KVM: Use generalized exception queue for injecting #UD
[deliverable/linux.git] / drivers / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16 #include "x86.h"
17 #include "kvm_svm.h"
18 #include "x86_emulate.h"
19 #include "irq.h"
20
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/vmalloc.h>
24 #include <linux/highmem.h>
25 #include <linux/sched.h>
26
27 #include <asm/desc.h>
28
29 MODULE_AUTHOR("Qumranet");
30 MODULE_LICENSE("GPL");
31
32 #define IOPM_ALLOC_ORDER 2
33 #define MSRPM_ALLOC_ORDER 1
34
35 #define DB_VECTOR 1
36 #define UD_VECTOR 6
37 #define GP_VECTOR 13
38
39 #define DR7_GD_MASK (1 << 13)
40 #define DR6_BD_MASK (1 << 13)
41
42 #define SEG_TYPE_LDT 2
43 #define SEG_TYPE_BUSY_TSS16 3
44
45 #define SVM_FEATURE_NPT (1 << 0)
46 #define SVM_FEATURE_LBRV (1 << 1)
47 #define SVM_DEATURE_SVML (1 << 2)
48
49 static void kvm_reput_irq(struct vcpu_svm *svm);
50
51 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
52 {
53 return container_of(vcpu, struct vcpu_svm, vcpu);
54 }
55
56 unsigned long iopm_base;
57 unsigned long msrpm_base;
58
59 struct kvm_ldttss_desc {
60 u16 limit0;
61 u16 base0;
62 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
63 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
64 u32 base3;
65 u32 zero1;
66 } __attribute__((packed));
67
68 struct svm_cpu_data {
69 int cpu;
70
71 u64 asid_generation;
72 u32 max_asid;
73 u32 next_asid;
74 struct kvm_ldttss_desc *tss_desc;
75
76 struct page *save_area;
77 };
78
79 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
80 static uint32_t svm_features;
81
82 struct svm_init_data {
83 int cpu;
84 int r;
85 };
86
87 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
88
89 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
90 #define MSRS_RANGE_SIZE 2048
91 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
92
93 #define MAX_INST_SIZE 15
94
95 static inline u32 svm_has(u32 feat)
96 {
97 return svm_features & feat;
98 }
99
100 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
101 {
102 int word_index = __ffs(vcpu->irq_summary);
103 int bit_index = __ffs(vcpu->irq_pending[word_index]);
104 int irq = word_index * BITS_PER_LONG + bit_index;
105
106 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
107 if (!vcpu->irq_pending[word_index])
108 clear_bit(word_index, &vcpu->irq_summary);
109 return irq;
110 }
111
112 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
113 {
114 set_bit(irq, vcpu->irq_pending);
115 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
116 }
117
118 static inline void clgi(void)
119 {
120 asm volatile (SVM_CLGI);
121 }
122
123 static inline void stgi(void)
124 {
125 asm volatile (SVM_STGI);
126 }
127
128 static inline void invlpga(unsigned long addr, u32 asid)
129 {
130 asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
131 }
132
133 static inline unsigned long kvm_read_cr2(void)
134 {
135 unsigned long cr2;
136
137 asm volatile ("mov %%cr2, %0" : "=r" (cr2));
138 return cr2;
139 }
140
141 static inline void kvm_write_cr2(unsigned long val)
142 {
143 asm volatile ("mov %0, %%cr2" :: "r" (val));
144 }
145
146 static inline unsigned long read_dr6(void)
147 {
148 unsigned long dr6;
149
150 asm volatile ("mov %%dr6, %0" : "=r" (dr6));
151 return dr6;
152 }
153
154 static inline void write_dr6(unsigned long val)
155 {
156 asm volatile ("mov %0, %%dr6" :: "r" (val));
157 }
158
159 static inline unsigned long read_dr7(void)
160 {
161 unsigned long dr7;
162
163 asm volatile ("mov %%dr7, %0" : "=r" (dr7));
164 return dr7;
165 }
166
167 static inline void write_dr7(unsigned long val)
168 {
169 asm volatile ("mov %0, %%dr7" :: "r" (val));
170 }
171
172 static inline void force_new_asid(struct kvm_vcpu *vcpu)
173 {
174 to_svm(vcpu)->asid_generation--;
175 }
176
177 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
178 {
179 force_new_asid(vcpu);
180 }
181
182 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
183 {
184 if (!(efer & EFER_LMA))
185 efer &= ~EFER_LME;
186
187 to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
188 vcpu->shadow_efer = efer;
189 }
190
191 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
192 bool has_error_code, u32 error_code)
193 {
194 struct vcpu_svm *svm = to_svm(vcpu);
195
196 svm->vmcb->control.event_inj = nr
197 | SVM_EVTINJ_VALID
198 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
199 | SVM_EVTINJ_TYPE_EXEPT;
200 svm->vmcb->control.event_inj_err = error_code;
201 }
202
203 static bool svm_exception_injected(struct kvm_vcpu *vcpu)
204 {
205 struct vcpu_svm *svm = to_svm(vcpu);
206
207 return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
208 }
209
210 static int is_external_interrupt(u32 info)
211 {
212 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
213 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
214 }
215
216 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
217 {
218 struct vcpu_svm *svm = to_svm(vcpu);
219
220 if (!svm->next_rip) {
221 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
222 return;
223 }
224 if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE)
225 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
226 __FUNCTION__,
227 svm->vmcb->save.rip,
228 svm->next_rip);
229
230 vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
231 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
232
233 vcpu->interrupt_window_open = 1;
234 }
235
236 static int has_svm(void)
237 {
238 uint32_t eax, ebx, ecx, edx;
239
240 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
241 printk(KERN_INFO "has_svm: not amd\n");
242 return 0;
243 }
244
245 cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
246 if (eax < SVM_CPUID_FUNC) {
247 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
248 return 0;
249 }
250
251 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
252 if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
253 printk(KERN_DEBUG "has_svm: svm not available\n");
254 return 0;
