027a9625ef90160551b0eaf7b70b2adec2ca3ef6
[deliverable/linux.git] / drivers / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/profile.h>
26 #include <asm/io.h>
27 #include <asm/desc.h>
28
29 #include "segment_descriptor.h"
30
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
33
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
36
37 #ifdef CONFIG_X86_64
38 #define HOST_IS_64 1
39 #else
40 #define HOST_IS_64 0
41 #endif
42
43 static struct vmcs_descriptor {
44 int size;
45 int order;
46 u32 revision_id;
47 } vmcs_descriptor;
48
49 #define VMX_SEGMENT_FIELD(seg) \
50 [VCPU_SREG_##seg] = { \
51 .selector = GUEST_##seg##_SELECTOR, \
52 .base = GUEST_##seg##_BASE, \
53 .limit = GUEST_##seg##_LIMIT, \
54 .ar_bytes = GUEST_##seg##_AR_BYTES, \
55 }
56
57 static struct kvm_vmx_segment_field {
58 unsigned selector;
59 unsigned base;
60 unsigned limit;
61 unsigned ar_bytes;
62 } kvm_vmx_segment_fields[] = {
63 VMX_SEGMENT_FIELD(CS),
64 VMX_SEGMENT_FIELD(DS),
65 VMX_SEGMENT_FIELD(ES),
66 VMX_SEGMENT_FIELD(FS),
67 VMX_SEGMENT_FIELD(GS),
68 VMX_SEGMENT_FIELD(SS),
69 VMX_SEGMENT_FIELD(TR),
70 VMX_SEGMENT_FIELD(LDTR),
71 };
72
73 static const u32 vmx_msr_index[] = {
74 #ifdef CONFIG_X86_64
75 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
76 #endif
77 MSR_EFER, MSR_K6_STAR,
78 };
79 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
80
81 static inline int is_page_fault(u32 intr_info)
82 {
83 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
84 INTR_INFO_VALID_MASK)) ==
85 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
86 }
87
88 static inline int is_external_interrupt(u32 intr_info)
89 {
90 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
91 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
92 }
93
94 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
95 {
96 int i;
97
98 for (i = 0; i < vcpu->nmsrs; ++i)
99 if (vcpu->guest_msrs[i].index == msr)
100 return &vcpu->guest_msrs[i];
101 return NULL;
102 }
103
104 static void vmcs_clear(struct vmcs *vmcs)
105 {
106 u64 phys_addr = __pa(vmcs);
107 u8 error;
108
109 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
110 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
111 : "cc", "memory");
112 if (error)
113 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
114 vmcs, phys_addr);
115 }
116
117 static void __vcpu_clear(void *arg)
118 {
119 struct kvm_vcpu *vcpu = arg;
120 int cpu = raw_smp_processor_id();
121
122 if (vcpu->cpu == cpu)
123 vmcs_clear(vcpu->vmcs);
124 if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
125 per_cpu(current_vmcs, cpu) = NULL;
126 }
127
128 static void vcpu_clear(struct kvm_vcpu *vcpu)
129 {
130 if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
131 smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
132 else
133 __vcpu_clear(vcpu);
134 vcpu->launched = 0;
135 }
136
137 static unsigned long vmcs_readl(unsigned long field)
138 {
139 unsigned long value;
140
141 asm volatile (ASM_VMX_VMREAD_RDX_RAX
142 : "=a"(value) : "d"(field) : "cc");
143 return value;
144 }
145
146 static u16 vmcs_read16(unsigned long field)
147 {
148 return vmcs_readl(field);
149 }
150
151 static u32 vmcs_read32(unsigned long field)
152 {
153 return vmcs_readl(field);
154 }
155
156 static u64 vmcs_read64(unsigned long field)
157 {
158 #ifdef CONFIG_X86_64
159 return vmcs_readl(field);
160 #else
161 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
162 #endif
163 }
164
165 static noinline void vmwrite_error(unsigned long field, unsigned long value)
166 {
167 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
168 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
169 dump_stack();
170 }
171
172 static void vmcs_writel(unsigned long field, unsigned long value)
173 {
174 u8 error;
175
176 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
177 : "=q"(error) : "a"(value), "d"(field) : "cc" );
178 if (unlikely(error))
179 vmwrite_error(field, value);
180 }
181
182 static void vmcs_write16(unsigned long field, u16 value)
183 {
184 vmcs_writel(field, value);
185 }
186
187 static void vmcs_write32(unsigned long field, u32 value)
188 {
189 vmcs_writel(field, value);
190 }
191
192 static void vmcs_write64(unsigned long field, u64 value)
193 {
194 #ifdef CONFIG_X86_64
195 vmcs_writel(field, value);
196 #else
197 vmcs_writel(field, value);
198 asm volatile ("");
199 vmcs_writel(field+1, value >> 32);
200 #endif
201 }
202
203 /*
204 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
205 * vcpu mutex is already taken.
