KVM: Migrate lapic hrtimer when vcpu moves to another cpu
[deliverable/linux.git] / drivers / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16
17 #include "kvm_svm.h"
18 #include "x86_emulate.h"
19 #include "irq.h"
20
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/vmalloc.h>
24 #include <linux/highmem.h>
25 #include <linux/profile.h>
26 #include <linux/sched.h>
27
28 #include <asm/desc.h>
29
30 MODULE_AUTHOR("Qumranet");
31 MODULE_LICENSE("GPL");
32
33 #define IOPM_ALLOC_ORDER 2
34 #define MSRPM_ALLOC_ORDER 1
35
36 #define DB_VECTOR 1
37 #define UD_VECTOR 6
38 #define GP_VECTOR 13
39
40 #define DR7_GD_MASK (1 << 13)
41 #define DR6_BD_MASK (1 << 13)
42
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
45
46 #define KVM_EFER_LMA (1 << 10)
47 #define KVM_EFER_LME (1 << 8)
48
49 #define SVM_FEATURE_NPT (1 << 0)
50 #define SVM_FEATURE_LBRV (1 << 1)
51 #define SVM_DEATURE_SVML (1 << 2)
52
53 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
54 {
55 return container_of(vcpu, struct vcpu_svm, vcpu);
56 }
57
58 unsigned long iopm_base;
59 unsigned long msrpm_base;
60
61 struct kvm_ldttss_desc {
62 u16 limit0;
63 u16 base0;
64 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
65 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
66 u32 base3;
67 u32 zero1;
68 } __attribute__((packed));
69
70 struct svm_cpu_data {
71 int cpu;
72
73 u64 asid_generation;
74 u32 max_asid;
75 u32 next_asid;
76 struct kvm_ldttss_desc *tss_desc;
77
78 struct page *save_area;
79 };
80
81 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
82 static uint32_t svm_features;
83
84 struct svm_init_data {
85 int cpu;
86 int r;
87 };
88
89 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
90
91 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
92 #define MSRS_RANGE_SIZE 2048
93 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
94
95 #define MAX_INST_SIZE 15
96
97 static inline u32 svm_has(u32 feat)
98 {
99 return svm_features & feat;
100 }
101
102 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
103 {
104 int word_index = __ffs(vcpu->irq_summary);
105 int bit_index = __ffs(vcpu->irq_pending[word_index]);
106 int irq = word_index * BITS_PER_LONG + bit_index;
107
108 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
109 if (!vcpu->irq_pending[word_index])
110 clear_bit(word_index, &vcpu->irq_summary);
111 return irq;
112 }
113
114 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
115 {
116 set_bit(irq, vcpu->irq_pending);
117 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
118 }
119
120 static inline void clgi(void)
121 {
122 asm volatile (SVM_CLGI);
123 }
124
125 static inline void stgi(void)
126 {
127 asm volatile (SVM_STGI);
128 }
129
130 static inline void invlpga(unsigned long addr, u32 asid)
131 {
132 asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
133 }
134
135 static inline unsigned long kvm_read_cr2(void)
136 {
137 unsigned long cr2;
138
139 asm volatile ("mov %%cr2, %0" : "=r" (cr2));
140 return cr2;
141 }
142
143 static inline void kvm_write_cr2(unsigned long val)
144 {
145 asm volatile ("mov %0, %%cr2" :: "r" (val));
146 }
147
148 static inline unsigned long read_dr6(void)
149 {
150 unsigned long dr6;
151
152 asm volatile ("mov %%dr6, %0" : "=r" (dr6));
153 return dr6;
154 }
155
156 static inline void write_dr6(unsigned long val)
157 {
158 asm volatile ("mov %0, %%dr6" :: "r" (val));
159 }
160
161 static inline unsigned long read_dr7(void)
162 {
163 unsigned long dr7;
164
165 asm volatile ("mov %%dr7, %0" : "=r" (dr7));
166 return dr7;
167 }
168
169 static inline void write_dr7(unsigned long val)
170 {
171 asm volatile ("mov %0, %%dr7" :: "r" (val));
172 }
173
174 static inline void force_new_asid(struct kvm_vcpu *vcpu)
175 {
176 to_svm(vcpu)->asid_generation--;
177 }
178
179 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
180 {
181 force_new_asid(vcpu);
182 }
183
184 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
185 {
186 if (!(efer & KVM_EFER_LMA))
187 efer &= ~KVM_EFER_LME;
188
189 to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
190 vcpu->shadow_efer = efer;
191 }
192
193 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
194 {
195 struct vcpu_svm *svm = to_svm(vcpu);
196
197 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
198 SVM_EVTINJ_VALID_ERR |
199 SVM_EVTINJ_TYPE_EXEPT |
200 GP_VECTOR;
201 svm->vmcb->control.event_inj_err = error_code;
202 }
203
204 static void inject_ud(struct kvm_vcpu *vcpu)
205 {
206 to_svm(vcpu)->vmcb->control.event_inj = SVM_EVTINJ_VALID |
207 SVM_EVTINJ_TYPE_EXEPT |
208 UD_VECTOR;
209 }
210
211 static int is_page_fault(uint32_t info)
212 {
213 info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
214 return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
215 }
216
217 static int is_external_interrupt(u32 info)
218 {
219 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
220 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
221 }
222
223 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
224 {
225 struct vcpu_svm *svm = to_svm(vcpu);
226
227 if (!svm->next_rip) {
228 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
229 return;
230 }
231 if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE) {
232 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
233 __FUNCTION__,
234 svm->vmcb->save.rip,
235 svm->next_rip);
236 }
237
238 vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
239 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
240
241 vcpu->interrupt_window_open = 1;
242 }
243
244 static int has_svm(void)
245 {
246 uint32_t eax, ebx, ecx, edx;
247
248 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
249 printk(KERN_INFO "has_svm: not amd\n");
250 return 0;
251 }
252
253 cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
254 if (eax < SVM_CPUID_FUNC) {
255 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
256 return 0;
257 }
258
259 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
260 if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
261 printk(KERN_DEBUG "has_svm: svm not available\n");
262 return 0;
263 }
264 return 1;
265 }
266
267 static void svm_hardware_disable(void *garbage)
268 {
269 struct svm_cpu_data *svm_data
270 = per_cpu(svm_data, raw_smp_processor_id());
271
272 if (svm_data) {
273 uint64_t efer;
274
275 wrmsrl(MSR_VM_HSAVE_PA, 0);
276 rdmsrl(MSR_EFER, efer);
277 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
278 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
279 __free_page(svm_data->save_area);
280 kfree(svm_data);
281 }
282 }
283
284 static void svm_hardware_enable(void *garbage)
285 {
286
287 struct svm_cpu_data *svm_data;
288 uint64_t efer;
289 #ifdef CONFIG_X86_64
290 struct desc_ptr gdt_descr;
291 #else
