KVM: Replace 'light_exits' stat with 'host_state_reload'
[deliverable/linux.git] / drivers / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 */
16 #include "x86.h"
17 #include "kvm_svm.h"
18 #include "x86_emulate.h"
19 #include "irq.h"
20
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/vmalloc.h>
24 #include <linux/highmem.h>
25 #include <linux/sched.h>
26
27 #include <asm/desc.h>
28
29 MODULE_AUTHOR("Qumranet");
30 MODULE_LICENSE("GPL");
31
32 #define IOPM_ALLOC_ORDER 2
33 #define MSRPM_ALLOC_ORDER 1
34
35 #define DB_VECTOR 1
36 #define UD_VECTOR 6
37 #define GP_VECTOR 13
38
39 #define DR7_GD_MASK (1 << 13)
40 #define DR6_BD_MASK (1 << 13)
41
42 #define SEG_TYPE_LDT 2
43 #define SEG_TYPE_BUSY_TSS16 3
44
45 #define KVM_EFER_LMA (1 << 10)
46 #define KVM_EFER_LME (1 << 8)
47
48 #define SVM_FEATURE_NPT (1 << 0)
49 #define SVM_FEATURE_LBRV (1 << 1)
50 #define SVM_DEATURE_SVML (1 << 2)
51
52 static void kvm_reput_irq(struct vcpu_svm *svm);
53
54 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
55 {
56 return container_of(vcpu, struct vcpu_svm, vcpu);
57 }
58
59 unsigned long iopm_base;
60 unsigned long msrpm_base;
61
62 struct kvm_ldttss_desc {
63 u16 limit0;
64 u16 base0;
65 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
66 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
67 u32 base3;
68 u32 zero1;
69 } __attribute__((packed));
70
71 struct svm_cpu_data {
72 int cpu;
73
74 u64 asid_generation;
75 u32 max_asid;
76 u32 next_asid;
77 struct kvm_ldttss_desc *tss_desc;
78
79 struct page *save_area;
80 };
81
82 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
83 static uint32_t svm_features;
84
85 struct svm_init_data {
86 int cpu;
87 int r;
88 };
89
90 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
91
92 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
93 #define MSRS_RANGE_SIZE 2048
94 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
95
96 #define MAX_INST_SIZE 15
97
98 static inline u32 svm_has(u32 feat)
99 {
100 return svm_features & feat;
101 }
102
103 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
104 {
105 int word_index = __ffs(vcpu->irq_summary);
106 int bit_index = __ffs(vcpu->irq_pending[word_index]);
107 int irq = word_index * BITS_PER_LONG + bit_index;
108
109 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
110 if (!vcpu->irq_pending[word_index])
111 clear_bit(word_index, &vcpu->irq_summary);
112 return irq;
113 }
114
115 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
116 {
117 set_bit(irq, vcpu->irq_pending);
118 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
119 }
120
121 static inline void clgi(void)
122 {
123 asm volatile (SVM_CLGI);
124 }
125
126 static inline void stgi(void)
127 {
128 asm volatile (SVM_STGI);
129 }
130
131 static inline void invlpga(unsigned long addr, u32 asid)
132 {
133 asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
134 }
135
136 static inline unsigned long kvm_read_cr2(void)
137 {
138 unsigned long cr2;
139
140 asm volatile ("mov %%cr2, %0" : "=r" (cr2));
141 return cr2;
142 }
143
144 static inline void kvm_write_cr2(unsigned long val)
145 {
146 asm volatile ("mov %0, %%cr2" :: "r" (val));
147 }
148
149 static inline unsigned long read_dr6(void)
150 {
151 unsigned long dr6;
152
153 asm volatile ("mov %%dr6, %0" : "=r" (dr6));
154 return dr6;
155 }
156
157 static inline void write_dr6(unsigned long val)
158 {
159 asm volatile ("mov %0, %%dr6" :: "r" (val));
160 }
161
162 static inline unsigned long read_dr7(void)
163 {
164 unsigned long dr7;
165
166 asm volatile ("mov %%dr7, %0" : "=r" (dr7));
167 return dr7;
168 }
169
170 static inline void write_dr7(unsigned long val)
171 {
172 asm volatile ("mov %0, %%dr7" :: "r" (val));
173 }
174
175 static inline void force_new_asid(struct kvm_vcpu *vcpu)
176 {
177 to_svm(vcpu)->asid_generation--;
178 }
179
180 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
181 {
182 force_new_asid(vcpu);
183 }
184
185 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
186 {
187 if (!(efer & KVM_EFER_LMA))
188 efer &= ~KVM_EFER_LME;
189
190 to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
191 vcpu->shadow_efer = efer;
192 }
193
194 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
195 {
196 struct vcpu_svm *svm = to_svm(vcpu);
197
198 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
199 SVM_EVTINJ_VALID_ERR |
200 SVM_EVTINJ_TYPE_EXEPT |
201 GP_VECTOR;
202 svm->vmcb->control.event_inj_err = error_code;
203 }
204
205 static void inject_ud(struct kvm_vcpu *vcpu)
206 {
207 to_svm(vcpu)->vmcb->control.event_inj = SVM_EVTINJ_VALID |
208 SVM_EVTINJ_TYPE_EXEPT |
209 UD_VECTOR;
210 }
211
212 static int is_page_fault(uint32_t info)
213 {
214 info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
215 return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
216 }
217
218 static int is_external_interrupt(u32 info)
219 {
220 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
221 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
222 }
223
224 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
225 {
226 struct vcpu_svm *svm = to_svm(vcpu);
227
228 if (!svm->next_rip) {
229 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
230 return;
231 }
232 if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE)
233 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
234 __FUNCTION__,
235 svm->vmcb->save.rip,
236 svm->next_rip);
237
238 vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
239 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
240
241 vcpu->interrupt_window_open = 1;
242 }
243
244 static int has_svm(void)
245 {
246 uint32_t eax, ebx, ecx, edx;
247
248 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
249 printk(KERN_INFO "has_svm: not amd\n");
250 return 0;
251 }
252
253 cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
254 if (eax < SVM_CPUID_FUNC) {
255 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
256 return 0;
257 }
258
259 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
260 if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