206 */
207 static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
208 {
209 u64 phys_addr = __pa(vcpu->vmcs);
210 int cpu;
211
212 cpu = get_cpu();
213
214 if (vcpu->cpu != cpu)
215 vcpu_clear(vcpu);
216
217 if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
218 u8 error;
219
220 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
221 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
222 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
223 : "cc");
224 if (error)
225 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
226 vcpu->vmcs, phys_addr);
227 }
228
229 if (vcpu->cpu != cpu) {
230 struct descriptor_table dt;
231 unsigned long sysenter_esp;
232
233 vcpu->cpu = cpu;
234 /*
235 * Linux uses per-cpu TSS and GDT, so set these when switching
236 * processors.
237 */
238 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
239 get_gdt(&dt);
240 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
241
242 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
243 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
244 }
245 }
246
247 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
248 {
249 put_cpu();
250 }
251
252 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
253 {
254 vcpu_clear(vcpu);
255 }
256
257 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
258 {
259 return vmcs_readl(GUEST_RFLAGS);
260 }
261
262 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
263 {
264 vmcs_writel(GUEST_RFLAGS, rflags);
265 }
266
267 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
268 {
269 unsigned long rip;
270 u32 interruptibility;
271
272 rip = vmcs_readl(GUEST_RIP);
273 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
274 vmcs_writel(GUEST_RIP, rip);
275
276 /*
277 * We emulated an instruction, so temporary interrupt blocking
278 * should be removed, if set.
279 */
280 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
281 if (interruptibility & 3)
282 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
283 interruptibility & ~3);
284 vcpu->interrupt_window_open = 1;
285 }
286
287 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
288 {
289 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
290 vmcs_readl(GUEST_RIP));
291 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
292 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
293 GP_VECTOR |
294 INTR_TYPE_EXCEPTION |
295 INTR_INFO_DELIEVER_CODE_MASK |
296 INTR_INFO_VALID_MASK);
297 }
298
299 /*
300 * reads and returns guest's timestamp counter "register"
301 * guest_tsc = host_tsc + tsc_offset -- 21.3
302 */
303 static u64 guest_read_tsc(void)
304 {
305 u64 host_tsc, tsc_offset;
306
307 rdtscll(host_tsc);
308 tsc_offset = vmcs_read64(TSC_OFFSET);
309 return host_tsc + tsc_offset;
310 }
311
312 /*
313 * writes 'guest_tsc' into guest's timestamp counter "register"
314 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
315 */
316 static void guest_write_tsc(u64 guest_tsc)
317 {
318 u64 host_tsc;
319
320 rdtscll(host_tsc);
321 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
322 }
323
324 static void reload_tss(void)
325 {
326 #ifndef CONFIG_X86_64
327
328 /*
329 * VT restores TR but not its size. Useless.
330 */
331 struct descriptor_table gdt;
332 struct segment_descriptor *descs;
333
334 get_gdt(&gdt);
335 descs = (void *)gdt.base;
336 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
337 load_TR_desc();
338 #endif
339 }
340
341 /*
342 * Reads an msr value (of 'msr_index') into 'pdata'.
343 * Returns 0 on success, non-0 otherwise.
344 * Assumes vcpu_load() was already called.