292 struct Xgt_desc_struct gdt_descr;
293 #endif
294 struct desc_struct *gdt;
295 int me = raw_smp_processor_id();
296
297 if (!has_svm()) {
298 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
299 return;
300 }
301 svm_data = per_cpu(svm_data, me);
302
303 if (!svm_data) {
304 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
305 me);
306 return;
307 }
308
309 svm_data->asid_generation = 1;
310 svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
311 svm_data->next_asid = svm_data->max_asid + 1;
312 svm_features = cpuid_edx(SVM_CPUID_FUNC);
313
314 asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
315 gdt = (struct desc_struct *)gdt_descr.address;
316 svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
317
318 rdmsrl(MSR_EFER, efer);
319 wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
320
321 wrmsrl(MSR_VM_HSAVE_PA,
322 page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
323 }
324
325 static int svm_cpu_init(int cpu)
326 {
327 struct svm_cpu_data *svm_data;
328 int r;
329
330 svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
331 if (!svm_data)
332 return -ENOMEM;
333 svm_data->cpu = cpu;
334 svm_data->save_area = alloc_page(GFP_KERNEL);
335 r = -ENOMEM;
336 if (!svm_data->save_area)
337 goto err_1;
338
339 per_cpu(svm_data, cpu) = svm_data;
340
341 return 0;
342
343 err_1:
344 kfree(svm_data);
345 return r;
346
347 }
348
349 static void set_msr_interception(u32 *msrpm, unsigned msr,
350 int read, int write)
351 {
352 int i;
353
354 for (i = 0; i < NUM_MSR_MAPS; i++) {
355 if (msr >= msrpm_ranges[i] &&
356 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
357 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
358 msrpm_ranges[i]) * 2;
359
360 u32 *base = msrpm + (msr_offset / 32);
361 u32 msr_shift = msr_offset % 32;
362 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
363 *base = (*base & ~(0x3 << msr_shift)) |
364 (mask << msr_shift);
365 return;
366 }
367 }
368 BUG();
369 }
370
371 static __init int svm_hardware_setup(void)
372 {
373 int cpu;
374 struct page *iopm_pages;
375 struct page *msrpm_pages;
376 void *iopm_va, *msrpm_va;
377 int r;
378
379 kvm_emulator_want_group7_invlpg();
380
381 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
382
383 if (!iopm_pages)
384 return -ENOMEM;
385
386 iopm_va = page_address(iopm_pages);
387 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
388 clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
389 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
390
391
392 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
393
394 r = -ENOMEM;
395 if (!msrpm_pages)
396 goto err_1;
397
398 msrpm_va = page_address(msrpm_pages);
399 memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
400 msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
401
402 #ifdef CONFIG_X86_64
403 set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
404 set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
405 set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
406 set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
407 set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
408 set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
409 #endif
410 set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
411 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
412 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
413 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
414
415 for_each_online_cpu(cpu) {
416 r = svm_cpu_init(cpu);
417 if (r)
418 goto err_2;
419 }
420 return 0;
421
422 err_2:
423 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
424 msrpm_base = 0;
425 err_1:
426 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
427 iopm_base = 0;
428 return r;
429 }
430
431 static __exit void svm_hardware_unsetup(void)
432 {
433 __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
434 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
435 iopm_base = msrpm_base = 0;
436 }
437
438 static void init_seg(struct vmcb_seg *seg)
439 {
440 seg->selector = 0;
441 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
442 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
443 seg->limit = 0xffff;
444 seg->base = 0;
445 }
446
447 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
448 {
449 seg->selector = 0;
450 seg->attrib = SVM_SELECTOR_P_MASK | type;
451 seg->limit = 0xffff;
452 seg->base = 0;
453 }
454
455 static void init_vmcb(struct vmcb *vmcb)
456 {
457 struct vmcb_control_area *control = &vmcb->control;
458 struct vmcb_save_area *save = &vmcb->save;
459
460 control->intercept_cr_read = INTERCEPT_CR0_MASK |
461 INTERCEPT_CR3_MASK |
462 INTERCEPT_CR4_MASK;
463
464 control->intercept_cr_write = INTERCEPT_CR0_MASK |
465 INTERCEPT_CR3_MASK |
466 INTERCEPT_CR4_MASK;
467
468 control->intercept_dr_read = INTERCEPT_DR0_MASK |
469 INTERCEPT_DR1_MASK |
470 INTERCEPT_DR2_MASK |
471 INTERCEPT_DR3_MASK;
472
473 control->intercept_dr_write = INTERCEPT_DR0_MASK |
474 INTERCEPT_DR1_MASK |
475 INTERCEPT_DR2_MASK |
476 INTERCEPT_DR3_MASK |
477 INTERCEPT_DR5_MASK |
478 INTERCEPT_DR7_MASK;
479
480 control->intercept_exceptions = 1 << PF_VECTOR;
481
482
483 control->intercept = (1ULL << INTERCEPT_INTR) |
484 (1ULL << INTERCEPT_NMI) |
485 (1ULL << INTERCEPT_SMI) |
486 /*
487 * selective cr0 intercept bug?
488 * 0: 0f 22 d8 mov %eax,%cr3
489 * 3: 0f 20 c0 mov %cr0,%eax
490 * 6: 0d 00 00 00 80 or $0x80000000,%eax
491 * b: 0f 22 c0 mov %eax,%cr0
492 * set cr3 ->interception
493 * get cr0 ->interception
494 * set cr0 -> no interception
495 */
496 /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
497 (1ULL << INTERCEPT_CPUID) |
498 (1ULL << INTERCEPT_HLT) |
499 (1ULL << INTERCEPT_INVLPGA) |
500 (1ULL << INTERCEPT_IOIO_PROT) |
501 (1ULL << INTERCEPT_MSR_PROT) |
502 (1ULL << INTERCEPT_TASK_SWITCH) |
503 (1ULL << INTERCEPT_SHUTDOWN) |
504 (1ULL << INTERCEPT_VMRUN) |
505 (1ULL << INTERCEPT_VMMCALL) |
506 (1ULL << INTERCEPT_VMLOAD) |
507 (1ULL << INTERCEPT_VMSAVE) |
508 (1ULL << INTERCEPT_STGI) |
509 (1ULL << INTERCEPT_CLGI) |
510 (1ULL << INTERCEPT_SKINIT) |
511 (1ULL << INTERCEPT_MONITOR) |
512 (1ULL << INTERCEPT_MWAIT);
513
514 control->iopm_base_pa = iopm_base;
515 control->msrpm_base_pa = msrpm_base;
516 control->tsc_offset = 0;
517 control->int_ctl = V_INTR_MASKING_MASK;
518
519 init_seg(&save->es);
520 init_seg(&save->ss);
521 init_seg(&save->ds);
522 init_seg(&save->fs);
523 init_seg(&save->gs);
524
525 save->cs.selector = 0xf000;
526 /* Executable/Readable Code Segment */
527 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
528 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
529 save->cs.limit = 0xffff;
530 /*
531 * cs.base should really be 0xffff0000, but vmx can't handle that, so
532 * be consistent with it.