261 printk(KERN_DEBUG "has_svm: svm not available\n");
262 return 0;
263 }
264 return 1;
265 }
266
267 static void svm_hardware_disable(void *garbage)
268 {
269 struct svm_cpu_data *svm_data
270 = per_cpu(svm_data, raw_smp_processor_id());
271
272 if (svm_data) {
273 uint64_t efer;
274
275 wrmsrl(MSR_VM_HSAVE_PA, 0);
276 rdmsrl(MSR_EFER, efer);
277 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
278 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
279 __free_page(svm_data->save_area);
280 kfree(svm_data);
281 }
282 }
283
284 static void svm_hardware_enable(void *garbage)
285 {
286
287 struct svm_cpu_data *svm_data;
288 uint64_t efer;
289 #ifdef CONFIG_X86_64
290 struct desc_ptr gdt_descr;
291 #else
292 struct desc_ptr gdt_descr;
293 #endif
294 struct desc_struct *gdt;
295 int me = raw_smp_processor_id();
296
297 if (!has_svm()) {
298 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
299 return;
300 }
301 svm_data = per_cpu(svm_data, me);
302
303 if (!svm_data) {
304 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
305 me);
306 return;
307 }
308
309 svm_data->asid_generation = 1;
310 svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
311 svm_data->next_asid = svm_data->max_asid + 1;
312 svm_features = cpuid_edx(SVM_CPUID_FUNC);
313
314 asm volatile ("sgdt %0" : "=m"(gdt_descr));
315 gdt = (struct desc_struct *)gdt_descr.address;
316 svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
317
318 rdmsrl(MSR_EFER, efer);
319 wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
320
321 wrmsrl(MSR_VM_HSAVE_PA,
322 page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
323 }
324
325 static int svm_cpu_init(int cpu)
326 {
327 struct svm_cpu_data *svm_data;
328 int r;
329
330 svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
331 if (!svm_data)
332 return -ENOMEM;
333 svm_data->cpu = cpu;
334 svm_data->save_area = alloc_page(GFP_KERNEL);
335 r = -ENOMEM;
336 if (!svm_data->save_area)
337 goto err_1;
338
339 per_cpu(svm_data, cpu) = svm_data;
340
341 return 0;
342
343 err_1:
344 kfree(svm_data);
345 return r;
346
347 }
348
349 static void set_msr_interception(u32 *msrpm, unsigned msr,
350 int read, int write)
351 {
352 int i;
353
354 for (i = 0; i < NUM_MSR_MAPS; i++) {
355 if (msr >= msrpm_ranges[i] &&
356 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
357 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
358 msrpm_ranges[i]) * 2;
359
360 u32 *base = msrpm + (msr_offset / 32);
361 u32 msr_shift = msr_offset % 32;
362 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
363 *base = (*base & ~(0x3 << msr_shift)) |
364 (mask << msr_shift);
365 return;
366 }
367 }
368 BUG();
369 }
370
371 static __init int svm_hardware_setup(void)
372 {
373 int cpu;
374 struct page *iopm_pages;
375 struct page *msrpm_pages;
376 void *iopm_va, *msrpm_va;
377 int r;
378
379 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
380
381 if (!iopm_pages)
382 return -ENOMEM;
383
384 iopm_va = page_address(iopm_pages);
385 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
386 clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
387 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
388
389
390 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
391
392 r = -ENOMEM;
393 if (!msrpm_pages)
394 goto err_1;
395
396 msrpm_va = page_address(msrpm_pages);
397 memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
398 msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
399
400 #ifdef CONFIG_X86_64
401 set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
402 set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
403 set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
404 set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
405 set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
406 set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
407 #endif
408 set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
409 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
410 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
411 set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
412
413 for_each_online_cpu(cpu) {
414 r = svm_cpu_init(cpu);
415 if (r)
416 goto err_2;
417 }
418 return 0;
419
420 err_2:
421 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
422 msrpm_base = 0;
423 err_1:
424 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
425 iopm_base = 0;
426 return r;
427 }
428
429 static __exit void svm_hardware_unsetup(void)
430 {
431 __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
432 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
433 iopm_base = msrpm_base = 0;
434 }
435
436 static void init_seg(struct vmcb_seg *seg)
437 {
438 seg->selector = 0;
439 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
440 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
441 seg->limit = 0xffff;
442 seg->base = 0;
443 }
444
445 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
446 {
447 seg->selector = 0;
448 seg->attrib = SVM_SELECTOR_P_MASK | type;
449 seg->limit = 0xffff;
450 seg->base = 0;
451 }
452
453 static void init_vmcb(struct vmcb *vmcb)
454 {
455 struct vmcb_control_area *control = &vmcb->control;
456 struct vmcb_save_area *save = &vmcb->save;
457
458 control->intercept_cr_read = INTERCEPT_CR0_MASK |
459 INTERCEPT_CR3_MASK |
460 INTERCEPT_CR4_MASK;
461
462 control->intercept_cr_write = INTERCEPT_CR0_MASK |
463 INTERCEPT_CR3_MASK |
464 INTERCEPT_CR4_MASK;
465
466 control->intercept_dr_read = INTERCEPT_DR0_MASK |
467 INTERCEPT_DR1_MASK |
468 INTERCEPT_DR2_MASK |
469 INTERCEPT_DR3_MASK;
470
471 control->intercept_dr_write = INTERCEPT_DR0_MASK |
472 INTERCEPT_DR1_MASK |
473 INTERCEPT_DR2_MASK |
474 INTERCEPT_DR3_MASK |
475 INTERCEPT_DR5_MASK |
476 INTERCEPT_DR7_MASK;
477
478 control->intercept_exceptions = (1 << PF_VECTOR) |
479 (1 << UD_VECTOR);
480
481
482 control->intercept = (1ULL << INTERCEPT_INTR) |
483 (1ULL << INTERCEPT_NMI) |
484 (1ULL << INTERCEPT_SMI) |
485 /*
486 * selective cr0 intercept bug?