345 */
346 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
347 {
348 u64 data;
349 struct vmx_msr_entry *msr;
350
351 if (!pdata) {
352 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
353 return -EINVAL;
354 }
355
356 switch (msr_index) {
357 #ifdef CONFIG_X86_64
358 case MSR_FS_BASE:
359 data = vmcs_readl(GUEST_FS_BASE);
360 break;
361 case MSR_GS_BASE:
362 data = vmcs_readl(GUEST_GS_BASE);
363 break;
364 case MSR_EFER:
365 return kvm_get_msr_common(vcpu, msr_index, pdata);
366 #endif
367 case MSR_IA32_TIME_STAMP_COUNTER:
368 data = guest_read_tsc();
369 break;
370 case MSR_IA32_SYSENTER_CS:
371 data = vmcs_read32(GUEST_SYSENTER_CS);
372 break;
373 case MSR_IA32_SYSENTER_EIP:
374 data = vmcs_readl(GUEST_SYSENTER_EIP);
375 break;
376 case MSR_IA32_SYSENTER_ESP:
377 data = vmcs_readl(GUEST_SYSENTER_ESP);
378 break;
379 default:
380 msr = find_msr_entry(vcpu, msr_index);
381 if (msr) {
382 data = msr->data;
383 break;
384 }
385 return kvm_get_msr_common(vcpu, msr_index, pdata);
386 }
387
388 *pdata = data;
389 return 0;
390 }
391
392 /*
393 * Writes msr value into into the appropriate "register".
394 * Returns 0 on success, non-0 otherwise.
395 * Assumes vcpu_load() was already called.
396 */
397 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
398 {
399 struct vmx_msr_entry *msr;
400 switch (msr_index) {
401 #ifdef CONFIG_X86_64
402 case MSR_EFER:
403 return kvm_set_msr_common(vcpu, msr_index, data);
404 case MSR_FS_BASE:
405 vmcs_writel(GUEST_FS_BASE, data);
406 break;
407 case MSR_GS_BASE:
408 vmcs_writel(GUEST_GS_BASE, data);
409 break;
410 #endif
411 case MSR_IA32_SYSENTER_CS:
412 vmcs_write32(GUEST_SYSENTER_CS, data);
413 break;
414 case MSR_IA32_SYSENTER_EIP:
415 vmcs_writel(GUEST_SYSENTER_EIP, data);
416 break;
417 case MSR_IA32_SYSENTER_ESP:
418 vmcs_writel(GUEST_SYSENTER_ESP, data);
419 break;
420 case MSR_IA32_TIME_STAMP_COUNTER:
421 guest_write_tsc(data);
422 break;
423 default:
424 msr = find_msr_entry(vcpu, msr_index);
425 if (msr) {
426 msr->data = data;
427 break;
428 }
429 return kvm_set_msr_common(vcpu, msr_index, data);
430 msr->data = data;
431 break;
432 }
433
434 return 0;
435 }
436
437 /*
438 * Sync the rsp and rip registers into the vcpu structure. This allows
439 * registers to be accessed by indexing vcpu->regs.
440 */
441 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
442 {
443 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
444 vcpu->rip = vmcs_readl(GUEST_RIP);
445 }
446
447 /*
448 * Syncs rsp and rip back into the vmcs. Should be called after possible
449 * modification.