533 *
534 * Replace when we have real mode working for vmx.
535 */
536 save->cs.base = 0xf0000;
537
538 save->gdtr.limit = 0xffff;
539 save->idtr.limit = 0xffff;
540
541 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
542 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
543
544 save->efer = MSR_EFER_SVME_MASK;
545
546 save->dr6 = 0xffff0ff0;
547 save->dr7 = 0x400;
548 save->rflags = 2;
549 save->rip = 0x0000fff0;
550
551 /*
552 * cr0 val on cpu init should be 0x60000010, we enable cpu
553 * cache by default. the orderly way is to enable cache in bios.
554 */
555 save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
556 save->cr4 = X86_CR4_PAE;
557 /* rdx = ?? */
558 }
559
560 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
561 {
562 struct vcpu_svm *svm;
563 struct page *page;
564 int err;
565
566 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
567 if (!svm) {
568 err = -ENOMEM;
569 goto out;
570 }
571
572 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
573 if (err)
574 goto free_svm;
575
576 if (irqchip_in_kernel(kvm)) {
577 err = kvm_create_lapic(&svm->vcpu);
578 if (err < 0)
579 goto free_svm;
580 }
581
582 page = alloc_page(GFP_KERNEL);
583 if (!page) {
584 err = -ENOMEM;
585 goto uninit;
586 }
587
588 svm->vmcb = page_address(page);
589 clear_page(svm->vmcb);
590 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
591 svm->asid_generation = 0;
592 memset(svm->db_regs, 0, sizeof(svm->db_regs));
593 init_vmcb(svm->vmcb);
594
595 fx_init(&svm->vcpu);
596 svm->vcpu.fpu_active = 1;
597 svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
598 if (svm->vcpu.vcpu_id == 0)
599 svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
600
601 return &svm->vcpu;
602
603 uninit:
604 kvm_vcpu_uninit(&svm->vcpu);
605 free_svm:
606 kmem_cache_free(kvm_vcpu_cache, svm);
607 out:
608 return ERR_PTR(err);
609 }
610
611 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
612 {
613 struct vcpu_svm *svm = to_svm(vcpu);
614
615 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
616 kvm_vcpu_uninit(vcpu);
617 kmem_cache_free(kvm_vcpu_cache, svm);
618 }
619
620 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
621 {
622 struct vcpu_svm *svm = to_svm(vcpu);
623 int i;
624
625 if (unlikely(cpu != vcpu->cpu)) {
626 u64 tsc_this, delta;
627
628 /*
629 * Make sure that the guest sees a monotonically
630 * increasing TSC.
631 */
632 rdtscll(tsc_this);
633 delta = vcpu->host_tsc - tsc_this;
634 svm->vmcb->control.tsc_offset += delta;
635 vcpu->cpu = cpu;
636 kvm_migrate_apic_timer(vcpu);
637 }
638
639 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
640 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
641 }
642
643 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
644 {
645 struct vcpu_svm *svm = to_svm(vcpu);
646 int i;
647
648 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
649 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
650
651 rdtscll(vcpu->host_tsc);
652 }
653
654 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
655 {
656 }
657
658 static void svm_cache_regs(struct kvm_vcpu *vcpu)
659 {
660 struct vcpu_svm *svm = to_svm(vcpu);
661
662 vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
663 vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
664 vcpu->rip = svm->vmcb->save.rip;
665 }
666
667 static void svm_decache_regs(struct kvm_vcpu *vcpu)
668 {
669 struct vcpu_svm *svm = to_svm(vcpu);
670 svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
671 svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
672 svm->vmcb->save.rip = vcpu->rip;
673 }
674
675 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
676 {
677 return to_svm(vcpu)->vmcb->save.rflags;
678 }
679
680 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
681 {
682 to_svm(vcpu)->vmcb->save.rflags = rflags;
683 }
684
685 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
686 {
687 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
688
689 switch (seg) {
690 case VCPU_SREG_CS: return &save->cs;
691 case VCPU_SREG_DS: return &save->ds;
692 case VCPU_SREG_ES: return &save->es;
693 case VCPU_SREG_FS: return &save->fs;
694 case VCPU_SREG_GS: return &save->gs;
695 case VCPU_SREG_SS: return &save->ss;
696 case VCPU_SREG_TR: return &save->tr;
697 case VCPU_SREG_LDTR: return &save->ldtr;
698 }
699 BUG();
700 return NULL;
701 }
702
703 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
704 {
705 struct vmcb_seg *s = svm_seg(vcpu, seg);
706
707 return s->base;
708 }
709
710 static void svm_get_segment(struct kvm_vcpu *vcpu,
711 struct kvm_segment *var, int seg)
712 {
713 struct vmcb_seg *s = svm_seg(vcpu, seg);
714
715 var->base = s->base;
716 var->limit = s->limit;
717 var->selector = s->selector;
718 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
719 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
720 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
721 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
722 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
723 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
724 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
725 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
726 var->unusable = !var->present;
727 }
728
729 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
730 {
731 struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
732
733 *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
734 *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
735 }
736
737 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
738 {
739 struct vcpu_svm *svm = to_svm(vcpu);
740
741 dt->limit = svm->vmcb->save.idtr.limit;
742 dt->base = svm->vmcb->save.idtr.base;
743 }
744
745 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
746 {
747 struct vcpu_svm *svm = to_svm(vcpu);
748
749 svm->vmcb->save.idtr.limit = dt->limit;
750 svm->vmcb->save.idtr.base = dt->base ;
751 }
752
753 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
754 {
755 struct vcpu_svm *svm = to_svm(vcpu);
756
757 dt->limit = svm->vmcb->save.gdtr.limit;
758 dt->base = svm->vmcb->save.gdtr.base;
759 }
760
761 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
762 {
763 struct vcpu_svm *svm = to_svm(vcpu);
764
765 svm->vmcb->save.gdtr.limit = dt->limit;