487 * 0: 0f 22 d8 mov %eax,%cr3
488 * 3: 0f 20 c0 mov %cr0,%eax
489 * 6: 0d 00 00 00 80 or $0x80000000,%eax
490 * b: 0f 22 c0 mov %eax,%cr0
491 * set cr3 ->interception
492 * get cr0 ->interception
493 * set cr0 -> no interception
494 */
495 /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
496 (1ULL << INTERCEPT_CPUID) |
497 (1ULL << INTERCEPT_INVD) |
498 (1ULL << INTERCEPT_HLT) |
499 (1ULL << INTERCEPT_INVLPGA) |
500 (1ULL << INTERCEPT_IOIO_PROT) |
501 (1ULL << INTERCEPT_MSR_PROT) |
502 (1ULL << INTERCEPT_TASK_SWITCH) |
503 (1ULL << INTERCEPT_SHUTDOWN) |
504 (1ULL << INTERCEPT_VMRUN) |
505 (1ULL << INTERCEPT_VMMCALL) |
506 (1ULL << INTERCEPT_VMLOAD) |
507 (1ULL << INTERCEPT_VMSAVE) |
508 (1ULL << INTERCEPT_STGI) |
509 (1ULL << INTERCEPT_CLGI) |
510 (1ULL << INTERCEPT_SKINIT) |
511 (1ULL << INTERCEPT_WBINVD) |
512 (1ULL << INTERCEPT_MONITOR) |
513 (1ULL << INTERCEPT_MWAIT);
514
515 control->iopm_base_pa = iopm_base;
516 control->msrpm_base_pa = msrpm_base;
517 control->tsc_offset = 0;
518 control->int_ctl = V_INTR_MASKING_MASK;
519
520 init_seg(&save->es);
521 init_seg(&save->ss);
522 init_seg(&save->ds);
523 init_seg(&save->fs);
524 init_seg(&save->gs);
525
526 save->cs.selector = 0xf000;
527 /* Executable/Readable Code Segment */
528 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
529 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
530 save->cs.limit = 0xffff;
531 /*
532 * cs.base should really be 0xffff0000, but vmx can't handle that, so
533 * be consistent with it.
534 *
535 * Replace when we have real mode working for vmx.
536 */
537 save->cs.base = 0xf0000;
538
539 save->gdtr.limit = 0xffff;
540 save->idtr.limit = 0xffff;
541
542 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
543 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
544
545 save->efer = MSR_EFER_SVME_MASK;
546 save->dr6 = 0xffff0ff0;
547 save->dr7 = 0x400;
548 save->rflags = 2;
549 save->rip = 0x0000fff0;
550
551 /*
552 * cr0 val on cpu init should be 0x60000010, we enable cpu
553 * cache by default. the orderly way is to enable cache in bios.
554 */
555 save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
556 save->cr4 = X86_CR4_PAE;
557 /* rdx = ?? */
558 }
559
560 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
561 {
562 struct vcpu_svm *svm = to_svm(vcpu);
563
564 init_vmcb(svm->vmcb);
565
566 if (vcpu->vcpu_id != 0) {
567 svm->vmcb->save.rip = 0;
568 svm->vmcb->save.cs.base = svm->vcpu.sipi_vector << 12;
569 svm->vmcb->save.cs.selector = svm->vcpu.sipi_vector << 8;
570 }
571
572 return 0;
573 }
574
575 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
576 {
577 struct vcpu_svm *svm;
578 struct page *page;
579 int err;
580
581 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
582 if (!svm) {
583 err = -ENOMEM;
584 goto out;
585 }
586
587 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
588 if (err)
589 goto free_svm;
590
591 page = alloc_page(GFP_KERNEL);
592 if (!page) {
593 err = -ENOMEM;
594 goto uninit;
595 }
596
597 svm->vmcb = page_address(page);
598 clear_page(svm->vmcb);
599 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
600 svm->asid_generation = 0;
601 memset(svm->db_regs, 0, sizeof(svm->db_regs));
602 init_vmcb(svm->vmcb);
603
604 fx_init(&svm->vcpu);
605 svm->vcpu.fpu_active = 1;
606 svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
607 if (svm->vcpu.vcpu_id == 0)
608 svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
609
610 return &svm->vcpu;
611
612 uninit:
613 kvm_vcpu_uninit(&svm->vcpu);
614 free_svm:
615 kmem_cache_free(kvm_vcpu_cache, svm);
616 out:
617 return ERR_PTR(err);
618 }
619
620 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
621 {
622 struct vcpu_svm *svm = to_svm(vcpu);
623
624 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
625 kvm_vcpu_uninit(vcpu);
626 kmem_cache_free(kvm_vcpu_cache, svm);
627 }
628
629 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
630 {
631 struct vcpu_svm *svm = to_svm(vcpu);
632 int i;
633
634 if (unlikely(cpu != vcpu->cpu)) {
635 u64 tsc_this, delta;
636
637 /*
638 * Make sure that the guest sees a monotonically
639 * increasing TSC.
640 */
641 rdtscll(tsc_this);
642 delta = vcpu->host_tsc - tsc_this;
643 svm->vmcb->control.tsc_offset += delta;
644 vcpu->cpu = cpu;
645 kvm_migrate_apic_timer(vcpu);
646 }
647
648 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
649 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
650 }
651
652 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
653 {
654 struct vcpu_svm *svm = to_svm(vcpu);
655 int i;
656
657 ++vcpu->stat.host_state_reload;
658 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
659 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
660
661 rdtscll(vcpu->host_tsc);
662 kvm_put_guest_fpu(vcpu);
663 }
664
665 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
666 {
667 }
668
669 static void svm_cache_regs(struct kvm_vcpu *vcpu)
670 {
671 struct vcpu_svm *svm = to_svm(vcpu);
672
673 vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
674 vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
675 vcpu->rip = svm->vmcb->save.rip;
676 }
677
678 static void svm_decache_regs(struct kvm_vcpu *vcpu)
679 {
680 struct vcpu_svm *svm = to_svm(vcpu);
681 svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
682 svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
683 svm->vmcb->save.rip = vcpu->rip;
684 }
685
686 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
687 {
688 return to_svm(vcpu)->vmcb->save.rflags;
689 }
690
691 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
692 {
693 to_svm(vcpu)->vmcb->save.rflags = rflags;
694 }
695
696 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
697 {
698 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
699
700 switch (seg) {
701 case VCPU_SREG_CS: return &save->cs;
702 case VCPU_SREG_DS: return &save->ds;
703 case VCPU_SREG_ES: return &save->es;
704 case VCPU_SREG_FS: return &save->fs;
705 case VCPU_SREG_GS: return &save->gs;
706 case VCPU_SREG_SS: return &save->ss;
707 case VCPU_SREG_TR: return &save->tr;
708 case VCPU_SREG_LDTR: return &save->ldtr;
709 }
710 BUG();
711 return NULL;
712 }
713
714 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
715 {
716 struct vmcb_seg *s = svm_seg(vcpu, seg);
717
718 return s->base;
719 }
720
721 static void svm_get_segment(struct kvm_vcpu *vcpu,
722 struct kvm_segment *var, int seg)
723 {
724 struct vmcb_seg *s = svm_seg(vcpu, seg);
725
726 var->base = s->base;
727 var->limit = s->limit;
728 var->selector = s->selector;
729 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
