax \n\t"
1533 #endif
1534
1535 /* Save guest registers, load host registers */
1536 #ifdef CONFIG_X86_64
1537 "mov %%rbx, %c[rbx](%[svm]) \n\t"
1538 "mov %%rcx, %c[rcx](%[svm]) \n\t"
1539 "mov %%rdx, %c[rdx](%[svm]) \n\t"
1540 "mov %%rsi, %c[rsi](%[svm]) \n\t"
1541 "mov %%rdi, %c[rdi](%[svm]) \n\t"
1542 "mov %%rbp, %c[rbp](%[svm]) \n\t"
1543 "mov %%r8, %c[r8](%[svm]) \n\t"
1544 "mov %%r9, %c[r9](%[svm]) \n\t"
1545 "mov %%r10, %c[r10](%[svm]) \n\t"
1546 "mov %%r11, %c[r11](%[svm]) \n\t"
1547 "mov %%r12, %c[r12](%[svm]) \n\t"
1548 "mov %%r13, %c[r13](%[svm]) \n\t"
1549 "mov %%r14, %c[r14](%[svm]) \n\t"
1550 "mov %%r15, %c[r15](%[svm]) \n\t"
1551
1552 "pop %%rbp; \n\t"
1553 #else
1554 "mov %%ebx, %c[rbx](%[svm]) \n\t"
1555 "mov %%ecx, %c[rcx](%[svm]) \n\t"
1556 "mov %%edx, %c[rdx](%[svm]) \n\t"
1557 "mov %%esi, %c[rsi](%[svm]) \n\t"
1558 "mov %%edi, %c[rdi](%[svm]) \n\t"
1559 "mov %%ebp, %c[rbp](%[svm]) \n\t"
1560
1561 "pop %%ebp; \n\t"
1562 #endif
1563 :
1564 : [svm]"a"(svm),
1565 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1566 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RBX])),
1567 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RCX])),
1568 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RDX])),
1569 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RSI])),
1570 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RDI])),
1571 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RBP]))
1572 #ifdef CONFIG_X86_64
1573 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R8])),
1574 [r9]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R9])),
1575 [r10]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R10])),
1576 [r11]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R11])),
1577 [r12]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R12])),
1578 [r13]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R13])),
1579 [r14]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R14])),
1580 [r15]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R15]))
1581 #endif
1582 : "cc", "memory"
1583 #ifdef CONFIG_X86_64
1584 , "rbx", "rcx", "rdx", "rsi", "rdi"
1585 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
1586 #else
1587 , "ebx", "ecx", "edx" , "esi", "edi"
1588 #endif
1589 );
1590
1591 if ((svm->vmcb->save.dr7 & 0xff))
1592 load_db_regs(svm->host_db_regs);
1593
1594 vcpu->cr2 = svm->vmcb->save.cr2;
1595
1596 write_dr6(svm->host_dr6);
1597 write_dr7(svm->host_dr7);
1598 kvm_write_cr2(svm->host_cr2);
1599
1600 load_fs(fs_selector);
1601 load_gs(gs_selector);
1602 load_ldt(ldt_selector);
1603 load_host_msrs(vcpu);
1604
1605 reload_tss(vcpu);
1606
1607 local_irq_disable();
1608
1609 stgi();
1610
1611 svm->next_rip = 0;
1612 }
1613
1614 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1615 {
1616 struct vcpu_svm *svm = to_svm(vcpu);
1617
1618 svm->vmcb->save.cr3 = root;
1619 force_new_asid(vcpu);
1620
1621 if (vcpu->fpu_active) {
1622 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1623 svm->vmcb->save.cr0 |= X86_CR0_TS;
1624 vcpu->fpu_active = 0;
1625 }
1626 }
1627
1628 static int is_disabled(void)
1629 {
1630 u64 vm_cr;
1631
1632 rdmsrl(MSR_VM_CR, vm_cr);
1633 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1634 return 1;
1635
1636 return 0;
1637 }
1638
1639 static void
1640 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1641 {
1642 /*
1643 * Patch in the VMMCALL instruction:
1644 */
1645 hypercall[0] = 0x0f;
1646 hypercall[1] = 0x01;
1647 hypercall[2] = 0xd9;
1648 }
1649
1650 static void svm_check_processor_compat(void *rtn)
1651 {
1652 *(int *)rtn = 0;
1653 }
1654
1655 static struct kvm_x86_ops svm_x86_ops = {
1656 .cpu_has_kvm_support = has_svm,
1657 .disabled_by_bios = is_disabled,
1658 .hardware_setup = svm_hardware_setup,
1659 .hardware_unsetup = svm_hardware_unsetup,
1660 .check_processor_compatibility = svm_check_processor_compat,
1661 .hardware_enable = svm_hardware_enable,
1662 .hardware_disable = svm_hardware_disable,
1663
1664 .vcpu_create = svm_create_vcpu,
1665 .vcpu_free = svm_free_vcpu,
1666 .vcpu_reset = svm_vcpu_reset,
1667
1668 .prepare_guest_switch = svm_prepare_guest_switch,
1669 .vcpu_load = svm_vcpu_load,
1670 .vcpu_put = svm_vcpu_put,
1671 .vcpu_decache = svm_vcpu_decache,
1672
1673 .set_guest_debug = svm_guest_debug,
1674 .get_msr = svm_get_msr,
1675 .set_msr = svm_set_msr,
1676 .get_segment_base = svm_get_segment_base,
1677 .get_segment = svm_get_segment,
1678 .set_segment = svm_set_segment,
1679 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
1680 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1681 .set_cr0 = svm_set_cr0,
1682 .set_cr3 = svm_set_cr3,
1683 .set_cr4 = svm_set_cr4,
1684 .set_efer = svm_set_efer,
1685 .get_idt = svm_get_idt,
1686 .set_idt = svm_set_idt,
1687 .get_gdt = svm_get_gdt,
1688 .set_gdt = svm_set_gdt,
1689 .get_dr = svm_get_dr,
1690 .set_dr = svm_set_dr,
1691 .cache_regs = svm_cache_regs,
1692 .decache_regs = svm_decache_regs,
1693 .get_rflags = svm_get_rflags,
1694 .set_rflags = svm_set_rflags,
1695
1696 .tlb_flush = svm_flush_tlb,
1697
1698 .run = svm_vcpu_run,
1699 .handle_exit = handle_exit,
1700 .skip_emulated_instruction = skip_emulated_instruction,
1701 .patch_hypercall = svm_patch_hypercall,
1702 .get_irq = svm_get_irq,
1703 .set_irq = svm_set_irq,
1704 .queue_exception = svm_queue_exception,
1705 .exception_injected = svm_exception_injected,
1706 .inject_pending_irq = svm_intr_assist,
1707 .inject_pending_vectors = do_interrupt_requests,
1708
1709 .set_tss_addr = svm_set_tss_addr,
1710 };
1711
1712 static int __init svm_init(void)
1713 {
1714 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
1715 THIS_MODULE);
1716 }
1717
1718 static void __exit svm_exit(void)
1719 {
1720 kvm_exit();
1721 }
1722
1723 module_init(svm_init)
1724 module_exit(svm_exit)
This page took 0.067089 seconds and 5 git commands to generate.