450 */
451 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
452 {
453 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
454 vmcs_writel(GUEST_RIP, vcpu->rip);
455 }
456
457 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
458 {
459 unsigned long dr7 = 0x400;
460 u32 exception_bitmap;
461 int old_singlestep;
462
463 exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
464 old_singlestep = vcpu->guest_debug.singlestep;
465
466 vcpu->guest_debug.enabled = dbg->enabled;
467 if (vcpu->guest_debug.enabled) {
468 int i;
469
470 dr7 |= 0x200; /* exact */
471 for (i = 0; i < 4; ++i) {
472 if (!dbg->breakpoints[i].enabled)
473 continue;
474 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
475 dr7 |= 2 << (i*2); /* global enable */
476 dr7 |= 0 << (i*4+16); /* execution breakpoint */
477 }
478
479 exception_bitmap |= (1u << 1); /* Trap debug exceptions */
480
481 vcpu->guest_debug.singlestep = dbg->singlestep;
482 } else {
483 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
484 vcpu->guest_debug.singlestep = 0;
485 }
486
487 if (old_singlestep && !vcpu->guest_debug.singlestep) {
488 unsigned long flags;
489
490 flags = vmcs_readl(GUEST_RFLAGS);
491 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
492 vmcs_writel(GUEST_RFLAGS, flags);
493 }
494
495 vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
496 vmcs_writel(GUEST_DR7, dr7);
497
498 return 0;
499 }
500
501 static __init int cpu_has_kvm_support(void)
502 {
503 unsigned long ecx = cpuid_ecx(1);
504 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
505 }
506
507 static __init int vmx_disabled_by_bios(void)
508 {
509 u64 msr;
510
511 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
512 return (msr & 5) == 1; /* locked but not enabled */
513 }
514
515 static void hardware_enable(void *garbage)
516 {
517 int cpu = raw_smp_processor_id();
518 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
519 u64 old;
520
521 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
522 if ((old & 5) != 5)
523 /* enable and lock */
524 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
525 write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
526 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
527 : "memory", "cc");
528 }
529
530 static void hardware_disable(void *garbage)
531 {
532 asm volatile (ASM_VMX_VMXOFF : : : "cc");
533 }
534
535 static __init void setup_vmcs_descriptor(void)
536 {
537 u32 vmx_msr_low, vmx_msr_high;
538
539 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
540 vmcs_descriptor.size = vmx_msr_high & 0x1fff;
541 vmcs_descriptor.order = get_order(vmcs_descriptor.size);
542 vmcs_descriptor.revision_id = vmx_msr_low;
543 }
544
545 static struct vmcs *alloc_vmcs_cpu(int cpu)
546 {
547 int node = cpu_to_node(cpu);
548 struct page *pages;
549 struct vmcs *vmcs;
550
551 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
552 if (!pages)
553 return NULL;
554 vmcs = page_address(pages);
555 memset(vmcs, 0, vmcs_descriptor.size);
556 vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
557 return vmcs;
558 }
559
560 static struct vmcs *alloc_vmcs(void)
561 {
562 return alloc_vmcs_cpu(raw_smp_processor_id());
563 }
564
565 static void free_vmcs(struct vmcs *vmcs)
566 {
567 free_pages((unsigned long)vmcs, vmcs_descriptor.order);
568 }
569
570 static __exit void free_kvm_area(void)
571 {
572 int cpu;
573
574 for_each_online_cpu(cpu)
575 free_vmcs(per_cpu(vmxarea, cpu));
576 }
577
578 extern struct vmcs *alloc_vmcs_cpu(int cpu);
579
580 static __init int alloc_kvm_area(void)
581 {
582 int cpu;
583
584 for_each_online_cpu(cpu) {
585 struct vmcs *vmcs;
586
587 vmcs = alloc_vmcs_cpu(cpu);
588 if (!vmcs) {
589 free_kvm_area();
590 return -ENOMEM;
591 }
592
593 per_cpu(vmxarea, cpu) = vmcs;
594 }
595 return 0;
596 }
597
598 static __init int hardware_setup(void)
599 {
600 setup_vmcs_descriptor();
601 return alloc_kvm_area();
602 }
603
604 static __exit void hardware_unsetup(void)
605 {
606 free_kvm_area();
607 }
608
609 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
610 {
611 if (vcpu->rmode.active)
612 vmcs_write32(EXCEPTION_BITMAP, ~0);
613 else
614 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
615 }
616
617 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
618 {
619 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
620
621 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
622 vmcs_write16(sf->selector, save->selector);
623 vmcs_writel(sf->base, save->base);
624 vmcs_write32(sf->limit, save->limit);
625 vmcs_write32(sf->ar_bytes, save->ar);
626 } else {
627 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
628 << AR_DPL_SHIFT;
629 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
630 }
631 }
632
633 static void enter_pmode(struct kvm_vcpu *vcpu)
634 {
635 unsigned long flags;
636