766 svm->vmcb->save.gdtr.base = dt->base ;
767 }
768
769 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
770 {
771 }
772
773 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
774 {
775 struct vcpu_svm *svm = to_svm(vcpu);
776
777 #ifdef CONFIG_X86_64
778 if (vcpu->shadow_efer & KVM_EFER_LME) {
779 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
780 vcpu->shadow_efer |= KVM_EFER_LMA;
781 svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
782 }
783
784 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG) ) {
785 vcpu->shadow_efer &= ~KVM_EFER_LMA;
786 svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
787 }
788 }
789 #endif
790 if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
791 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
792 vcpu->fpu_active = 1;
793 }
794
795 vcpu->cr0 = cr0;
796 cr0 |= X86_CR0_PG | X86_CR0_WP;
797 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
798 svm->vmcb->save.cr0 = cr0;
799 }
800
801 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
802 {
803 vcpu->cr4 = cr4;
804 to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
805 }
806
807 static void svm_set_segment(struct kvm_vcpu *vcpu,
808 struct kvm_segment *var, int seg)
809 {
810 struct vcpu_svm *svm = to_svm(vcpu);
811 struct vmcb_seg *s = svm_seg(vcpu, seg);
812
813 s->base = var->base;
814 s->limit = var->limit;
815 s->selector = var->selector;
816 if (var->unusable)
817 s->attrib = 0;
818 else {
819 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
820 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
821 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
822 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
823 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
824 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
825 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
826 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
827 }
828 if (seg == VCPU_SREG_CS)
829 svm->vmcb->save.cpl
830 = (svm->vmcb->save.cs.attrib
831 >> SVM_SELECTOR_DPL_SHIFT) & 3;
832
833 }
834
835 /* FIXME:
836
837 svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
838 svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
839
840 */
841
842 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
843 {
844 return -EOPNOTSUPP;
845 }
846
847 static int svm_get_irq(struct kvm_vcpu *vcpu)
848 {
849 struct vcpu_svm *svm = to_svm(vcpu);
850 u32 exit_int_info = svm->vmcb->control.exit_int_info;
851
852 if (is_external_interrupt(exit_int_info))
853 return exit_int_info & SVM_EVTINJ_VEC_MASK;
854 return -1;
855 }
856
857 static void load_host_msrs(struct kvm_vcpu *vcpu)
858 {
859 #ifdef CONFIG_X86_64
860 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
861 #endif
862 }
863
864 static void save_host_msrs(struct kvm_vcpu *vcpu)
865 {
866 #ifdef CONFIG_X86_64
867 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
868 #endif
869 }
870
871 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
872 {
873 if (svm_data->next_asid > svm_data->max_asid) {
874 ++svm_data->asid_generation;
875 svm_data->next_asid = 1;
876 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
877 }
878
879 svm->vcpu.cpu = svm_data->cpu;
880 svm->asid_generation = svm_data->asid_generation;
881 svm->vmcb->control.asid = svm_data->next_asid++;
882 }
883
884 static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
885 {
886 invlpga(address, to_svm(vcpu)->vmcb->control.asid); // is needed?
887 }
888
889 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
890 {
891 return to_svm(vcpu)->db_regs[dr];
892 }
893
894 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
895 int *exception)
896 {
897 struct vcpu_svm *svm = to_svm(vcpu);
898
899 *exception = 0;
900
901 if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
902 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
903 svm->vmcb->save.dr6 |= DR6_BD_MASK;
904 *exception = DB_VECTOR;
905 return;
906 }
907
908 switch (dr) {
909 case 0 ... 3:
910 svm->db_regs[dr] = value;
911 return;
912 case 4 ... 5:
913 if (vcpu->cr4 & X86_CR4_DE) {
914 *exception = UD_VECTOR;
915 return;
916 }
917 case 7: {
918 if (value & ~((1ULL << 32) - 1)) {
919 *exception = GP_VECTOR;
920 return;
921 }
922 svm->vmcb->save.dr7 = value;
923 return;
924 }
925 default:
926 printk(KERN_DEBUG "%s: unexpected dr %u\n",
927 __FUNCTION__, dr);
928 *exception = UD_VECTOR;
929 return;
930 }
931 }
932
933 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
934 {
935 u32 exit_int_info = svm->vmcb->control.exit_int_info;
936 struct kvm *kvm = svm->vcpu.kvm;
937 u64 fault_address;
938 u32 error_code;
939 enum emulation_result er;
940 int r;
941
942 if (!irqchip_in_kernel(kvm) &&
943 is_external_interrupt(exit_int_info))
944 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
945
946 mutex_lock(&kvm->lock);
947
948 fault_address = svm->vmcb->control.exit_info_2;
949 error_code = svm->vmcb->control.exit_info_1;
950 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
951 if (r < 0) {
952 mutex_unlock(&kvm->lock);
953 return r;
954 }
955 if (!r) {
956 mutex_unlock(&kvm->lock);
957 return 1;
958 }
959 er = emulate_instruction(&svm->vcpu, kvm_run, fault_address,
960 error_code);
961 mutex_unlock(&kvm->lock);
962
963 switch (er) {
964 case EMULATE_DONE:
965 return 1;
966 case EMULATE_DO_MMIO:
967 ++svm->vcpu.stat.mmio_exits;
968 return 0;
969 case EMULATE_FAIL:
970 vcpu_printf(&svm->vcpu, "%s: emulate fail\n", __FUNCTION__);
971 break;
972 default:
973 BUG();
974 }
975
976 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
977 return 0;
978 }
979
980 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
981 {
982 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
983 if (!(svm->vcpu.cr0 & X86_CR0_TS))
984 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
985 svm->vcpu.fpu_active = 1;
986
987 return 1;
988 }
989
990 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
991 {
992 /*
993 * VMCB is undefined after a SHUTDOWN intercept
994 * so reinitialize it.
995 */
996 clear_page(svm->vmcb);
997 init_vmcb(svm->vmcb);
998
999 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1000 return 0;
1001 }
1002
1003 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1004 {
1005 u32 io_info = svm->vmcb->control.exit_info_1; //address size bug?