255 }
256 return 1;
257 }
258
259 static void svm_hardware_disable(void *garbage)
260 {
261 struct svm_cpu_data *svm_data
262 = per_cpu(svm_data, raw_smp_processor_id());
263
264 if (svm_data) {
265 uint64_t efer;
266
267 wrmsrl(MSR_VM_HSAVE_PA, 0);
268 rdmsrl(MSR_EFER, efer);
269 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
270 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
271 __free_page(svm_data->save_area);
272 kfree(svm_data);
273 }
274 }
275
276 static void svm_hardware_enable(void *garbage)
277 {
278
279 struct svm_cpu_data *svm_data;
280 uint64_t efer;
281 #ifdef CONFIG_X86_64
282 struct desc_ptr gdt_descr;
283 #else
284 struct desc_ptr gdt_descr;
285 #endif
286 struct desc_struct *gdt;
287 int me = raw_smp_processor_id();
288
289 if (!has_svm()) {
290 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
291 return;
292 }
293 svm_data = per_cpu(svm_data, me);
294
295 if (!svm_data) {
296 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
297 me);
298 return;
299 }
300
301 svm_data->asid_generation = 1;
302 svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
303 svm_data->next_asid = svm_data->max_asid + 1;
304 svm_features = cpuid_edx(SVM_CPUID_FUNC);
305
306 asm volatile ("sgdt %0" : "=m"(gdt_descr));
307 gdt = (struct desc_struct *)gdt_descr.address;
308 svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
309
310 rdmsrl(MSR_EFER, efer);
311 wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
312
313 wrmsrl(MSR_VM_HSAVE_PA,
314 page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
315 }
316
317 static int svm_cpu_init(int cpu)
318 {
319 struct svm_cpu_data *svm_data;
320 int r;
321
322 svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
323 if (!svm_data)
324 return -ENOMEM;
325 svm_data->cpu = cpu;
326 svm_data->save_area = alloc_page(GFP_KERNEL);
327 r = -ENOMEM;
328 if (!svm_data->save_area)
329 goto err_1;
330
331 per_cpu(svm_data, cpu) = svm_data;
332
333 return 0;
334
335 err_1:
336 kfree(svm_data);
337 return r;
338
339 }
340
341 static void set_msr_interception(u32 *msrpm, unsigned msr,
342 int read, int write)
343 {
344 int i;
345
346 for (i = 0; i < NUM_MSR_MAPS; i++) {
347 if (msr >= msrpm_ranges[i] &&
348 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
349 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
350 msrpm_ranges[i]) * 2;
351
352 u32 *base = msrpm + (msr_offset / 32);
353 u32 msr_shift = msr_offset % 32;
354 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
355 *base = (*base & ~(0x3 << msr_shift)) |
356 (mask << msr_shift);
357 return;
358 }
359 }
360 BUG();
361 }
362
363 static __init int svm_hardware_setup(void)
364 {
365 int cpu;
366 struct page *iopm_pages;
367 struct page *msrpm_pages;
368 void *iopm_va, *msrpm_va;
369 int r;
370
371 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
372
373 if (!iopm_pages)
374 return -ENOMEM;
375
376 iopm_va = page_address(iopm_pages);
377 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
378 clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
379 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
380
381
382 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
383
384 r = -ENOMEM;
385 if (!msrpm_pages)
386 goto err_1;
387
388 msrpm_va = page_address(msrpm_pages);
389 memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
390 msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
391
392 #ifdef CONFIG_X86_64
393 set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
394 set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
395 set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
396 set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
397 set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
398 set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
399 #endif
400 set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
401 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
402 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
403 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
404
405 for_each_online_cpu(cpu) {
406 r = svm_cpu_init(cpu);
407 if (r)
408 goto err_2;
409 }
410 return 0;
411
412 err_2:
413 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
414 msrpm_base = 0;
415 err_1:
416 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
417 iopm_base = 0;
418 return r;
419 }
420
421 static __exit void svm_hardware_unsetup(void)
422 {
423 __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
424 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
425 iopm_base = msrpm_base = 0;
426 }
427
428 static void init_seg(struct vmcb_seg *seg)
429 {
430 seg->selector = 0;
431 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
432 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
433 seg->limit = 0xffff;
434 seg->base = 0;
435 }
436
437 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
438 {
439 seg->selector = 0;
440 seg->attrib = SVM_SELECTOR_P_MASK | type;
441 seg->limit = 0xffff;
442 seg->base = 0;
443 }
444
445 static void init_vmcb(struct vmcb *vmcb)
446 {
447 struct vmcb_control_area *control = &vmcb->control;
448 struct vmcb_save_area *save = &vmcb->save;
449
450 control->intercept_cr_read = INTERCEPT_CR0_MASK |
451 INTERCEPT_CR3_MASK |
452 INTERCEPT_CR4_MASK;
453
454 control->intercept_cr_write = INTERCEPT_CR0_MASK |
455 INTERCEPT_CR3_MASK |
456 INTERCEPT_CR4_MASK;
457
458 control->intercept_dr_read = INTERCEPT_DR0_MASK |
459 INTERCEPT_DR1_MASK |
460 INTERCEPT_DR2_MASK |
461 INTERCEPT_DR3_MASK;
462
463 control->intercept_dr_write = INTERCEPT_DR0_MASK |
464 INTERCEPT_DR1_MASK |
465 INTERCEPT_DR2_MASK |
466 INTERCEPT_DR3_MASK |
467 INTERCEPT_DR5_MASK |
468 INTERCEPT_DR7_MASK;
469
470 control->intercept_exceptions = (1 << PF_VECTOR) |
471 (1 << UD_VECTOR);
472
473
474 control->intercept = (1ULL << INTERCEPT_INTR) |
475 (1ULL << INTERCEPT_NMI) |
476 (1ULL << INTERCEPT_SMI) |
477 /*
478 * selective cr0 intercept bug?