730 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
731 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
732 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
733 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
734 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
735 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
736 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
737 var->unusable = !var->present;
738 }
739
740 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
741 {
742 struct vcpu_svm *svm = to_svm(vcpu);
743
744 dt->limit = svm->vmcb->save.idtr.limit;
745 dt->base = svm->vmcb->save.idtr.base;
746 }
747
748 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
749 {
750 struct vcpu_svm *svm = to_svm(vcpu);
751
752 svm->vmcb->save.idtr.limit = dt->limit;
753 svm->vmcb->save.idtr.base = dt->base ;
754 }
755
756 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
757 {
758 struct vcpu_svm *svm = to_svm(vcpu);
759
760 dt->limit = svm->vmcb->save.gdtr.limit;
761 dt->base = svm->vmcb->save.gdtr.base;
762 }
763
764 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
765 {
766 struct vcpu_svm *svm = to_svm(vcpu);
767
768 svm->vmcb->save.gdtr.limit = dt->limit;
769 svm->vmcb->save.gdtr.base = dt->base ;
770 }
771
772 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
773 {
774 }
775
776 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
777 {
778 struct vcpu_svm *svm = to_svm(vcpu);
779
780 #ifdef CONFIG_X86_64
781 if (vcpu->shadow_efer & KVM_EFER_LME) {
782 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
783 vcpu->shadow_efer |= KVM_EFER_LMA;
784 svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
785 }
786
787 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
788 vcpu->shadow_efer &= ~KVM_EFER_LMA;
789 svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
790 }
791 }
792 #endif
793 if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
794 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
795 vcpu->fpu_active = 1;
796 }
797
798 vcpu->cr0 = cr0;
799 cr0 |= X86_CR0_PG | X86_CR0_WP;
800 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
801 svm->vmcb->save.cr0 = cr0;
802 }
803
804 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
805 {
806 vcpu->cr4 = cr4;
807 to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
808 }
809
810 static void svm_set_segment(struct kvm_vcpu *vcpu,
811 struct kvm_segment *var, int seg)
812 {
813 struct vcpu_svm *svm = to_svm(vcpu);
814 struct vmcb_seg *s = svm_seg(vcpu, seg);
815
816 s->base = var->base;
817 s->limit = var->limit;
818 s->selector = var->selector;
819 if (var->unusable)
820 s->attrib = 0;
821 else {
822 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
823 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
824 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
825 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
826 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
827 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
828 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
829 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
830 }
831 if (seg == VCPU_SREG_CS)
832 svm->vmcb->save.cpl
833 = (svm->vmcb->save.cs.attrib
834 >> SVM_SELECTOR_DPL_SHIFT) & 3;
835
836 }
837
838 /* FIXME:
839
840 svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
841 svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
842
843 */
844
845 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
846 {
847 return -EOPNOTSUPP;
848 }
849
850 static int svm_get_irq(struct kvm_vcpu *vcpu)
851 {
852 struct vcpu_svm *svm = to_svm(vcpu);
853 u32 exit_int_info = svm->vmcb->control.exit_int_info;
854
855 if (is_external_interrupt(exit_int_info))
856 return exit_int_info & SVM_EVTINJ_VEC_MASK;
857 return -1;
858 }
859
860 static void load_host_msrs(struct kvm_vcpu *vcpu)
861 {
862 #ifdef CONFIG_X86_64
863 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
864 #endif
865 }
866
867 static void save_host_msrs(struct kvm_vcpu *vcpu)
868 {
869 #ifdef CONFIG_X86_64
870 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
871 #endif
872 }
873
874 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
875 {
876 if (svm_data->next_asid > svm_data->max_asid) {
877 ++svm_data->asid_generation;
878 svm_data->next_asid = 1;
879 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
880 }
881
882 svm->vcpu.cpu = svm_data->cpu;
883 svm->asid_generation = svm_data->asid_generation;
884 svm->vmcb->control.asid = svm_data->next_asid++;
885 }
886
887 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
888 {
889 return to_svm(vcpu)->db_regs[dr];
890 }
891
892 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
893 int *exception)
894 {
895 struct vcpu_svm *svm = to_svm(vcpu);
896
897 *exception = 0;
898
899 if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
900 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
901 svm->vmcb->save.dr6 |= DR6_BD_MASK;
902 *exception = DB_VECTOR;
903 return;
904 }
905
906 switch (dr) {
907 case 0 ... 3:
908 svm->db_regs[dr] = value;
909 return;
910 case 4 ... 5:
911 if (vcpu->cr4 & X86_CR4_DE) {
912 *exception = UD_VECTOR;
913 return;
914 }
915 case 7: {
916 if (value & ~((1ULL << 32) - 1)) {
917 *exception = GP_VECTOR;
918 return;
919 }
920 svm->vmcb->save.dr7 = value;
921 return;
922 }
923 default:
924 printk(KERN_DEBUG "%s: unexpected dr %u\n",
925 __FUNCTION__, dr);
926 *exception = UD_VECTOR;
927 return;
928 }
929 }
930
931 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
932 {
933 u32 exit_int_info = svm->vmcb->control.exit_int_info;
934 struct kvm *kvm = svm->vcpu.kvm;
935 u64 fault_address;
936 u32 error_code;
937
938 if (!irqchip_in_kernel(kvm) &&
939 is_external_interrupt(exit_int_info))
940 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
941
942 fault_address = svm->vmcb->control.exit_info_2;
943 error_code = svm->vmcb->control.exit_info_1;
944 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
945 }
946
947 static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
948 {
949 int er;
950
951 er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0);
952 if (er != EMULATE_DONE)
953 inject_ud(&svm->vcpu);
954
955 return 1;
956 }
957
958 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
959 {
960 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
961 if (!(svm->vcpu.cr0 & X86_CR0_TS))
962 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
963 svm->vcpu.fpu_active = 1;
964
965 return 1;
966 }
967
968 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
969 {
970 /*
971 * VMCB is undefined after a SHUTDOWN intercept
972 * so reinitialize it.