1006 int size, down, in, string, rep;
1007 unsigned port;
1008
1009 ++svm->vcpu.stat.io_exits;
1010
1011 svm->next_rip = svm->vmcb->control.exit_info_2;
1012
1013 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1014
1015 if (string) {
1016 if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
1017 return 0;
1018 return 1;
1019 }
1020
1021 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1022 port = io_info >> 16;
1023 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1024 rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1025 down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1026
1027 return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1028 }
1029
1030 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1031 {
1032 return 1;
1033 }
1034
1035 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1036 {
1037 svm->next_rip = svm->vmcb->save.rip + 1;
1038 skip_emulated_instruction(&svm->vcpu);
1039 return kvm_emulate_halt(&svm->vcpu);
1040 }
1041
1042 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1043 {
1044 svm->next_rip = svm->vmcb->save.rip + 3;
1045 skip_emulated_instruction(&svm->vcpu);
1046 return kvm_hypercall(&svm->vcpu, kvm_run);
1047 }
1048
1049 static int invalid_op_interception(struct vcpu_svm *svm,
1050 struct kvm_run *kvm_run)
1051 {
1052 inject_ud(&svm->vcpu);
1053 return 1;
1054 }
1055
1056 static int task_switch_interception(struct vcpu_svm *svm,
1057 struct kvm_run *kvm_run)
1058 {
1059 pr_unimpl(&svm->vcpu, "%s: task switch is unsupported\n", __FUNCTION__);
1060 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1061 return 0;
1062 }
1063
1064 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1065 {
1066 svm->next_rip = svm->vmcb->save.rip + 2;
1067 kvm_emulate_cpuid(&svm->vcpu);
1068 return 1;
1069 }
1070
1071 static int emulate_on_interception(struct vcpu_svm *svm,
1072 struct kvm_run *kvm_run)
1073 {
1074 if (emulate_instruction(&svm->vcpu, NULL, 0, 0) != EMULATE_DONE)
1075 pr_unimpl(&svm->vcpu, "%s: failed\n", __FUNCTION__);
1076 return 1;
1077 }
1078
1079 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1080 {
1081 struct vcpu_svm *svm = to_svm(vcpu);
1082
1083 switch (ecx) {
1084 case MSR_IA32_TIME_STAMP_COUNTER: {
1085 u64 tsc;
1086
1087 rdtscll(tsc);
1088 *data = svm->vmcb->control.tsc_offset + tsc;
1089 break;
1090 }
1091 case MSR_K6_STAR:
1092 *data = svm->vmcb->save.star;
1093 break;
1094 #ifdef CONFIG_X86_64
1095 case MSR_LSTAR:
1096 *data = svm->vmcb->save.lstar;
1097 break;
1098 case MSR_CSTAR:
1099 *data = svm->vmcb->save.cstar;
1100 break;
1101 case MSR_KERNEL_GS_BASE:
1102 *data = svm->vmcb->save.kernel_gs_base;
1103 break;
1104 case MSR_SYSCALL_MASK:
1105 *data = svm->vmcb->save.sfmask;
1106 break;
1107 #endif
1108 case MSR_IA32_SYSENTER_CS:
1109 *data = svm->vmcb->save.sysenter_cs;
1110 break;
1111 case MSR_IA32_SYSENTER_EIP:
1112 *data = svm->vmcb->save.sysenter_eip;
1113 break;
1114 case MSR_IA32_SYSENTER_ESP:
1115 *data = svm->vmcb->save.sysenter_esp;
1116 break;
1117 default:
1118 return kvm_get_msr_common(vcpu, ecx, data);
1119 }
1120 return 0;
1121 }
1122
1123 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1124 {
1125 u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1126 u64 data;
1127
1128 if (svm_get_msr(&svm->vcpu, ecx, &data))
1129 svm_inject_gp(&svm->vcpu, 0);
1130 else {
1131 svm->vmcb->save.rax = data & 0xffffffff;
1132 svm->vcpu.regs[VCPU_REGS_RDX] = data >> 32;
1133 svm->next_rip = svm->vmcb->save.rip + 2;
1134 skip_emulated_instruction(&svm->vcpu);
1135 }
1136 return 1;
1137 }
1138
1139 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1140 {
1141 struct vcpu_svm *svm = to_svm(vcpu);
1142
1143 switch (ecx) {
1144 case MSR_IA32_TIME_STAMP_COUNTER: {
1145 u64 tsc;
1146
1147 rdtscll(tsc);
1148 svm->vmcb->control.tsc_offset = data - tsc;
1149 break;
1150 }
1151 case MSR_K6_STAR:
1152 svm->vmcb->save.star = data;
1153 break;
1154 #ifdef CONFIG_X86_64
1155 case MSR_LSTAR:
1156 svm->vmcb->save.lstar = data;
1157 break;
1158 case MSR_CSTAR:
1159 svm->vmcb->save.cstar = data;
1160 break;
1161 case MSR_KERNEL_GS_BASE:
1162 svm->vmcb->save.kernel_gs_base = data;
1163 break;
1164 case MSR_SYSCALL_MASK:
1165 svm->vmcb->save.sfmask = data;
1166 break;
1167 #endif
1168 case MSR_IA32_SYSENTER_CS:
1169 svm->vmcb->save.sysenter_cs = data;
1170 break;
1171 case MSR_IA32_SYSENTER_EIP:
1172 svm->vmcb->save.sysenter_eip = data;
1173 break;
1174 case MSR_IA32_SYSENTER_ESP:
1175 svm->vmcb->save.sysenter_esp = data;
1176 break;
1177 default:
1178 return kvm_set_msr_common(vcpu, ecx, data);
1179 }
1180 return 0;
1181 }
1182
1183 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1184 {
1185 u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1186 u64 data = (svm->vmcb->save.rax & -1u)
1187 | ((u64)(svm->vcpu.regs[VCPU_REGS_RDX] & -1u) << 32);
1188 svm->next_rip = svm->vmcb->save.rip + 2;
1189 if (svm_set_msr(&svm->vcpu, ecx, data))
1190 svm_inject_gp(&svm->vcpu, 0);
1191 else
1192 skip_emulated_instruction(&svm->vcpu);
1193 return 1;
1194 }
1195
1196 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1197 {
1198 if (svm->vmcb->control.exit_info_1)
1199 return wrmsr_interception(svm, kvm_run);
1200 else
1201 return rdmsr_interception(svm, kvm_run);
1202 }
1203
1204 static int interrupt_window_interception(struct vcpu_svm *svm,
1205 struct kvm_run *kvm_run)
1206 {
1207 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1208 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1209 /*
1210 * If the user space waits to inject interrupts, exit as soon as
1211 * possible
1212 */
1213 if (kvm_run->request_interrupt_window &&
1214 !svm->vcpu.irq_summary) {
1215 ++svm->vcpu.stat.irq_window_exits;
1216 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1217 return 0;
1218 }
1219
1220 return 1;
1221 }
1222
1223 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1224 struct kvm_run *kvm_run) = {
1225 [SVM_EXIT_READ_CR0] = emulate_on_interception,
1226 [SVM_EXIT_READ_CR3] = emulate_on_interception,
1227 [SVM_EXIT_READ_CR4] = emulate_on_interception,
1228 /* for now: */
1229 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
1230 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
1231 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
1232 [SVM_EXIT_READ_DR0] = emulate_on_interception,
1233 [SVM_EXIT_READ_DR1] = emulate_on_interception,
1234 [SVM_EXIT_READ_DR2] = emulate_on_interception,
1235 [SVM_EXIT_READ_DR3] = emulate_on_interception,
1236 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
1237 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
1238 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
1239 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
1240 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