479 * 0: 0f 22 d8 mov %eax,%cr3
480 * 3: 0f 20 c0 mov %cr0,%eax
481 * 6: 0d 00 00 00 80 or $0x80000000,%eax
482 * b: 0f 22 c0 mov %eax,%cr0
483 * set cr3 ->interception
484 * get cr0 ->interception
485 * set cr0 -> no interception
486 */
487 /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
488 (1ULL << INTERCEPT_CPUID) |
489 (1ULL << INTERCEPT_INVD) |
490 (1ULL << INTERCEPT_HLT) |
491 (1ULL << INTERCEPT_INVLPGA) |
492 (1ULL << INTERCEPT_IOIO_PROT) |
493 (1ULL << INTERCEPT_MSR_PROT) |
494 (1ULL << INTERCEPT_TASK_SWITCH) |
495 (1ULL << INTERCEPT_SHUTDOWN) |
496 (1ULL << INTERCEPT_VMRUN) |
497 (1ULL << INTERCEPT_VMMCALL) |
498 (1ULL << INTERCEPT_VMLOAD) |
499 (1ULL << INTERCEPT_VMSAVE) |
500 (1ULL << INTERCEPT_STGI) |
501 (1ULL << INTERCEPT_CLGI) |
502 (1ULL << INTERCEPT_SKINIT) |
503 (1ULL << INTERCEPT_WBINVD) |
504 (1ULL << INTERCEPT_MONITOR) |
505 (1ULL << INTERCEPT_MWAIT);
506
507 control->iopm_base_pa = iopm_base;
508 control->msrpm_base_pa = msrpm_base;
509 control->tsc_offset = 0;
510 control->int_ctl = V_INTR_MASKING_MASK;
511
512 init_seg(&save->es);
513 init_seg(&save->ss);
514 init_seg(&save->ds);
515 init_seg(&save->fs);
516 init_seg(&save->gs);
517
518 save->cs.selector = 0xf000;
519 /* Executable/Readable Code Segment */
520 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
521 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
522 save->cs.limit = 0xffff;
523 /*
524 * cs.base should really be 0xffff0000, but vmx can't handle that, so
525 * be consistent with it.
526 *
527 * Replace when we have real mode working for vmx.
528 */
529 save->cs.base = 0xf0000;
530
531 save->gdtr.limit = 0xffff;
532 save->idtr.limit = 0xffff;
533
534 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
535 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
536
537 save->efer = MSR_EFER_SVME_MASK;
538 save->dr6 = 0xffff0ff0;
539 save->dr7 = 0x400;
540 save->rflags = 2;
541 save->rip = 0x0000fff0;
542
543 /*
544 * cr0 val on cpu init should be 0x60000010, we enable cpu
545 * cache by default. the orderly way is to enable cache in bios.
546 */
547 save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
548 save->cr4 = X86_CR4_PAE;
549 /* rdx = ?? */
550 }
551
552 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
553 {
554 struct vcpu_svm *svm = to_svm(vcpu);
555
556 init_vmcb(svm->vmcb);
557
558 if (vcpu->vcpu_id != 0) {
559 svm->vmcb->save.rip = 0;
560 svm->vmcb->save.cs.base = svm->vcpu.sipi_vector << 12;
561 svm->vmcb->save.cs.selector = svm->vcpu.sipi_vector << 8;
562 }
563
564 return 0;
565 }
566
567 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
568 {
569 struct vcpu_svm *svm;
570 struct page *page;
571 int err;
572
573 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
574 if (!svm) {
575 err = -ENOMEM;
576 goto out;
577 }
578
579 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
580 if (err)
581 goto free_svm;
582
583 page = alloc_page(GFP_KERNEL);
584 if (!page) {
585 err = -ENOMEM;
586 goto uninit;
587 }
588
589 svm->vmcb = page_address(page);
590 clear_page(svm->vmcb);
591 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
592 svm->asid_generation = 0;
593 memset(svm->db_regs, 0, sizeof(svm->db_regs));
594 init_vmcb(svm->vmcb);
595
596 fx_init(&svm->vcpu);
597 svm->vcpu.fpu_active = 1;
598 svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
599 if (svm->vcpu.vcpu_id == 0)
600 svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
601
602 return &svm->vcpu;
603
604 uninit:
605 kvm_vcpu_uninit(&svm->vcpu);
606 free_svm:
607 kmem_cache_free(kvm_vcpu_cache, svm);
608 out:
609 return ERR_PTR(err);
610 }
611
612 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
613 {
614 struct vcpu_svm *svm = to_svm(vcpu);
615
616 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
617 kvm_vcpu_uninit(vcpu);
618 kmem_cache_free(kvm_vcpu_cache, svm);
619 }
620
621 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
622 {
623 struct vcpu_svm *svm = to_svm(vcpu);
624 int i;
625
626 if (unlikely(cpu != vcpu->cpu)) {
627 u64 tsc_this, delta;
628
629 /*
630 * Make sure that the guest sees a monotonically
631 * increasing TSC.
632 */
633 rdtscll(tsc_this);
634 delta = vcpu->host_tsc - tsc_this;
635 svm->vmcb->control.tsc_offset += delta;
636 vcpu->cpu = cpu;
637 kvm_migrate_apic_timer(vcpu);
638 }
639
640 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
641 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
642 }
643
644 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
645 {
646 struct vcpu_svm *svm = to_svm(vcpu);
647 int i;
648
649 ++vcpu->stat.host_state_reload;
650 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
651 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
652
653 rdtscll(vcpu->host_tsc);
654 }
655
656 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
657 {
658 }
659
660 static void svm_cache_regs(struct kvm_vcpu *vcpu)
661 {
662 struct vcpu_svm *svm = to_svm(vcpu);
663
664 vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
665 vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
666 vcpu->rip = svm->vmcb->save.rip;
667 }
668
669 static void svm_decache_regs(struct kvm_vcpu *vcpu)
670 {
671 struct vcpu_svm *svm = to_svm(vcpu);
672 svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
673 svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
674 svm->vmcb->save.rip = vcpu->rip;
675 }
676
677 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
678 {
679 return to_svm(vcpu)->vmcb->save.rflags;
680 }
681
682 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
683 {
684 to_svm(vcpu)->vmcb->save.rflags = rflags;
685 }
686
687 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
688 {
689 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
690
691 switch (seg) {
692 case VCPU_SREG_CS: return &save->cs;
693 case VCPU_SREG_DS: return &save->ds;
694 case VCPU_SREG_ES: return &save->es;
695 case VCPU_SREG_FS: return &save->fs;
696 case VCPU_SREG_GS: return &save->gs;
697 case VCPU_SREG_SS: return &save->ss;
698 case VCPU_SREG_TR: return &save->tr;
699 case VCPU_SREG_LDTR: return &save->ldtr;
700 }
701 BUG();
702 return NULL;
703 }
704
705 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
706 {
707 struct vmcb_seg *s = svm_seg(vcpu, seg);
708
709 return s->base;
710 }
711
712 static void svm_get_segment(struct kvm_vcpu *vcpu,
713 struct kvm_segment *var, int seg)
714 {
715 struct vmcb_seg *s = svm_seg(vcpu, seg);
716
717 var->base = s->base;
718 var->limit = s->limit;
719 var->selector = s->selector;
720 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
721 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