637 vcpu->rmode.active = 0;
638
639 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
640 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
641 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
642
643 flags = vmcs_readl(GUEST_RFLAGS);
644 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
645 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
646 vmcs_writel(GUEST_RFLAGS, flags);
647
648 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
649 (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
650
651 update_exception_bitmap(vcpu);
652
653 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
654 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
655 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
656 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
657
658 vmcs_write16(GUEST_SS_SELECTOR, 0);
659 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
660
661 vmcs_write16(GUEST_CS_SELECTOR,
662 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
663 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
664 }
665
666 static int rmode_tss_base(struct kvm* kvm)
667 {
668 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
669 return base_gfn << PAGE_SHIFT;
670 }
671
672 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
673 {
674 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
675
676 save->selector = vmcs_read16(sf->selector);
677 save->base = vmcs_readl(sf->base);
678 save->limit = vmcs_read32(sf->limit);
679 save->ar = vmcs_read32(sf->ar_bytes);
680 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
681 vmcs_write32(sf->limit, 0xffff);
682 vmcs_write32(sf->ar_bytes, 0xf3);
683 }
684
685 static void enter_rmode(struct kvm_vcpu *vcpu)
686 {
687 unsigned long flags;
688
689 vcpu->rmode.active = 1;
690
691 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
692 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
693
694 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
695 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
696
697 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
698 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
699
700 flags = vmcs_readl(GUEST_RFLAGS);
701 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
702
703 flags |= IOPL_MASK | X86_EFLAGS_VM;
704
705 vmcs_writel(GUEST_RFLAGS, flags);
706 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
707 update_exception_bitmap(vcpu);
708
709 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
710 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
711 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
712
713 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
714 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
715 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
716 vmcs_writel(GUEST_CS_BASE, 0xf0000);
717 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
718
719 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
720 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
721 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
722 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
723 }
724
725 #ifdef CONFIG_X86_64
726
727 static void enter_lmode(struct kvm_vcpu *vcpu)
728 {
729 u32 guest_tr_ar;
730
731 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
732 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
733 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
734 __FUNCTION__);
735 vmcs_write32(GUEST_TR_AR_BYTES,
736 (guest_tr_ar & ~AR_TYPE_MASK)
737 | AR_TYPE_BUSY_64_TSS);
738 }
739
740 vcpu->shadow_efer |= EFER_LMA;
741
742 find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
743 vmcs_write32(VM_ENTRY_CONTROLS,
744 vmcs_read32(VM_ENTRY_CONTROLS)
745 | VM_ENTRY_CONTROLS_IA32E_MASK);
746 }
747
748 static void exit_lmode(struct kvm_vcpu *vcpu)
749 {
750 vcpu->shadow_efer &= ~EFER_LMA;
751
752 vmcs_write32(VM_ENTRY_CONTROLS,
753 vmcs_read32(VM_ENTRY_CONTROLS)
754 & ~VM_ENTRY_CONTROLS_IA32E_MASK);
755 }
756
757 #endif
758
759 static void vmx_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
760 {
761 vcpu->cr0 &= KVM_GUEST_CR0_MASK;
762 vcpu->cr0 |= vmcs_readl(GUEST_CR0) & ~KVM_GUEST_CR0_MASK;
763
764 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
765 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
766 }
767
768 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
769 {
770 if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
771 enter_pmode(vcpu);
772
773 if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
774 enter_rmode(vcpu);
775
776 #ifdef CONFIG_X86_64
777 if (vcpu->shadow_efer & EFER_LME) {
778 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
779 enter_lmode(vcpu);
780 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
781 exit_lmode(vcpu);
782 }
783 #endif
784
785 vmcs_writel(CR0_READ_SHADOW, cr0);
786 vmcs_writel(GUEST_CR0,