1241 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
1242 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
1243 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
1244 [SVM_EXIT_INTR] = nop_on_interception,
1245 [SVM_EXIT_NMI] = nop_on_interception,
1246 [SVM_EXIT_SMI] = nop_on_interception,
1247 [SVM_EXIT_INIT] = nop_on_interception,
1248 [SVM_EXIT_VINTR] = interrupt_window_interception,
1249 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
1250 [SVM_EXIT_CPUID] = cpuid_interception,
1251 [SVM_EXIT_HLT] = halt_interception,
1252 [SVM_EXIT_INVLPG] = emulate_on_interception,
1253 [SVM_EXIT_INVLPGA] = invalid_op_interception,
1254 [SVM_EXIT_IOIO] = io_interception,
1255 [SVM_EXIT_MSR] = msr_interception,
1256 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
1257 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
1258 [SVM_EXIT_VMRUN] = invalid_op_interception,
1259 [SVM_EXIT_VMMCALL] = vmmcall_interception,
1260 [SVM_EXIT_VMLOAD] = invalid_op_interception,
1261 [SVM_EXIT_VMSAVE] = invalid_op_interception,
1262 [SVM_EXIT_STGI] = invalid_op_interception,
1263 [SVM_EXIT_CLGI] = invalid_op_interception,
1264 [SVM_EXIT_SKINIT] = invalid_op_interception,
1265 [SVM_EXIT_MONITOR] = invalid_op_interception,
1266 [SVM_EXIT_MWAIT] = invalid_op_interception,
1267 };
1268
1269
1270 static int handle_exit(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1271 {
1272 u32 exit_code = svm->vmcb->control.exit_code;
1273
1274 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1275 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1276 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1277 "exit_code 0x%x\n",
1278 __FUNCTION__, svm->vmcb->control.exit_int_info,
1279 exit_code);
1280
1281 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1282 || svm_exit_handlers[exit_code] == 0) {
1283 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1284 kvm_run->hw.hardware_exit_reason = exit_code;
1285 return 0;
1286 }
1287
1288 return svm_exit_handlers[exit_code](svm, kvm_run);
1289 }
1290
1291 static void reload_tss(struct kvm_vcpu *vcpu)
1292 {
1293 int cpu = raw_smp_processor_id();
1294
1295 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1296 svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1297 load_TR_desc();
1298 }
1299
1300 static void pre_svm_run(struct vcpu_svm *svm)
1301 {
1302 int cpu = raw_smp_processor_id();
1303
1304 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1305
1306 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1307 if (svm->vcpu.cpu != cpu ||
1308 svm->asid_generation != svm_data->asid_generation)
1309 new_asid(svm, svm_data);
1310 }
1311
1312
1313 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1314 {
1315 struct vmcb_control_area *control;
1316
1317 control = &svm->vmcb->control;
1318 control->int_vector = irq;
1319 control->int_ctl &= ~V_INTR_PRIO_MASK;
1320 control->int_ctl |= V_IRQ_MASK |
1321 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1322 }
1323
1324 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
1325 {
1326 struct vcpu_svm *svm = to_svm(vcpu);
1327
1328 svm_inject_irq(svm, irq);
1329 }
1330
1331 static void svm_intr_assist(struct vcpu_svm *svm)
1332 {
1333 struct vmcb *vmcb = svm->vmcb;
1334 int intr_vector = -1;
1335 struct kvm_vcpu *vcpu = &svm->vcpu;
1336
1337 kvm_inject_pending_timer_irqs(vcpu);
1338 if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1339 ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1340 intr_vector = vmcb->control.exit_int_info &
1341 SVM_EVTINJ_VEC_MASK;
1342 vmcb->control.exit_int_info = 0;
1343 svm_inject_irq(svm, intr_vector);
1344 return;
1345 }
1346
1347 if (vmcb->control.int_ctl & V_IRQ_MASK)
1348 return;
1349
1350 if (!kvm_cpu_has_interrupt(vcpu))
1351 return;
1352
1353 if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1354 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1355 (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1356 /* unable to deliver irq, set pending irq */
1357 vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1358 svm_inject_irq(svm, 0x0);
1359 return;
1360 }
1361 /* Okay, we can deliver the interrupt: grab it and update PIC state. */
1362 intr_vector = kvm_cpu_get_interrupt(vcpu);
1363 svm_inject_irq(svm, intr_vector);
1364 kvm_timer_intr_post(vcpu, intr_vector);
1365 }
1366
1367 static void kvm_reput_irq(struct vcpu_svm *svm)
1368 {
1369 struct vmcb_control_area *control = &svm->vmcb->control;
1370
1371 if ((control->int_ctl & V_IRQ_MASK)
1372 && !irqchip_in_kernel(svm->vcpu.kvm)) {
1373 control->int_ctl &= ~V_IRQ_MASK;
1374 push_irq(&svm->vcpu, control->int_vector);
1375 }
1376
1377 svm->vcpu.interrupt_window_open =
1378 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1379 }
1380
1381 static void svm_do_inject_vector(struct vcpu_svm *svm)
1382 {
1383 struct kvm_vcpu *vcpu = &svm->vcpu;
1384 int word_index = __ffs(vcpu->irq_summary);
1385 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1386 int irq = word_index * BITS_PER_LONG + bit_index;
1387
1388 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1389 if (!vcpu->irq_pending[word_index])
1390 clear_bit(word_index, &vcpu->irq_summary);
1391 svm_inject_irq(svm, irq);
1392 }
1393
1394 static void do_interrupt_requests(struct vcpu_svm *svm,
1395 struct kvm_run *kvm_run)
1396 {
1397 struct vmcb_control_area *control = &svm->vmcb->control;
1398
1399 svm->vcpu.interrupt_window_open =
1400 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1401 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1402
1403 if (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary)
1404 /*
1405 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1406 */
1407 svm_do_inject_vector(svm);
1408
1409 /*
1410 * Interrupts blocked. Wait for unblock.
1411 */
1412 if (!svm->vcpu.interrupt_window_open &&
1413 (svm->vcpu.irq_summary || kvm_run->request_interrupt_window)) {
1414 control->intercept |= 1ULL << INTERCEPT_VINTR;
1415 } else
1416 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1417 }
1418
1419 static void post_kvm_run_save(struct vcpu_svm *svm,
1420 struct kvm_run *kvm_run)
1421 {
1422 if (irqchip_in_kernel(svm->vcpu.kvm))
1423 kvm_run->ready_for_interrupt_injection = 1;
1424 else
1425 kvm_run->ready_for_interrupt_injection =
1426 (svm->vcpu.interrupt_window_open &&
1427 svm->vcpu.irq_summary == 0);
1428 kvm_run->if_flag = (svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
1429 kvm_run->cr8 = get_cr8(&svm->vcpu);
1430 kvm_run->apic_base = kvm_get_apic_base(&svm->vcpu);
1431 }
1432
1433 /*
1434 * Check if userspace requested an interrupt window, and that the
1435 * interrupt window is open.
1436 *
1437 * No need to exit to userspace if we already have an interrupt queued.