722 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
723 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
724 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
725 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
726 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
727 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
728 var->unusable = !var->present;
729 }
730
731 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
732 {
733 struct vcpu_svm *svm = to_svm(vcpu);
734
735 dt->limit = svm->vmcb->save.idtr.limit;
736 dt->base = svm->vmcb->save.idtr.base;
737 }
738
739 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
740 {
741 struct vcpu_svm *svm = to_svm(vcpu);
742
743 svm->vmcb->save.idtr.limit = dt->limit;
744 svm->vmcb->save.idtr.base = dt->base ;
745 }
746
747 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
748 {
749 struct vcpu_svm *svm = to_svm(vcpu);
750
751 dt->limit = svm->vmcb->save.gdtr.limit;
752 dt->base = svm->vmcb->save.gdtr.base;
753 }
754
755 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
756 {
757 struct vcpu_svm *svm = to_svm(vcpu);
758
759 svm->vmcb->save.gdtr.limit = dt->limit;
760 svm->vmcb->save.gdtr.base = dt->base ;
761 }
762
763 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
764 {
765 }
766
767 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
768 {
769 struct vcpu_svm *svm = to_svm(vcpu);
770
771 #ifdef CONFIG_X86_64
772 if (vcpu->shadow_efer & EFER_LME) {
773 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
774 vcpu->shadow_efer |= EFER_LMA;
775 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
776 }
777
778 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
779 vcpu->shadow_efer &= ~EFER_LMA;
780 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
781 }
782 }
783 #endif
784 if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
785 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
786 vcpu->fpu_active = 1;
787 }
788
789 vcpu->cr0 = cr0;
790 cr0 |= X86_CR0_PG | X86_CR0_WP;
791 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
792 svm->vmcb->save.cr0 = cr0;
793 }
794
795 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
796 {
797 vcpu->cr4 = cr4;
798 to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
799 }
800
801 static void svm_set_segment(struct kvm_vcpu *vcpu,
802 struct kvm_segment *var, int seg)
803 {
804 struct vcpu_svm *svm = to_svm(vcpu);
805 struct vmcb_seg *s = svm_seg(vcpu, seg);
806
807 s->base = var->base;
808 s->limit = var->limit;
809 s->selector = var->selector;
810 if (var->unusable)
811 s->attrib = 0;
812 else {
813 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
814 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
815 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
816 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
817 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
818 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
819 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
820 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
821 }
822 if (seg == VCPU_SREG_CS)
823 svm->vmcb->save.cpl
824 = (svm->vmcb->save.cs.attrib
825 >> SVM_SELECTOR_DPL_SHIFT) & 3;
826
827 }
828
829 /* FIXME:
830
831 svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
832 svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
833
834 */
835
836 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
837 {
838 return -EOPNOTSUPP;
839 }
840
841 static int svm_get_irq(struct kvm_vcpu *vcpu)
842 {
843 struct vcpu_svm *svm = to_svm(vcpu);
844 u32 exit_int_info = svm->vmcb->control.exit_int_info;
845
846 if (is_external_interrupt(exit_int_info))
847 return exit_int_info & SVM_EVTINJ_VEC_MASK;
848 return -1;
849 }
850
851 static void load_host_msrs(struct kvm_vcpu *vcpu)
852 {
853 #ifdef CONFIG_X86_64
854 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
855 #endif
856 }
857
858 static void save_host_msrs(struct kvm_vcpu *vcpu)
859 {
860 #ifdef CONFIG_X86_64
861 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
862 #endif
863 }
864
865 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
866 {
867 if (svm_data->next_asid > svm_data->max_asid) {
868 ++svm_data->asid_generation;
869 svm_data->next_asid = 1;
870 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
871 }
872
873 svm->vcpu.cpu = svm_data->cpu;
874 svm->asid_generation = svm_data->asid_generation;
875 svm->vmcb->control.asid = svm_data->next_asid++;
876 }
877
878 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
879 {
880 return to_svm(vcpu)->db_regs[dr];
881 }
882
883 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
884 int *exception)
885 {
886 struct vcpu_svm *svm = to_svm(vcpu);
887
888 *exception = 0;
889
890 if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
891 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
892 svm->vmcb->save.dr6 |= DR6_BD_MASK;
893 *exception = DB_VECTOR;
894 return;
895 }
896
897 switch (dr) {
898 case 0 ... 3:
899 svm->db_regs[dr] = value;
900 return;
901 case 4 ... 5:
902 if (vcpu->cr4 & X86_CR4_DE) {
903 *exception = UD_VECTOR;
904 return;
905 }
906 case 7: {
907 if (value & ~((1ULL << 32) - 1)) {
908 *exception = GP_VECTOR;
909 return;
910 }
911 svm->vmcb->save.dr7 = value;
912 return;
913 }
914 default:
915 printk(KERN_DEBUG "%s: unexpected dr %u\n",
916 __FUNCTION__, dr);
917 *exception = UD_VECTOR;
918 return;
919 }
920 }
921
922 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
923 {
924 u32 exit_int_info = svm->vmcb->control.exit_int_info;
925 struct kvm *kvm = svm->vcpu.kvm;
926 u64 fault_address;
927 u32 error_code;
928
929 if (!irqchip_in_kernel(kvm) &&
930 is_external_interrupt(exit_int_info))
931 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
932
933 fault_address = svm->vmcb->control.exit_info_2;
934 error_code = svm->vmcb->control.exit_info_1;
935 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
936 }
937
938 static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
939 {
940 int er;
941
942 er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0);
943 if (er != EMULATE_DONE)
944 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
945 return 1;
946 }
947
948 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
949 {
950 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
951 if (!(svm->vcpu.cr0 & X86_CR0_TS))
952 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
953 svm->vcpu.fpu_active = 1;
954
955 return 1;
956 }
957
958 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
959 {
960 /*
961 * VMCB is undefined after a SHUTDOWN intercept
962 * so reinitialize it.