973 */
974 clear_page(svm->vmcb);
975 init_vmcb(svm->vmcb);
976
977 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
978 return 0;
979 }
980
981 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
982 {
983 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
984 int size, down, in, string, rep;
985 unsigned port;
986
987 ++svm->vcpu.stat.io_exits;
988
989 svm->next_rip = svm->vmcb->control.exit_info_2;
990
991 string = (io_info & SVM_IOIO_STR_MASK) != 0;
992
993 if (string) {
994 if (emulate_instruction(&svm->vcpu,
995 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
996 return 0;
997 return 1;
998 }
999
1000 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1001 port = io_info >> 16;
1002 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1003 rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1004 down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1005
1006 return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1007 }
1008
1009 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1010 {
1011 return 1;
1012 }
1013
1014 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1015 {
1016 svm->next_rip = svm->vmcb->save.rip + 1;
1017 skip_emulated_instruction(&svm->vcpu);
1018 return kvm_emulate_halt(&svm->vcpu);
1019 }
1020
1021 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1022 {
1023 svm->next_rip = svm->vmcb->save.rip + 3;
1024 skip_emulated_instruction(&svm->vcpu);
1025 kvm_emulate_hypercall(&svm->vcpu);
1026 return 1;
1027 }
1028
1029 static int invalid_op_interception(struct vcpu_svm *svm,
1030 struct kvm_run *kvm_run)
1031 {
1032 inject_ud(&svm->vcpu);
1033 return 1;
1034 }
1035
1036 static int task_switch_interception(struct vcpu_svm *svm,
1037 struct kvm_run *kvm_run)
1038 {
1039 pr_unimpl(&svm->vcpu, "%s: task switch is unsupported\n", __FUNCTION__);
1040 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1041 return 0;
1042 }
1043
1044 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1045 {
1046 svm->next_rip = svm->vmcb->save.rip + 2;
1047 kvm_emulate_cpuid(&svm->vcpu);
1048 return 1;
1049 }
1050
1051 static int emulate_on_interception(struct vcpu_svm *svm,
1052 struct kvm_run *kvm_run)
1053 {
1054 if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
1055 pr_unimpl(&svm->vcpu, "%s: failed\n", __FUNCTION__);
1056 return 1;
1057 }
1058
1059 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1060 {
1061 struct vcpu_svm *svm = to_svm(vcpu);
1062
1063 switch (ecx) {
1064 case MSR_IA32_TIME_STAMP_COUNTER: {
1065 u64 tsc;
1066
1067 rdtscll(tsc);
1068 *data = svm->vmcb->control.tsc_offset + tsc;
1069 break;
1070 }
1071 case MSR_K6_STAR:
1072 *data = svm->vmcb->save.star;
1073 break;
1074 #ifdef CONFIG_X86_64
1075 case MSR_LSTAR:
1076 *data = svm->vmcb->save.lstar;
1077 break;
1078 case MSR_CSTAR:
1079 *data = svm->vmcb->save.cstar;
1080 break;
1081 case MSR_KERNEL_GS_BASE:
1082 *data = svm->vmcb->save.kernel_gs_base;
1083 break;
1084 case MSR_SYSCALL_MASK:
1085 *data = svm->vmcb->save.sfmask;
1086 break;
1087 #endif
1088 case MSR_IA32_SYSENTER_CS:
1089 *data = svm->vmcb->save.sysenter_cs;
1090 break;
1091 case MSR_IA32_SYSENTER_EIP:
1092 *data = svm->vmcb->save.sysenter_eip;
1093 break;
1094 case MSR_IA32_SYSENTER_ESP:
1095 *data = svm->vmcb->save.sysenter_esp;
1096 break;
1097 default:
1098 return kvm_get_msr_common(vcpu, ecx, data);
1099 }
1100 return 0;
1101 }
1102
1103 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1104 {
1105 u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1106 u64 data;
1107
1108 if (svm_get_msr(&svm->vcpu, ecx, &data))
1109 svm_inject_gp(&svm->vcpu, 0);
1110 else {
1111 svm->vmcb->save.rax = data & 0xffffffff;
1112 svm->vcpu.regs[VCPU_REGS_RDX] = data >> 32;
1113 svm->next_rip = svm->vmcb->save.rip + 2;
1114 skip_emulated_instruction(&svm->vcpu);
1115 }
1116 return 1;
1117 }
1118
1119 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1120 {
1121 struct vcpu_svm *svm = to_svm(vcpu);
1122
1123 switch (ecx) {
1124 case MSR_IA32_TIME_STAMP_COUNTER: {
1125 u64 tsc;
1126
1127 rdtscll(tsc);
1128 svm->vmcb->control.tsc_offset = data - tsc;
1129 break;
1130 }
1131 case MSR_K6_STAR:
1132 svm->vmcb->save.star = data;
1133 break;
1134 #ifdef CONFIG_X86_64
1135 case MSR_LSTAR:
1136 svm->vmcb->save.lstar = data;
1137 break;
1138 case MSR_CSTAR:
1139 svm->vmcb->save.cstar = data;
1140 break;
1141 case MSR_KERNEL_GS_BASE:
1142 svm->vmcb->save.kernel_gs_base = data;
1143 break;
1144 case MSR_SYSCALL_MASK:
1145 svm->vmcb->save.sfmask = data;
1146 break;
1147 #endif
1148 case MSR_IA32_SYSENTER_CS:
1149 svm->vmcb->save.sysenter_cs = data;
1150 break;
1151 case MSR_IA32_SYSENTER_EIP:
1152 svm->vmcb->save.sysenter_eip = data;
1153 break;
1154 case MSR_IA32_SYSENTER_ESP:
1155 svm->vmcb->save.sysenter_esp = data;
1156 break;
1157 default:
1158 return kvm_set_msr_common(vcpu, ecx, data);
1159 }
1160 return 0;
1161 }
1162
1163 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1164 {
1165 u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1166 u64 data = (svm->vmcb->save.rax & -1u)
1167 | ((u64)(svm->vcpu.regs[VCPU_REGS_RDX] & -1u) << 32);
1168 svm->next_rip = svm->vmcb->save.rip + 2;
1169 if (svm_set_msr(&svm->vcpu, ecx, data))
1170 svm_inject_gp(&svm->vcpu, 0);
1171 else
1172 skip_emulated_instruction(&svm->vcpu);
1173 return 1;
1174 }
1175
1176 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1177 {
1178 if (svm->vmcb->control.exit_info_1)
1179 return wrmsr_interception(svm, kvm_run);
1180 else
1181 return rdmsr_interception(svm, kvm_run);
1182 }
1183
1184 static int interrupt_window_interception(struct vcpu_svm *svm,
1185 struct kvm_run *kvm_run)
1186 {
1187 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1188 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1189 /*
1190 * If the user space waits to inject interrupts, exit as soon as
1191 * possible
1192 */
1193 if (kvm_run->request_interrupt_window &&
1194 !svm->vcpu.irq_summary) {
1195 ++svm->vcpu.stat.irq_window_exits;
1196 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1197 return 0;
1198 }
1199
1200 return 1;
1201 }
1202
1203 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1204 struct kvm_run *kvm_run) = {
1205 [SVM_EXIT_READ_CR0] = emulate_on_interception,
1206 [SVM_EXIT_READ_CR3] = emulate_on_interception,
1207 [SVM_EXIT_READ_CR4] = emulate_on_interception,
1208 /* for now: */
1209 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
1210 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
1211 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
1212 [SVM_EXIT_READ_DR0] = emulate_on_interception,
1213 [SVM_EXIT_READ_DR1] = emulate_on_interception,