1438 */
1439 static int dm_request_for_irq_injection(struct vcpu_svm *svm,
1440 struct kvm_run *kvm_run)
1441 {
1442 return (!svm->vcpu.irq_summary &&
1443 kvm_run->request_interrupt_window &&
1444 svm->vcpu.interrupt_window_open &&
1445 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1446 }
1447
1448 static void save_db_regs(unsigned long *db_regs)
1449 {
1450 asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1451 asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1452 asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1453 asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1454 }
1455
1456 static void load_db_regs(unsigned long *db_regs)
1457 {
1458 asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1459 asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1460 asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1461 asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1462 }
1463
1464 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1465 {
1466 force_new_asid(vcpu);
1467 }
1468
1469 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1470 {
1471 struct vcpu_svm *svm = to_svm(vcpu);
1472 u16 fs_selector;
1473 u16 gs_selector;
1474 u16 ldt_selector;
1475 int r;
1476
1477 again:
1478 r = kvm_mmu_reload(vcpu);
1479 if (unlikely(r))
1480 return r;
1481
1482 clgi();
1483
1484 if (signal_pending(current)) {
1485 stgi();
1486 ++vcpu->stat.signal_exits;
1487 post_kvm_run_save(svm, kvm_run);
1488 kvm_run->exit_reason = KVM_EXIT_INTR;
1489 return -EINTR;
1490 }
1491
1492 if (irqchip_in_kernel(vcpu->kvm))
1493 svm_intr_assist(svm);
1494 else if (!vcpu->mmio_read_completed)
1495 do_interrupt_requests(svm, kvm_run);
1496
1497 vcpu->guest_mode = 1;
1498 if (vcpu->requests)
1499 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
1500 svm_flush_tlb(vcpu);
1501
1502 pre_svm_run(svm);
1503
1504 save_host_msrs(vcpu);
1505 fs_selector = read_fs();
1506 gs_selector = read_gs();
1507 ldt_selector = read_ldt();
1508 svm->host_cr2 = kvm_read_cr2();
1509 svm->host_dr6 = read_dr6();
1510 svm->host_dr7 = read_dr7();
1511 svm->vmcb->save.cr2 = vcpu->cr2;
1512
1513 if (svm->vmcb->save.dr7 & 0xff) {
1514 write_dr7(0);
1515 save_db_regs(svm->host_db_regs);
1516 load_db_regs(svm->db_regs);
1517 }
1518
1519 if (vcpu->fpu_active) {
1520 fx_save(&vcpu->host_fx_image);
1521 fx_restore(&vcpu->guest_fx_image);
1522 }
1523
1524 asm volatile (
1525 #ifdef CONFIG_X86_64
1526 "push %%rbx; push %%rcx; push %%rdx;"
1527 "push %%rsi; push %%rdi; push %%rbp;"
1528 "push %%r8; push %%r9; push %%r10; push %%r11;"
1529 "push %%r12; push %%r13; push %%r14; push %%r15;"
1530 #else
1531 "push %%ebx; push %%ecx; push %%edx;"
1532 "push %%esi; push %%edi; push %%ebp;"
1533 #endif
1534
1535 #ifdef CONFIG_X86_64
1536 "mov %c[rbx](%[svm]), %%rbx \n\t"
1537 "mov %c[rcx](%[svm]), %%rcx \n\t"
1538 "mov %c[rdx](%[svm]), %%rdx \n\t"
1539 "mov %c[rsi](%[svm]), %%rsi \n\t"
1540 "mov %c[rdi](%[svm]), %%rdi \n\t"
1541 "mov %c[rbp](%[svm]), %%rbp \n\t"
1542 "mov %c[r8](%[svm]), %%r8 \n\t"
1543 "mov %c[r9](%[svm]), %%r9 \n\t"
1544 "mov %c[r10](%[svm]), %%r10 \n\t"
1545 "mov %c[r11](%[svm]), %%r11 \n\t"
1546 "mov %c[r12](%[svm]), %%r12 \n\t"
1547 "mov %c[r13](%[svm]), %%r13 \n\t"
1548 "mov %c[r14](%[svm]), %%r14 \n\t"
1549 "mov %c[r15](%[svm]), %%r15 \n\t"
1550 #else
1551 "mov %c[rbx](%[svm]), %%ebx \n\t"
1552 "mov %c[rcx](%[svm]), %%ecx \n\t"
1553 "mov %c[rdx](%[svm]), %%edx \n\t"
1554 "mov %c[rsi](%[svm]), %%esi \n\t"
1555 "mov %c[rdi](%[svm]), %%edi \n\t"
1556 "mov %c[rbp](%[svm]), %%ebp \n\t"
1557 #endif
1558
1559 #ifdef CONFIG_X86_64
1560 /* Enter guest mode */
1561 "push %%rax \n\t"
1562 "mov %c[vmcb](%[svm]), %%rax \n\t"
1563 SVM_VMLOAD "\n\t"
1564 SVM_VMRUN "\n\t"
1565 SVM_VMSAVE "\n\t"
1566 "pop %%rax \n\t"
1567 #else
1568 /* Enter guest mode */
1569 "push %%eax \n\t"
1570 "mov %c[vmcb](%[svm]), %%eax \n\t"
1571 SVM_VMLOAD "\n\t"
1572 SVM_VMRUN "\n\t"
1573 SVM_VMSAVE "\n\t"
1574 "pop %%eax \n\t"
1575 #endif
1576
1577 /* Save guest registers, load host registers */
1578 #ifdef CONFIG_X86_64
1579 "mov %%rbx, %c[rbx](%[svm]) \n\t"
1580 "mov %%rcx, %c[rcx](%[svm]) \n\t"
1581 "mov %%rdx, %c[rdx](%[svm]) \n\t"
1582 "mov %%rsi, %c[rsi](%[svm]) \n\t"
1583 "mov %%rdi, %c[rdi](%[svm]) \n\t"
1584 "mov %%rbp, %c[rbp](%[svm]) \n\t"
1585 "mov %%r8, %c[r8](%[svm]) \n\t"
1586 "mov %%r9, %c[r9](%[svm]) \n\t"
1587 "mov %%r10, %c[r10](%[svm]) \n\t"
1588 "mov %%r11, %c[r11](%[svm]) \n\t"
1589 "mov %%r12, %c[r12](%[svm]) \n\t"
1590 "mov %%r13, %c[r13](%[svm]) \n\t"
1591 "mov %%r14, %c[r14](%[svm]) \n\t"
1592 "mov %%r15, %c[r15](%[svm]) \n\t"
1593
1594 "pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1595 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1596 "pop %%rbp; pop %%rdi; pop %%rsi;"
1597 "pop %%rdx; pop %%rcx; pop %%rbx; \n\t"
1598 #else
1599 "mov %%ebx, %c[rbx](%[svm]) \n\t"
1600 "mov %%ecx, %c[rcx](%[svm]) \n\t"
1601 "mov %%edx, %c[rdx](%[svm]) \n\t"
1602 "mov %%esi, %c[rsi](%[svm]) \n\t"
1603 "mov %%edi, %c[rdi](%[svm]) \n\t"
1604 "mov %%ebp, %c[rbp](%[svm]) \n\t"
1605
1606 "pop %%ebp; pop %%edi; pop %%esi;"
1607 "pop %%edx; pop %%ecx; pop %%ebx; \n\t"
1608 #endif
1609 :
1610 : [svm]"a"(svm),
1611 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1612 [rbx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBX])),
1613 [rcx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RCX])),
1614 [rdx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDX])),
1615 [rsi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RSI])),
1616 [rdi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDI])),
1617 [rbp]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBP]))
1618 #ifdef CONFIG_X86_64