963 */
964 clear_page(svm->vmcb);
965 init_vmcb(svm->vmcb);
966
967 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
968 return 0;
969 }
970
971 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
972 {
973 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
974 int size, down, in, string, rep;
975 unsigned port;
976
977 ++svm->vcpu.stat.io_exits;
978
979 svm->next_rip = svm->vmcb->control.exit_info_2;
980
981 string = (io_info & SVM_IOIO_STR_MASK) != 0;
982
983 if (string) {
984 if (emulate_instruction(&svm->vcpu,
985 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
986 return 0;
987 return 1;
988 }
989
990 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
991 port = io_info >> 16;
992 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
993 rep = (io_info & SVM_IOIO_REP_MASK) != 0;
994 down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
995
996 return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
997 }
998
999 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1000 {
1001 return 1;
1002 }
1003
1004 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1005 {
1006 svm->next_rip = svm->vmcb->save.rip + 1;
1007 skip_emulated_instruction(&svm->vcpu);
1008 return kvm_emulate_halt(&svm->vcpu);
1009 }
1010
1011 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1012 {
1013 svm->next_rip = svm->vmcb->save.rip + 3;
1014 skip_emulated_instruction(&svm->vcpu);
1015 kvm_emulate_hypercall(&svm->vcpu);
1016 return 1;
1017 }
1018
1019 static int invalid_op_interception(struct vcpu_svm *svm,
1020 struct kvm_run *kvm_run)
1021 {
1022 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1023 return 1;
1024 }
1025
1026 static int task_switch_interception(struct vcpu_svm *svm,
1027 struct kvm_run *kvm_run)
1028 {
1029 pr_unimpl(&svm->vcpu, "%s: task switch is unsupported\n", __FUNCTION__);
1030 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1031 return 0;
1032 }
1033
1034 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1035 {
1036 svm->next_rip = svm->vmcb->save.rip + 2;
1037 kvm_emulate_cpuid(&svm->vcpu);
1038 return 1;
1039 }
1040
1041 static int emulate_on_interception(struct vcpu_svm *svm,
1042 struct kvm_run *kvm_run)
1043 {
1044 if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
1045 pr_unimpl(&svm->vcpu, "%s: failed\n", __FUNCTION__);
1046 return 1;
1047 }
1048
1049 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1050 {
1051 struct vcpu_svm *svm = to_svm(vcpu);
1052
1053 switch (ecx) {
1054 case MSR_IA32_TIME_STAMP_COUNTER: {
1055 u64 tsc;
1056
1057 rdtscll(tsc);
1058 *data = svm->vmcb->control.tsc_offset + tsc;
1059 break;
1060 }
1061 case MSR_K6_STAR:
1062 *data = svm->vmcb->save.star;
1063 break;
1064 #ifdef CONFIG_X86_64
1065 case MSR_LSTAR:
1066 *data = svm->vmcb->save.lstar;
1067 break;
1068 case MSR_CSTAR:
1069 *data = svm->vmcb->save.cstar;
1070 break;
1071 case MSR_KERNEL_GS_BASE:
1072 *data = svm->vmcb->save.kernel_gs_base;
1073 break;
1074 case MSR_SYSCALL_MASK:
1075 *data = svm->vmcb->save.sfmask;
1076 break;
1077 #endif
1078 case MSR_IA32_SYSENTER_CS:
1079 *data = svm->vmcb->save.sysenter_cs;
1080 break;
1081 case MSR_IA32_SYSENTER_EIP:
1082 *data = svm->vmcb->save.sysenter_eip;
1083 break;
1084 case MSR_IA32_SYSENTER_ESP:
1085 *data = svm->vmcb->save.sysenter_esp;
1086 break;
1087 default:
1088 return kvm_get_msr_common(vcpu, ecx, data);
1089 }
1090 return 0;
1091 }
1092
1093 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1094 {
1095 u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1096 u64 data;
1097
1098 if (svm_get_msr(&svm->vcpu, ecx, &data))
1099 kvm_inject_gp(&svm->vcpu, 0);
1100 else {
1101 svm->vmcb->save.rax = data & 0xffffffff;
1102 svm->vcpu.regs[VCPU_REGS_RDX] = data >> 32;
1103 svm->next_rip = svm->vmcb->save.rip + 2;
1104 skip_emulated_instruction(&svm->vcpu);
1105 }
1106 return 1;
1107 }
1108
1109 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1110 {
1111 struct vcpu_svm *svm = to_svm(vcpu);
1112
1113 switch (ecx) {
1114 case MSR_IA32_TIME_STAMP_COUNTER: {
1115 u64 tsc;
1116
1117 rdtscll(tsc);
1118 svm->vmcb->control.tsc_offset = data - tsc;
1119 break;
1120 }
1121 case MSR_K6_STAR:
1122 svm->vmcb->save.star = data;
1123 break;
1124 #ifdef CONFIG_X86_64
1125 case MSR_LSTAR:
1126 svm->vmcb->save.lstar = data;
1127 break;
1128 case MSR_CSTAR:
1129 svm->vmcb->save.cstar = data;
1130 break;
1131 case MSR_KERNEL_GS_BASE:
1132 svm->vmcb->save.kernel_gs_base = data;
1133 break;
1134 case MSR_SYSCALL_MASK:
1135 svm->vmcb->save.sfmask = data;
1136 break;
1137 #endif
1138 case MSR_IA32_SYSENTER_CS:
1139 svm->vmcb->save.sysenter_cs = data;
1140 break;
1141 case MSR_IA32_SYSENTER_EIP:
1142 svm->vmcb->save.sysenter_eip = data;
1143 break;
1144 case MSR_IA32_SYSENTER_ESP:
1145 svm->vmcb->save.sysenter_esp = data;
1146 break;
1147 default:
1148 return kvm_set_msr_common(vcpu, ecx, data);
1149 }
1150 return 0;
1151 }
1152
1153 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1154 {
1155 u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1156 u64 data = (svm->vmcb->save.rax & -1u)
1157 | ((u64)(svm->vcpu.regs[VCPU_REGS_RDX] & -1u) << 32);
1158 svm->next_rip = svm->vmcb->save.rip + 2;
1159 if (svm_set_msr(&svm->vcpu, ecx, data))
1160 kvm_inject_gp(&svm->vcpu, 0);
1161 else
1162 skip_emulated_instruction(&svm->vcpu);
1163 return 1;
1164 }
1165
1166 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1167 {
1168 if (svm->vmcb->control.exit_info_1)
1169 return wrmsr_interception(svm, kvm_run);
1170 else
1171 return rdmsr_interception(svm, kvm_run);
1172 }
1173
1174 static int interrupt_window_interception(struct vcpu_svm *svm,
1175 struct kvm_run *kvm_run)
1176 {
1177 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1178 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1179 /*
1180 * If the user space waits to inject interrupts, exit as soon as
1181 * possible
1182 */
1183 if (kvm_run->request_interrupt_window &&
1184 !svm->vcpu.irq_summary) {
1185 ++svm->vcpu.stat.irq_window_exits;
1186 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1187 return 0;
1188 }
1189
1190 return 1;
1191 }
1192
1193 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1194 struct kvm_run *kvm_run) = {
1195 [SVM_EXIT_READ_CR0] = emulate_on_interception,
1196 [SVM_EXIT_READ_CR3] = emulate_on_interception,
1197 [SVM_EXIT_READ_CR4] = emulate_on_interception,
1198 /* for now: */
1199 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
1200 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
1201 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
1202 [SVM_EXIT_READ_DR0] = emulate_on_interception,
1203 [SVM_EXIT_READ_DR1] = emulate_on_interception,