1214 [SVM_EXIT_READ_DR2] = emulate_on_interception,
1215 [SVM_EXIT_READ_DR3] = emulate_on_interception,
1216 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
1217 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
1218 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
1219 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
1220 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
1221 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
1222 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
1223 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
1224 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
1225 [SVM_EXIT_INTR] = nop_on_interception,
1226 [SVM_EXIT_NMI] = nop_on_interception,
1227 [SVM_EXIT_SMI] = nop_on_interception,
1228 [SVM_EXIT_INIT] = nop_on_interception,
1229 [SVM_EXIT_VINTR] = interrupt_window_interception,
1230 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
1231 [SVM_EXIT_CPUID] = cpuid_interception,
1232 [SVM_EXIT_INVD] = emulate_on_interception,
1233 [SVM_EXIT_HLT] = halt_interception,
1234 [SVM_EXIT_INVLPG] = emulate_on_interception,
1235 [SVM_EXIT_INVLPGA] = invalid_op_interception,
1236 [SVM_EXIT_IOIO] = io_interception,
1237 [SVM_EXIT_MSR] = msr_interception,
1238 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
1239 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
1240 [SVM_EXIT_VMRUN] = invalid_op_interception,
1241 [SVM_EXIT_VMMCALL] = vmmcall_interception,
1242 [SVM_EXIT_VMLOAD] = invalid_op_interception,
1243 [SVM_EXIT_VMSAVE] = invalid_op_interception,
1244 [SVM_EXIT_STGI] = invalid_op_interception,
1245 [SVM_EXIT_CLGI] = invalid_op_interception,
1246 [SVM_EXIT_SKINIT] = invalid_op_interception,
1247 [SVM_EXIT_WBINVD] = emulate_on_interception,
1248 [SVM_EXIT_MONITOR] = invalid_op_interception,
1249 [SVM_EXIT_MWAIT] = invalid_op_interception,
1250 };
1251
1252
1253 static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1254 {
1255 struct vcpu_svm *svm = to_svm(vcpu);
1256 u32 exit_code = svm->vmcb->control.exit_code;
1257
1258 kvm_reput_irq(svm);
1259
1260 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1261 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1262 kvm_run->fail_entry.hardware_entry_failure_reason
1263 = svm->vmcb->control.exit_code;
1264 return 0;
1265 }
1266
1267 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1268 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1269 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1270 "exit_code 0x%x\n",
1271 __FUNCTION__, svm->vmcb->control.exit_int_info,
1272 exit_code);
1273
1274 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1275 || !svm_exit_handlers[exit_code]) {
1276 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1277 kvm_run->hw.hardware_exit_reason = exit_code;
1278 return 0;
1279 }
1280
1281 return svm_exit_handlers[exit_code](svm, kvm_run);
1282 }
1283
1284 static void reload_tss(struct kvm_vcpu *vcpu)
1285 {
1286 int cpu = raw_smp_processor_id();
1287
1288 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1289 svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
1290 load_TR_desc();
1291 }
1292
1293 static void pre_svm_run(struct vcpu_svm *svm)
1294 {
1295 int cpu = raw_smp_processor_id();
1296
1297 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1298
1299 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1300 if (svm->vcpu.cpu != cpu ||
1301 svm->asid_generation != svm_data->asid_generation)
1302 new_asid(svm, svm_data);
1303 }
1304
1305
1306 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1307 {
1308 struct vmcb_control_area *control;
1309
1310 control = &svm->vmcb->control;
1311 control->int_vector = irq;
1312 control->int_ctl &= ~V_INTR_PRIO_MASK;
1313 control->int_ctl |= V_IRQ_MASK |
1314 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1315 }
1316
1317 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
1318 {
1319 struct vcpu_svm *svm = to_svm(vcpu);
1320
1321 svm_inject_irq(svm, irq);
1322 }
1323
1324 static void svm_intr_assist(struct kvm_vcpu *vcpu)
1325 {
1326 struct vcpu_svm *svm = to_svm(vcpu);
1327 struct vmcb *vmcb = svm->vmcb;
1328 int intr_vector = -1;
1329
1330 if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1331 ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1332 intr_vector = vmcb->control.exit_int_info &
1333 SVM_EVTINJ_VEC_MASK;
1334 vmcb->control.exit_int_info = 0;
1335 svm_inject_irq(svm, intr_vector);
1336 return;
1337 }
1338
1339 if (vmcb->control.int_ctl & V_IRQ_MASK)
1340 return;
1341
1342 if (!kvm_cpu_has_interrupt(vcpu))
1343 return;
1344
1345 if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1346 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1347 (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1348 /* unable to deliver irq, set pending irq */
1349 vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1350 svm_inject_irq(svm, 0x0);
1351 return;
1352 }
1353 /* Okay, we can deliver the interrupt: grab it and update PIC state. */
1354 intr_vector = kvm_cpu_get_interrupt(vcpu);
1355 svm_inject_irq(svm, intr_vector);
1356 kvm_timer_intr_post(vcpu, intr_vector);
1357 }
1358
1359 static void kvm_reput_irq(struct vcpu_svm *svm)
1360 {
1361 struct vmcb_control_area *control = &svm->vmcb->control;
1362
1363 if ((control->int_ctl & V_IRQ_MASK)
1364 && !irqchip_in_kernel(svm->vcpu.kvm)) {
1365 control->int_ctl &= ~V_IRQ_MASK;
1366 push_irq(&svm->vcpu, control->int_vector);
1367 }
1368
1369 svm->vcpu.interrupt_window_open =
1370 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1371 }
1372
1373 static void svm_do_inject_vector(struct vcpu_svm *svm)
1374 {
1375 struct kvm_vcpu *vcpu = &svm->vcpu;
1376 int word_index = __ffs(vcpu->irq_summary);
1377 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1378 int irq = word_index * BITS_PER_LONG + bit_index;
1379
1380 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1381 if (!vcpu->irq_pending[word_index])
1382 clear_bit(word_index, &vcpu->irq_summary);
1383 svm_inject_irq(svm, irq);
1384 }
1385
1386 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1387 struct kvm_run *kvm_run)
1388 {
1389 struct vcpu_svm *svm = to_svm(vcpu);
1390 struct vmcb_control_area *control = &svm->vmcb->control;
1391
1392 svm->vcpu.interrupt_window_open =
1393 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1394 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1395
1396 if (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary)
1397 /*
1398 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1399 */
1400 svm_do_inject_vector(svm);
1401
1402 /*
1403 * Interrupts blocked. Wait for unblock.