787 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
788 vcpu->cr0 = cr0;
789 }
790
791 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
792 {
793 vmcs_writel(GUEST_CR3, cr3);
794 }
795
796 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
797 {
798 vmcs_writel(CR4_READ_SHADOW, cr4);
799 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
800 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
801 vcpu->cr4 = cr4;
802 }
803
804 #ifdef CONFIG_X86_64
805
806 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
807 {
808 struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
809
810 vcpu->shadow_efer = efer;
811 if (efer & EFER_LMA) {
812 vmcs_write32(VM_ENTRY_CONTROLS,
813 vmcs_read32(VM_ENTRY_CONTROLS) |
814 VM_ENTRY_CONTROLS_IA32E_MASK);
815 msr->data = efer;
816
817 } else {
818 vmcs_write32(VM_ENTRY_CONTROLS,
819 vmcs_read32(VM_ENTRY_CONTROLS) &
820 ~VM_ENTRY_CONTROLS_IA32E_MASK);
821
822 msr->data = efer & ~EFER_LME;
823 }
824 }
825
826 #endif
827
828 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
829 {
830 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
831
832 return vmcs_readl(sf->base);
833 }
834
835 static void vmx_get_segment(struct kvm_vcpu *vcpu,
836 struct kvm_segment *var, int seg)
837 {
838 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
839 u32 ar;
840
841 var->base = vmcs_readl(sf->base);
842 var->limit = vmcs_read32(sf->limit);
843 var->selector = vmcs_read16(sf->selector);
844 ar = vmcs_read32(sf->ar_bytes);
845 if (ar & AR_UNUSABLE_MASK)
846 ar = 0;
847 var->type = ar & 15;
848 var->s = (ar >> 4) & 1;
849 var->dpl = (ar >> 5) & 3;
850 var->present = (ar >> 7) & 1;
851 var->avl = (ar >> 12) & 1;
852 var->l = (ar >> 13) & 1;
853 var->db = (ar >> 14) & 1;
854 var->g = (ar >> 15) & 1;
855 var->unusable = (ar >> 16) & 1;
856 }
857
858 static void vmx_set_segment(struct kvm_vcpu *vcpu,
859 struct kvm_segment *var, int seg)
860 {
861 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
862 u32 ar;
863
864 vmcs_writel(sf->base, var->base);
865 vmcs_write32(sf->limit, var->limit);
866 vmcs_write16(sf->selector, var->selector);
867 if (var->unusable)
868 ar = 1 << 16;
869 else {
870 ar = var->type & 15;
871 ar |= (var->s & 1) << 4;
872 ar |= (var->dpl & 3) << 5;
873 ar |= (var->present & 1) << 7;
874 ar |= (var->avl & 1) << 12;
875 ar |= (var->l & 1) << 13;
876 ar |= (var->db & 1) << 14;
877 ar |= (var->g & 1) << 15;
878 }
879 if (ar == 0) /* a 0 value means unusable */
880 ar = AR_UNUSABLE_MASK;
881 vmcs_write32(sf->ar_bytes, ar);
882 }
883
884 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
885 {
886 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
887
888 *db = (ar >> 14) & 1;
889 *l = (ar >> 13) & 1;
890 }
891
892 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
893 {
894 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
895 dt->base = vmcs_readl(GUEST_IDTR_BASE);
896 }
897
898 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
899 {
900 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
901 vmcs_writel(GUEST_IDTR_BASE, dt->base);
902 }
903
904 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
905 {
906 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
907 dt->base = vmcs_readl(GUEST_GDTR_BASE);
908 }
909
910 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
911 {
912 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
913 vmcs_writel(GUEST_GDTR_BASE, dt->base);
914 }
915
916 static int init_rmode_tss(struct kvm* kvm)
917 {
918 struct page *p1, *p2, *p3;
919 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
920 char *page;
921
922 p1 = _gfn_to_page(kvm, fn++);
923 p2 = _gfn_to_page(kvm, fn++);
924 p3 = _gfn_to_page(kvm, fn);
925
926 if (!p1 || !p2 || !p3) {
927 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
928 return 0;
929 }
930
931 page = kmap_atomic(p1, KM_USER0);
932 memset(page, 0, PAGE_SIZE);
933 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
934 kunmap_atomic(page, KM_USER0);
935
936 page = kmap_atomic(p2, KM_USER0);
937 memset(page, 0, PAGE_SIZE);
938 kunmap_atomic(page, KM_USER0);
939
940 page = kmap_atomic(p3, KM_USER0);
941 memset(page, 0, PAGE_SIZE);
942 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
943 kunmap_atomic(page, KM_USER0);
944
945 return 1;
946 }
947
948 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
949 {
950 u32 msr_high, msr_low;
951
952 rdmsr(msr, msr_low, msr_high);
953
954 val &= msr_high;
955 val |= msr_low;
956 vmcs_write32(vmcs_field, val);
957 }
958
959 static void seg_setup(int seg)
960 {
961 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
962
963 vmcs_write16(sf->selector, 0);
964 vmcs_writel(sf->base, 0);
965 vmcs_write32(sf->limit, 0xffff);
966 vmcs_write32(sf->ar_bytes, 0x93);
967 }
968
969 /*
970 * Sets up the vmcs for emulated real mode.