1204 [SVM_EXIT_READ_DR2] = emulate_on_interception,
1205 [SVM_EXIT_READ_DR3] = emulate_on_interception,
1206 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
1207 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
1208 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
1209 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
1210 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
1211 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
1212 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
1213 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
1214 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
1215 [SVM_EXIT_INTR] = nop_on_interception,
1216 [SVM_EXIT_NMI] = nop_on_interception,
1217 [SVM_EXIT_SMI] = nop_on_interception,
1218 [SVM_EXIT_INIT] = nop_on_interception,
1219 [SVM_EXIT_VINTR] = interrupt_window_interception,
1220 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
1221 [SVM_EXIT_CPUID] = cpuid_interception,
1222 [SVM_EXIT_INVD] = emulate_on_interception,
1223 [SVM_EXIT_HLT] = halt_interception,
1224 [SVM_EXIT_INVLPG] = emulate_on_interception,
1225 [SVM_EXIT_INVLPGA] = invalid_op_interception,
1226 [SVM_EXIT_IOIO] = io_interception,
1227 [SVM_EXIT_MSR] = msr_interception,
1228 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
1229 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
1230 [SVM_EXIT_VMRUN] = invalid_op_interception,
1231 [SVM_EXIT_VMMCALL] = vmmcall_interception,
1232 [SVM_EXIT_VMLOAD] = invalid_op_interception,
1233 [SVM_EXIT_VMSAVE] = invalid_op_interception,
1234 [SVM_EXIT_STGI] = invalid_op_interception,
1235 [SVM_EXIT_CLGI] = invalid_op_interception,
1236 [SVM_EXIT_SKINIT] = invalid_op_interception,
1237 [SVM_EXIT_WBINVD] = emulate_on_interception,
1238 [SVM_EXIT_MONITOR] = invalid_op_interception,
1239 [SVM_EXIT_MWAIT] = invalid_op_interception,
1240 };
1241
1242
1243 static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1244 {
1245 struct vcpu_svm *svm = to_svm(vcpu);
1246 u32 exit_code = svm->vmcb->control.exit_code;
1247
1248 kvm_reput_irq(svm);
1249
1250 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1251 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1252 kvm_run->fail_entry.hardware_entry_failure_reason
1253 = svm->vmcb->control.exit_code;
1254 return 0;
1255 }
1256
1257 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1258 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1259 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1260 "exit_code 0x%x\n",
1261 __FUNCTION__, svm->vmcb->control.exit_int_info,
1262 exit_code);
1263
1264 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1265 || !svm_exit_handlers[exit_code]) {
1266 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1267 kvm_run->hw.hardware_exit_reason = exit_code;
1268 return 0;
1269 }
1270
1271 return svm_exit_handlers[exit_code](svm, kvm_run);
1272 }
1273
1274 static void reload_tss(struct kvm_vcpu *vcpu)
1275 {
1276 int cpu = raw_smp_processor_id();
1277
1278 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1279 svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
1280 load_TR_desc();
1281 }
1282
1283 static void pre_svm_run(struct vcpu_svm *svm)
1284 {
1285 int cpu = raw_smp_processor_id();
1286
1287 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1288
1289 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1290 if (svm->vcpu.cpu != cpu ||
1291 svm->asid_generation != svm_data->asid_generation)
1292 new_asid(svm, svm_data);
1293 }
1294
1295
1296 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1297 {
1298 struct vmcb_control_area *control;
1299
1300 control = &svm->vmcb->control;
1301 control->int_vector = irq;
1302 control->int_ctl &= ~V_INTR_PRIO_MASK;
1303 control->int_ctl |= V_IRQ_MASK |
1304 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1305 }
1306
1307 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
1308 {
1309 struct vcpu_svm *svm = to_svm(vcpu);
1310
1311 svm_inject_irq(svm, irq);
1312 }
1313
1314 static void svm_intr_assist(struct kvm_vcpu *vcpu)
1315 {
1316 struct vcpu_svm *svm = to_svm(vcpu);
1317 struct vmcb *vmcb = svm->vmcb;
1318 int intr_vector = -1;
1319
1320 if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1321 ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1322 intr_vector = vmcb->control.exit_int_info &
1323 SVM_EVTINJ_VEC_MASK;
1324 vmcb->control.exit_int_info = 0;
1325 svm_inject_irq(svm, intr_vector);
1326 return;
1327 }
1328
1329 if (vmcb->control.int_ctl & V_IRQ_MASK)
1330 return;
1331
1332 if (!kvm_cpu_has_interrupt(vcpu))
1333 return;
1334
1335 if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1336 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1337 (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1338 /* unable to deliver irq, set pending irq */
1339 vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1340 svm_inject_irq(svm, 0x0);
1341 return;
1342 }
1343 /* Okay, we can deliver the interrupt: grab it and update PIC state. */
1344 intr_vector = kvm_cpu_get_interrupt(vcpu);
1345 svm_inject_irq(svm, intr_vector);
1346 kvm_timer_intr_post(vcpu, intr_vector);
1347 }
1348
1349 static void kvm_reput_irq(struct vcpu_svm *svm)
1350 {
1351 struct vmcb_control_area *control = &svm->vmcb->control;
1352
1353 if ((control->int_ctl & V_IRQ_MASK)
1354 && !irqchip_in_kernel(svm->vcpu.kvm)) {
1355 control->int_ctl &= ~V_IRQ_MASK;
1356 push_irq(&svm->vcpu, control->int_vector);
1357 }
1358
1359 svm->vcpu.interrupt_window_open =
1360 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1361 }
1362
1363 static void svm_do_inject_vector(struct vcpu_svm *svm)
1364 {
1365 struct kvm_vcpu *vcpu = &svm->vcpu;
1366 int word_index = __ffs(vcpu->irq_summary);
1367 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1368 int irq = word_index * BITS_PER_LONG + bit_index;
1369
1370 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1371 if (!vcpu->irq_pending[word_index])
1372 clear_bit(word_index, &vcpu->irq_summary);
1373 svm_inject_irq(svm, irq);
1374 }
1375
1376 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1377 struct kvm_run *kvm_run)
1378 {
1379 struct vcpu_svm *svm = to_svm(vcpu);
1380 struct vmcb_control_area *control = &svm->vmcb->control;
1381
1382 svm->vcpu.interrupt_window_open =
1383 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1384 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1385
1386 if (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary)
1387 /*
1388 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1389 */
1390 svm_do_inject_vector(svm);
1391
1392 /*
1393 * Interrupts blocked. Wait for unblock.