1404 */
1405 if (!svm->vcpu.interrupt_window_open &&
1406 (svm->vcpu.irq_summary || kvm_run->request_interrupt_window))
1407 control->intercept |= 1ULL << INTERCEPT_VINTR;
1408 else
1409 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1410 }
1411
1412 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
1413 {
1414 return 0;
1415 }
1416
1417 static void save_db_regs(unsigned long *db_regs)
1418 {
1419 asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1420 asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1421 asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1422 asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1423 }
1424
1425 static void load_db_regs(unsigned long *db_regs)
1426 {
1427 asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1428 asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1429 asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1430 asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1431 }
1432
1433 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1434 {
1435 force_new_asid(vcpu);
1436 }
1437
1438 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1439 {
1440 }
1441
1442 static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1443 {
1444 struct vcpu_svm *svm = to_svm(vcpu);
1445 u16 fs_selector;
1446 u16 gs_selector;
1447 u16 ldt_selector;
1448
1449 pre_svm_run(svm);
1450
1451 save_host_msrs(vcpu);
1452 fs_selector = read_fs();
1453 gs_selector = read_gs();
1454 ldt_selector = read_ldt();
1455 svm->host_cr2 = kvm_read_cr2();
1456 svm->host_dr6 = read_dr6();
1457 svm->host_dr7 = read_dr7();
1458 svm->vmcb->save.cr2 = vcpu->cr2;
1459
1460 if (svm->vmcb->save.dr7 & 0xff) {
1461 write_dr7(0);
1462 save_db_regs(svm->host_db_regs);
1463 load_db_regs(svm->db_regs);
1464 }
1465
1466 clgi();
1467
1468 local_irq_enable();
1469
1470 asm volatile (
1471 #ifdef CONFIG_X86_64
1472 "push %%rbp; \n\t"
1473 #else
1474 "push %%ebp; \n\t"
1475 #endif
1476
1477 #ifdef CONFIG_X86_64
1478 "mov %c[rbx](%[svm]), %%rbx \n\t"
1479 "mov %c[rcx](%[svm]), %%rcx \n\t"
1480 "mov %c[rdx](%[svm]), %%rdx \n\t"
1481 "mov %c[rsi](%[svm]), %%rsi \n\t"
1482 "mov %c[rdi](%[svm]), %%rdi \n\t"
1483 "mov %c[rbp](%[svm]), %%rbp \n\t"
1484 "mov %c[r8](%[svm]), %%r8 \n\t"
1485 "mov %c[r9](%[svm]), %%r9 \n\t"
1486 "mov %c[r10](%[svm]), %%r10 \n\t"
1487 "mov %c[r11](%[svm]), %%r11 \n\t"
1488 "mov %c[r12](%[svm]), %%r12 \n\t"
1489 "mov %c[r13](%[svm]), %%r13 \n\t"
1490 "mov %c[r14](%[svm]), %%r14 \n\t"
1491 "mov %c[r15](%[svm]), %%r15 \n\t"
1492 #else
1493 "mov %c[rbx](%[svm]), %%ebx \n\t"
1494 "mov %c[rcx](%[svm]), %%ecx \n\t"
1495 "mov %c[rdx](%[svm]), %%edx \n\t"
1496 "mov %c[rsi](%[svm]), %%esi \n\t"
1497 "mov %c[rdi](%[svm]), %%edi \n\t"
1498 "mov %c[rbp](%[svm]), %%ebp \n\t"
1499 #endif
1500
1501 #ifdef CONFIG_X86_64
1502 /* Enter guest mode */
1503 "push %%rax \n\t"
1504 "mov %c[vmcb](%[svm]), %%rax \n\t"
1505 SVM_VMLOAD "\n\t"
1506 SVM_VMRUN "\n\t"
1507 SVM_VMSAVE "\n\t"
1508 "pop %%rax \n\t"
1509 #else
1510 /* Enter guest mode */
1511 "push %%eax \n\t"
1512 "mov %c[vmcb](%[svm]), %%eax \n\t"
1513 SVM_VMLOAD "\n\t"
1514 SVM_VMRUN "\n\t"
1515 SVM_VMSAVE "\n\t"
1516 "pop %%eax \n\t"
1517 #endif
1518
1519 /* Save guest registers, load host registers */
1520 #ifdef CONFIG_X86_64
1521 "mov %%rbx, %c[rbx](%[svm]) \n\t"
1522 "mov %%rcx, %c[rcx](%[svm]) \n\t"
1523 "mov %%rdx, %c[rdx](%[svm]) \n\t"
1524 "mov %%rsi, %c[rsi](%[svm]) \n\t"
1525 "mov %%rdi, %c[rdi](%[svm]) \n\t"
1526 "mov %%rbp, %c[rbp](%[svm]) \n\t"
1527 "mov %%r8, %c[r8](%[svm]) \n\t"
1528 "mov %%r9, %c[r9](%[svm]) \n\t"
1529 "mov %%r10, %c[r10](%[svm]) \n\t"
1530 "mov %%r11, %c[r11](%[svm]) \n\t"
1531 "mov %%r12, %c[r12](%[svm]) \n\t"
1532 "mov %%r13, %c[r13](%[svm]) \n\t"
1533 "mov %%r14, %c[r14](%[svm]) \n\t"
1534 "mov %%r15, %c[r15](%[svm]) \n\t"
1535
1536 "pop %%rbp; \n\t"
1537 #else
1538 "mov %%ebx, %c[rbx](%[svm]) \n\t"
1539 "mov %%ecx, %c[rcx](%[svm]) \n\t"
1540 "mov %%edx, %c[rdx](%[svm]) \n\t"
1541 "mov %%esi, %c[rsi](%[svm]) \n\t"
1542 "mov %%edi, %c[rdi](%[svm]) \n\t"
1543 "mov %%ebp, %c[rbp](%[svm]) \n\t"
1544
1545 "pop %%ebp; \n\t"
1546 #endif
1547 :
1548 : [svm]"a"(svm),
1549 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1550 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RBX])),
1551 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RCX])),
1552 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RDX])),
1553 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RSI])),
1554 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RDI])),
1555 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RBP]))
1556 #ifdef CONFIG_X86_64
1557 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R8])),
1558 [r9]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R9])),
1559 [r10]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R10])),
1560 [r11]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R11])),