971 */
972 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
973 {
974 u32 host_sysenter_cs;
975 u32 junk;
976 unsigned long a;
977 struct descriptor_table dt;
978 int i;
979 int ret = 0;
980 int nr_good_msrs;
981 extern asmlinkage void kvm_vmx_return(void);
982
983 if (!init_rmode_tss(vcpu->kvm)) {
984 ret = -ENOMEM;
985 goto out;
986 }
987
988 memset(vcpu->regs, 0, sizeof(vcpu->regs));
989 vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
990 vcpu->cr8 = 0;
991 vcpu->apic_base = 0xfee00000 |
992 /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
993 MSR_IA32_APICBASE_ENABLE;
994
995 fx_init(vcpu);
996
997 /*
998 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
999 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1000 */
1001 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1002 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1003 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1004 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1005
1006 seg_setup(VCPU_SREG_DS);
1007 seg_setup(VCPU_SREG_ES);
1008 seg_setup(VCPU_SREG_FS);
1009 seg_setup(VCPU_SREG_GS);
1010 seg_setup(VCPU_SREG_SS);
1011
1012 vmcs_write16(GUEST_TR_SELECTOR, 0);
1013 vmcs_writel(GUEST_TR_BASE, 0);
1014 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1015 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1016
1017 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1018 vmcs_writel(GUEST_LDTR_BASE, 0);
1019 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1020 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1021
1022 vmcs_write32(GUEST_SYSENTER_CS, 0);
1023 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1024 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1025
1026 vmcs_writel(GUEST_RFLAGS, 0x02);
1027 vmcs_writel(GUEST_RIP, 0xfff0);
1028 vmcs_writel(GUEST_RSP, 0);
1029
1030 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1031 vmcs_writel(GUEST_DR7, 0x400);
1032
1033 vmcs_writel(GUEST_GDTR_BASE, 0);
1034 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1035
1036 vmcs_writel(GUEST_IDTR_BASE, 0);
1037 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1038
1039 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1040 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1041 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1042
1043 /* I/O */
1044 vmcs_write64(IO_BITMAP_A, 0);
1045 vmcs_write64(IO_BITMAP_B, 0);
1046
1047 guest_write_tsc(0);
1048
1049 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1050
1051 /* Special registers */
1052 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1053
1054 /* Control */
1055 vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1056 PIN_BASED_VM_EXEC_CONTROL,
1057 PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
1058 | PIN_BASED_NMI_EXITING /* 20.6.1 */
1059 );
1060 vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1061 CPU_BASED_VM_EXEC_CONTROL,
1062 CPU_BASED_HLT_EXITING /* 20.6.2 */
1063 | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
1064 | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
1065 | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
1066 | CPU_BASED_MOV_DR_EXITING
1067 | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
1068 );
1069
1070 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1071 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1072 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1073 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1074
1075 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1076 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1077 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1078
1079 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1080 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1081 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1082 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1083 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1084 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1085 #ifdef CONFIG_X86_64
1086 rdmsrl(MSR_FS_BASE, a);
1087 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1088 rdmsrl(MSR_GS_BASE, a);
1089 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1090 #else
1091 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1092 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1093 #endif
1094
1095 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1096
1097 get_idt(&dt);
1098 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1099
1100
1101 vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1102
1103 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1104 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1105 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1106 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1107 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1108 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1109
1110 for (i = 0; i < NR_VMX_MSR; ++i) {
1111 u32 index = vmx_msr_index[i];
1112 u32 data_low, data_high;
1113 u64 data;
1114 int j = vcpu->nmsrs;
1115
1116 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1117 continue;
1118 if (wrmsr_safe(index, data_low, data_high) < 0)
1119 continue;
1120 data = data_low | ((u64)data_high << 32);
1121 vcpu->host_msrs[j].index = index;
1122 vcpu->host_msrs[j].reserved = 0;