1394 */
1395 if (!svm->vcpu.interrupt_window_open &&
1396 (svm->vcpu.irq_summary || kvm_run->request_interrupt_window))
1397 control->intercept |= 1ULL << INTERCEPT_VINTR;
1398 else
1399 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1400 }
1401
1402 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
1403 {
1404 return 0;
1405 }
1406
1407 static void save_db_regs(unsigned long *db_regs)
1408 {
1409 asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1410 asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1411 asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1412 asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1413 }
1414
1415 static void load_db_regs(unsigned long *db_regs)
1416 {
1417 asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1418 asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1419 asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1420 asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1421 }
1422
1423 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1424 {
1425 force_new_asid(vcpu);
1426 }
1427
1428 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1429 {
1430 }
1431
1432 static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1433 {
1434 struct vcpu_svm *svm = to_svm(vcpu);
1435 u16 fs_selector;
1436 u16 gs_selector;
1437 u16 ldt_selector;
1438
1439 pre_svm_run(svm);
1440
1441 save_host_msrs(vcpu);
1442 fs_selector = read_fs();
1443 gs_selector = read_gs();
1444 ldt_selector = read_ldt();
1445 svm->host_cr2 = kvm_read_cr2();
1446 svm->host_dr6 = read_dr6();
1447 svm->host_dr7 = read_dr7();
1448 svm->vmcb->save.cr2 = vcpu->cr2;
1449
1450 if (svm->vmcb->save.dr7 & 0xff) {
1451 write_dr7(0);
1452 save_db_regs(svm->host_db_regs);
1453 load_db_regs(svm->db_regs);
1454 }
1455
1456 clgi();
1457
1458 local_irq_enable();
1459
1460 asm volatile (
1461 #ifdef CONFIG_X86_64
1462 "push %%rbp; \n\t"
1463 #else
1464 "push %%ebp; \n\t"
1465 #endif
1466
1467 #ifdef CONFIG_X86_64
1468 "mov %c[rbx](%[svm]), %%rbx \n\t"
1469 "mov %c[rcx](%[svm]), %%rcx \n\t"
1470 "mov %c[rdx](%[svm]), %%rdx \n\t"
1471 "mov %c[rsi](%[svm]), %%rsi \n\t"
1472 "mov %c[rdi](%[svm]), %%rdi \n\t"
1473 "mov %c[rbp](%[svm]), %%rbp \n\t"
1474 "mov %c[r8](%[svm]), %%r8 \n\t"
1475 "mov %c[r9](%[svm]), %%r9 \n\t"
1476 "mov %c[r10](%[svm]), %%r10 \n\t"
1477 "mov %c[r11](%[svm]), %%r11 \n\t"
1478 "mov %c[r12](%[svm]), %%r12 \n\t"
1479 "mov %c[r13](%[svm]), %%r13 \n\t"
1480 "mov %c[r14](%[svm]), %%r14 \n\t"
1481 "mov %c[r15](%[svm]), %%r15 \n\t"
1482 #else
1483 "mov %c[rbx](%[svm]), %%ebx \n\t"
1484 "mov %c[rcx](%[svm]), %%ecx \n\t"
1485 "mov %c[rdx](%[svm]), %%edx \n\t"
1486 "mov %c[rsi](%[svm]), %%esi \n\t"
1487 "mov %c[rdi](%[svm]), %%edi \n\t"
1488 "mov %c[rbp](%[svm]), %%ebp \n\t"
1489 #endif
1490
1491 #ifdef CONFIG_X86_64
1492 /* Enter guest mode */
1493 "push %%rax \n\t"
1494 "mov %c[vmcb](%[svm]), %%rax \n\t"
1495 SVM_VMLOAD "\n\t"
1496 SVM_VMRUN "\n\t"
1497 SVM_VMSAVE "\n\t"
1498 "pop %%rax \n\t"
1499 #else
1500 /* Enter guest mode */
1501 "push %%eax \n\t"
1502 "mov %c[vmcb](%[svm]), %%eax \n\t"
1503 SVM_VMLOAD "\n\t"
1504 SVM_VMRUN "\n\t"
1505 SVM_VMSAVE "\n\t"
1506 "pop %%eax \n\t"
1507 #endif
1508
1509 /* Save guest registers, load host registers */
1510 #ifdef CONFIG_X86_64
1511 "mov %%rbx, %c[rbx](%[svm]) \n\t"
1512 "mov %%rcx, %c[rcx](%[svm]) \n\t"
1513 "mov %%rdx, %c[rdx](%[svm]) \n\t"
1514 "mov %%rsi, %c[rsi](%[svm]) \n\t"
1515 "mov %%rdi, %c[rdi](%[svm]) \n\t"
1516 "mov %%rbp, %c[rbp](%[svm]) \n\t"
1517 "mov %%r8, %c[r8](%[svm]) \n\t"
1518 "mov %%r9, %c[r9](%[svm]) \n\t"
1519 "mov %%r10, %c[r10](%[svm]) \n\t"
1520 "mov %%r11, %c[r11](%[svm]) \n\t"
1521 "mov %%r12, %c[r12](%[svm]) \n\t"
1522 "mov %%r13, %c[r13](%[svm]) \n\t"
1523 "mov %%r14, %c[r14](%[svm]) \n\t"
1524 "mov %%r15, %c[r15](%[svm]) \n\t"
1525
1526 "pop %%rbp; \n\t"
1527 #else
1528 "mov %%ebx, %c[rbx](%[svm]) \n\t"
1529 "mov %%ecx, %c[rcx](%[svm]) \n\t"
1530 "mov %%edx, %c[rdx](%[svm]) \n\t"
1531 "mov %%esi, %c[rsi](%[svm]) \n\t"
1532 "mov %%edi, %c[rdi](%[svm]) \n\t"
1533 "mov %%ebp, %c[rbp](%[svm]) \n\t"
1534
1535 "pop %%ebp; \n\t"
1536 #endif
1537 :
1538 : [svm]"a"(svm),
1539 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1540 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RBX])),
1541 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RCX])),
1542 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RDX])),
1543 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RSI])),
1544 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RDI])),