1561 [r12]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R12])),
1562 [r13]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R13])),
1563 [r14]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R14])),
1564 [r15]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R15]))
1565 #endif
1566 : "cc", "memory"
1567 #ifdef CONFIG_X86_64
1568 , "rbx", "rcx", "rdx", "rsi", "rdi"
1569 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
1570 #else
1571 , "ebx", "ecx", "edx" , "esi", "edi"
1572 #endif
1573 );
1574
1575 if ((svm->vmcb->save.dr7 & 0xff))
1576 load_db_regs(svm->host_db_regs);
1577
1578 vcpu->cr2 = svm->vmcb->save.cr2;
1579
1580 write_dr6(svm->host_dr6);
1581 write_dr7(svm->host_dr7);
1582 kvm_write_cr2(svm->host_cr2);
1583
1584 load_fs(fs_selector);
1585 load_gs(gs_selector);
1586 load_ldt(ldt_selector);
1587 load_host_msrs(vcpu);
1588
1589 reload_tss(vcpu);
1590
1591 local_irq_disable();
1592
1593 stgi();
1594
1595 svm->next_rip = 0;
1596 }
1597
1598 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1599 {
1600 struct vcpu_svm *svm = to_svm(vcpu);
1601
1602 svm->vmcb->save.cr3 = root;
1603 force_new_asid(vcpu);
1604
1605 if (vcpu->fpu_active) {
1606 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1607 svm->vmcb->save.cr0 |= X86_CR0_TS;
1608 vcpu->fpu_active = 0;
1609 }
1610 }
1611
1612 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1613 unsigned long addr,
1614 uint32_t err_code)
1615 {
1616 struct vcpu_svm *svm = to_svm(vcpu);
1617 uint32_t exit_int_info = svm->vmcb->control.exit_int_info;
1618
1619 ++vcpu->stat.pf_guest;
1620
1621 if (is_page_fault(exit_int_info)) {
1622
1623 svm->vmcb->control.event_inj_err = 0;
1624 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
1625 SVM_EVTINJ_VALID_ERR |
1626 SVM_EVTINJ_TYPE_EXEPT |
1627 DF_VECTOR;
1628 return;
1629 }
1630 vcpu->cr2 = addr;
1631 svm->vmcb->save.cr2 = addr;
1632 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
1633 SVM_EVTINJ_VALID_ERR |
1634 SVM_EVTINJ_TYPE_EXEPT |
1635 PF_VECTOR;
1636 svm->vmcb->control.event_inj_err = err_code;
1637 }
1638
1639
1640 static int is_disabled(void)
1641 {
1642 u64 vm_cr;
1643
1644 rdmsrl(MSR_VM_CR, vm_cr);
1645 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1646 return 1;
1647
1648 return 0;
1649 }
1650
1651 static void
1652 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1653 {
1654 /*
1655 * Patch in the VMMCALL instruction:
1656 */
1657 hypercall[0] = 0x0f;
1658 hypercall[1] = 0x01;
1659 hypercall[2] = 0xd9;
1660 }
1661
1662 static void svm_check_processor_compat(void *rtn)
1663 {
1664 *(int *)rtn = 0;
1665 }
1666
1667 static struct kvm_x86_ops svm_x86_ops = {
1668 .cpu_has_kvm_support = has_svm,
1669 .disabled_by_bios = is_disabled,
1670 .hardware_setup = svm_hardware_setup,
1671 .hardware_unsetup = svm_hardware_unsetup,
1672 .check_processor_compatibility = svm_check_processor_compat,
1673 .hardware_enable = svm_hardware_enable,
1674 .hardware_disable = svm_hardware_disable,
1675
1676 .vcpu_create = svm_create_vcpu,
1677 .vcpu_free = svm_free_vcpu,
1678 .vcpu_reset = svm_vcpu_reset,
1679
1680 .prepare_guest_switch = svm_prepare_guest_switch,
1681 .vcpu_load = svm_vcpu_load,
1682 .vcpu_put = svm_vcpu_put,
1683 .vcpu_decache = svm_vcpu_decache,
1684
1685 .set_guest_debug = svm_guest_debug,
1686 .get_msr = svm_get_msr,
1687 .set_msr = svm_set_msr,
1688 .get_segment_base = svm_get_segment_base,
1689 .get_segment = svm_get_segment,
1690 .set_segment = svm_set_segment,
1691 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
1692 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1693 .set_cr0 = svm_set_cr0,
1694 .set_cr3 = svm_set_cr3,
1695 .set_cr4 = svm_set_cr4,
1696 .set_efer = svm_set_efer,
1697 .get_idt = svm_get_idt,
1698 .set_idt = svm_set_idt,
1699 .get_gdt = svm_get_gdt,
1700 .set_gdt = svm_set_gdt,
1701 .get_dr = svm_get_dr,
1702 .set_dr = svm_set_dr,
1703 .cache_regs = svm_cache_regs,
1704 .decache_regs = svm_decache_regs,
1705 .get_rflags = svm_get_rflags,
1706 .set_rflags = svm_set_rflags,
1707
1708 .tlb_flush = svm_flush_tlb,
1709 .inject_page_fault = svm_inject_page_fault,
1710
1711 .inject_gp = svm_inject_gp,
1712
1713 .run = svm_vcpu_run,
1714 .handle_exit = handle_exit,
1715 .skip_emulated_instruction = skip_emulated_instruction,
1716 .patch_hypercall = svm_patch_hypercall,
1717 .get_irq = svm_get_irq,
1718 .set_irq = svm_set_irq,
1719 .inject_pending_irq = svm_intr_assist,
1720 .inject_pending_vectors = do_interrupt_requests,
1721
1722 .set_tss_addr = svm_set_tss_addr,
1723 };
1724
1725 static int __init svm_init(void)
1726 {
1727 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
1728 THIS_MODULE);
1729 }
1730
1731 static void __exit svm_exit(void)
1732 {
1733 kvm_exit();
1734 }
1735
1736 module_init(svm_init)
1737 module_exit(svm_exit)
This page took 0.079565 seconds and 6 git commands to generate.