1619 ,[r8 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R8])),
1620 [r9 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R9 ])),
1621 [r10]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R10])),
1622 [r11]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R11])),
1623 [r12]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R12])),
1624 [r13]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R13])),
1625 [r14]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R14])),
1626 [r15]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R15]))
1627 #endif
1628 : "cc", "memory" );
1629
1630 vcpu->guest_mode = 0;
1631
1632 if (vcpu->fpu_active) {
1633 fx_save(&vcpu->guest_fx_image);
1634 fx_restore(&vcpu->host_fx_image);
1635 }
1636
1637 if ((svm->vmcb->save.dr7 & 0xff))
1638 load_db_regs(svm->host_db_regs);
1639
1640 vcpu->cr2 = svm->vmcb->save.cr2;
1641
1642 write_dr6(svm->host_dr6);
1643 write_dr7(svm->host_dr7);
1644 kvm_write_cr2(svm->host_cr2);
1645
1646 load_fs(fs_selector);
1647 load_gs(gs_selector);
1648 load_ldt(ldt_selector);
1649 load_host_msrs(vcpu);
1650
1651 reload_tss(vcpu);
1652
1653 /*
1654 * Profile KVM exit RIPs:
1655 */
1656 if (unlikely(prof_on == KVM_PROFILING))
1657 profile_hit(KVM_PROFILING,
1658 (void *)(unsigned long)svm->vmcb->save.rip);
1659
1660 stgi();
1661
1662 kvm_reput_irq(svm);
1663
1664 svm->next_rip = 0;
1665
1666 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1667 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1668 kvm_run->fail_entry.hardware_entry_failure_reason
1669 = svm->vmcb->control.exit_code;
1670 post_kvm_run_save(svm, kvm_run);
1671 return 0;
1672 }
1673
1674 r = handle_exit(svm, kvm_run);
1675 if (r > 0) {
1676 if (dm_request_for_irq_injection(svm, kvm_run)) {
1677 ++vcpu->stat.request_irq_exits;
1678 post_kvm_run_save(svm, kvm_run);
1679 kvm_run->exit_reason = KVM_EXIT_INTR;
1680 return -EINTR;
1681 }
1682 kvm_resched(vcpu);
1683 goto again;
1684 }
1685 post_kvm_run_save(svm, kvm_run);
1686 return r;
1687 }
1688
1689 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1690 {
1691 struct vcpu_svm *svm = to_svm(vcpu);
1692
1693 svm->vmcb->save.cr3 = root;
1694 force_new_asid(vcpu);
1695
1696 if (vcpu->fpu_active) {
1697 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1698 svm->vmcb->save.cr0 |= X86_CR0_TS;
1699 vcpu->fpu_active = 0;
1700 }
1701 }
1702
1703 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1704 unsigned long addr,
1705 uint32_t err_code)
1706 {
1707 struct vcpu_svm *svm = to_svm(vcpu);
1708 uint32_t exit_int_info = svm->vmcb->control.exit_int_info;
1709
1710 ++vcpu->stat.pf_guest;
1711
1712 if (is_page_fault(exit_int_info)) {
1713
1714 svm->vmcb->control.event_inj_err = 0;
1715 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
1716 SVM_EVTINJ_VALID_ERR |
1717 SVM_EVTINJ_TYPE_EXEPT |
1718 DF_VECTOR;
1719 return;
1720 }
1721 vcpu->cr2 = addr;
1722 svm->vmcb->save.cr2 = addr;
1723 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
1724 SVM_EVTINJ_VALID_ERR |
1725 SVM_EVTINJ_TYPE_EXEPT |
1726 PF_VECTOR;
1727 svm->vmcb->control.event_inj_err = err_code;
1728 }
1729
1730
1731 static int is_disabled(void)
1732 {
1733 u64 vm_cr;
1734
1735 rdmsrl(MSR_VM_CR, vm_cr);
1736 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1737 return 1;
1738
1739 return 0;
1740 }
1741
1742 static void
1743 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1744 {
1745 /*
1746 * Patch in the VMMCALL instruction:
1747 */
1748 hypercall[0] = 0x0f;
1749 hypercall[1] = 0x01;
1750 hypercall[2] = 0xd9;
1751 hypercall[3] = 0xc3;
1752 }
1753
1754 static void svm_check_processor_compat(void *rtn)
1755 {
1756 *(int *)rtn = 0;
1757 }
1758
1759 static struct kvm_arch_ops svm_arch_ops = {
1760 .cpu_has_kvm_support = has_svm,
1761 .disabled_by_bios = is_disabled,
1762 .hardware_setup = svm_hardware_setup,
1763 .hardware_unsetup = svm_hardware_unsetup,
1764 .check_processor_compatibility = svm_check_processor_compat,
1765 .hardware_enable = svm_hardware_enable,
1766 .hardware_disable = svm_hardware_disable,
1767
1768 .vcpu_create = svm_create_vcpu,
1769 .vcpu_free = svm_free_vcpu,
1770
1771 .vcpu_load = svm_vcpu_load,
1772 .vcpu_put = svm_vcpu_put,
1773 .vcpu_decache = svm_vcpu_decache,
1774
1775 .set_guest_debug = svm_guest_debug,
1776 .get_msr = svm_get_msr,
1777 .set_msr = svm_set_msr,
1778 .get_segment_base = svm_get_segment_base,
1779 .get_segment = svm_get_segment,
1780 .set_segment = svm_set_segment,
1781 .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1782 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1783 .set_cr0 = svm_set_cr0,
1784 .set_cr3 = svm_set_cr3,
1785 .set_cr4 = svm_set_cr4,
1786 .set_efer = svm_set_efer,
1787 .get_idt = svm_get_idt,
1788 .set_idt = svm_set_idt,
1789 .get_gdt = svm_get_gdt,
1790 .set_gdt = svm_set_gdt,
1791 .get_dr = svm_get_dr,
1792 .set_dr = svm_set_dr,
1793 .cache_regs = svm_cache_regs,
1794 .decache_regs = svm_decache_regs,
1795 .get_rflags = svm_get_rflags,
1796 .set_rflags = svm_set_rflags,
1797
1798 .invlpg = svm_invlpg,
1799 .tlb_flush = svm_flush_tlb,
1800 .inject_page_fault = svm_inject_page_fault,
1801
1802 .inject_gp = svm_inject_gp,
1803
1804 .run = svm_vcpu_run,
1805 .skip_emulated_instruction = skip_emulated_instruction,
1806 .patch_hypercall = svm_patch_hypercall,
1807 .get_irq = svm_get_irq,
1808 .set_irq = svm_set_irq,
1809 };
1810
1811 static int __init svm_init(void)
1812 {
1813 return kvm_init_arch(&svm_arch_ops, sizeof(struct vcpu_svm),
1814 THIS_MODULE);
1815 }
1816
1817 static void __exit svm_exit(void)
1818 {
1819 kvm_exit_arch();
1820 }
1821
1822 module_init(svm_init)
1823 module_exit(svm_exit)
This page took 0.068037 seconds and 6 git commands to generate.