1545 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RBP]))
1546 #ifdef CONFIG_X86_64
1547 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R8])),
1548 [r9]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R9])),
1549 [r10]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R10])),
1550 [r11]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R11])),
1551 [r12]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R12])),
1552 [r13]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R13])),
1553 [r14]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R14])),
1554 [r15]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R15]))
1555 #endif
1556 : "cc", "memory"
1557 #ifdef CONFIG_X86_64
1558 , "rbx", "rcx", "rdx", "rsi", "rdi"
1559 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
1560 #else
1561 , "ebx", "ecx", "edx" , "esi", "edi"
1562 #endif
1563 );
1564
1565 if ((svm->vmcb->save.dr7 & 0xff))
1566 load_db_regs(svm->host_db_regs);
1567
1568 vcpu->cr2 = svm->vmcb->save.cr2;
1569
1570 write_dr6(svm->host_dr6);
1571 write_dr7(svm->host_dr7);
1572 kvm_write_cr2(svm->host_cr2);
1573
1574 load_fs(fs_selector);
1575 load_gs(gs_selector);
1576 load_ldt(ldt_selector);
1577 load_host_msrs(vcpu);
1578
1579 reload_tss(vcpu);
1580
1581 local_irq_disable();
1582
1583 stgi();
1584
1585 svm->next_rip = 0;
1586 }
1587
1588 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1589 {
1590 struct vcpu_svm *svm = to_svm(vcpu);
1591
1592 svm->vmcb->save.cr3 = root;
1593 force_new_asid(vcpu);
1594
1595 if (vcpu->fpu_active) {
1596 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1597 svm->vmcb->save.cr0 |= X86_CR0_TS;
1598 vcpu->fpu_active = 0;
1599 }
1600 }
1601
1602 static int is_disabled(void)
1603 {
1604 u64 vm_cr;
1605
1606 rdmsrl(MSR_VM_CR, vm_cr);
1607 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1608 return 1;
1609
1610 return 0;
1611 }
1612
1613 static void
1614 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1615 {
1616 /*
1617 * Patch in the VMMCALL instruction:
1618 */
1619 hypercall[0] = 0x0f;
1620 hypercall[1] = 0x01;
1621 hypercall[2] = 0xd9;
1622 }
1623
1624 static void svm_check_processor_compat(void *rtn)
1625 {
1626 *(int *)rtn = 0;
1627 }
1628
1629 static struct kvm_x86_ops svm_x86_ops = {
1630 .cpu_has_kvm_support = has_svm,
1631 .disabled_by_bios = is_disabled,
1632 .hardware_setup = svm_hardware_setup,
1633 .hardware_unsetup = svm_hardware_unsetup,
1634 .check_processor_compatibility = svm_check_processor_compat,
1635 .hardware_enable = svm_hardware_enable,
1636 .hardware_disable = svm_hardware_disable,
1637
1638 .vcpu_create = svm_create_vcpu,
1639 .vcpu_free = svm_free_vcpu,
1640 .vcpu_reset = svm_vcpu_reset,
1641
1642 .prepare_guest_switch = svm_prepare_guest_switch,
1643 .vcpu_load = svm_vcpu_load,
1644 .vcpu_put = svm_vcpu_put,
1645 .vcpu_decache = svm_vcpu_decache,
1646
1647 .set_guest_debug = svm_guest_debug,
1648 .get_msr = svm_get_msr,
1649 .set_msr = svm_set_msr,
1650 .get_segment_base = svm_get_segment_base,
1651 .get_segment = svm_get_segment,
1652 .set_segment = svm_set_segment,
1653 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
1654 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1655 .set_cr0 = svm_set_cr0,
1656 .set_cr3 = svm_set_cr3,
1657 .set_cr4 = svm_set_cr4,
1658 .set_efer = svm_set_efer,
1659 .get_idt = svm_get_idt,
1660 .set_idt = svm_set_idt,
1661 .get_gdt = svm_get_gdt,
1662 .set_gdt = svm_set_gdt,
1663 .get_dr = svm_get_dr,
1664 .set_dr = svm_set_dr,
1665 .cache_regs = svm_cache_regs,
1666 .decache_regs = svm_decache_regs,
1667 .get_rflags = svm_get_rflags,
1668 .set_rflags = svm_set_rflags,
1669
1670 .tlb_flush = svm_flush_tlb,
1671
1672 .run = svm_vcpu_run,
1673 .handle_exit = handle_exit,
1674 .skip_emulated_instruction = skip_emulated_instruction,
1675 .patch_hypercall = svm_patch_hypercall,
1676 .get_irq = svm_get_irq,
1677 .set_irq = svm_set_irq,
1678 .queue_exception = svm_queue_exception,
1679 .exception_injected = svm_exception_injected,
1680 .inject_pending_irq = svm_intr_assist,
1681 .inject_pending_vectors = do_interrupt_requests,
1682
1683 .set_tss_addr = svm_set_tss_addr,
1684 };
1685
1686 static int __init svm_init(void)
1687 {
1688 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
1689 THIS_MODULE);
1690 }
1691
1692 static void __exit svm_exit(void)
1693 {
1694 kvm_exit();
1695 }
1696
1697 module_init(svm_init)
1698 module_exit(svm_exit)
This page took 0.064274 seconds and 6 git commands to generate.