1123 vcpu->host_msrs[j].data = data;
1124 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1125 ++vcpu->nmsrs;
1126 }
1127 printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
1128
1129 nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
1130 vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
1131 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1132 vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
1133 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1134 vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
1135 virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
1136 vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1137 (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
1138 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
1139 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1140 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1141
1142
1143 /* 22.2.1, 20.8.1 */
1144 vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1145 VM_ENTRY_CONTROLS, 0);
1146 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1147
1148 #ifdef CONFIG_X86_64
1149 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1150 vmcs_writel(TPR_THRESHOLD, 0);
1151 #endif
1152
1153 vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1154 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1155
1156 vcpu->cr0 = 0x60000010;
1157 vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1158 vmx_set_cr4(vcpu, 0);
1159 #ifdef CONFIG_X86_64
1160 vmx_set_efer(vcpu, 0);
1161 #endif
1162
1163 return 0;
1164
1165 out:
1166 return ret;
1167 }
1168
1169 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1170 {
1171 u16 ent[2];
1172 u16 cs;
1173 u16 ip;
1174 unsigned long flags;
1175 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1176 u16 sp = vmcs_readl(GUEST_RSP);
1177 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1178
1179 if (sp > ss_limit || sp - 6 > sp) {
1180 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1181 __FUNCTION__,
1182 vmcs_readl(GUEST_RSP),
1183 vmcs_readl(GUEST_SS_BASE),
1184 vmcs_read32(GUEST_SS_LIMIT));
1185 return;
1186 }
1187
1188 if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1189 sizeof(ent)) {
1190 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1191 return;
1192 }
1193
1194 flags = vmcs_readl(GUEST_RFLAGS);
1195 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1196 ip = vmcs_readl(GUEST_RIP);
1197
1198
1199 if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1200 kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1201 kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1202 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1203 return;
1204 }
1205
1206 vmcs_writel(GUEST_RFLAGS, flags &
1207 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1208 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1209 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1210 vmcs_writel(GUEST_RIP, ent[0]);
1211 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1212 }
1213
1214 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1215 {
1216 int word_index = __ffs(vcpu->irq_summary);
1217 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1218 int irq = word_index * BITS_PER_LONG + bit_index;
1219
1220 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1221 if (!vcpu->irq_pending[word_index])
1222 clear_bit(word_index, &vcpu->irq_summary);
1223
1224 if (vcpu->rmode.active) {
1225 inject_rmode_irq(vcpu, irq);
1226 return;
1227 }
1228 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1229 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1230 }
1231
1232
1233 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1234 struct kvm_run *kvm_run)
1235 {
1236 u32 cpu_based_vm_exec_control;
1237
1238 vcpu->interrupt_window_open =
1239 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1240 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1241
1242 if (vcpu->interrupt_window_open &&
1243 vcpu->irq_summary &&
1244 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1245 /*
1246 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1247 */
1248 kvm_do_inject_irq(vcpu);
1249
1250 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1251 if (!vcpu->interrupt_window_open &&
1252 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1253 /*
1254 * Interrupts blocked. Wait for unblock.
1255 */
1256 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1257 else
1258 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1259 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1260 }
1261
1262 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1263 {
1264 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1265
1266 set_debugreg(dbg->bp[0], 0);
1267 set_debugreg(dbg->bp[1], 1);
1268 set_debugreg(dbg->bp[2], 2);
1269 set_debugreg(dbg->bp[3], 3);
1270
1271 if (dbg->singlestep) {
1272 unsigned long flags;
1273
1274 flags = vmcs_readl(GUEST_RFLAGS);
1275 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1276 vmcs_writel(GUEST_RFLAGS, flags);
1277 }
1278 }
1279
1280 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1281 int vec, u32 err_code)
1282 {
1283 if (!vcpu->rmode.active)
1284 return 0;
1285
1286 if (vec == GP_VECTOR && err_code == 0)
1287 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1288 return 1;
1289 return 0;
1290 }
1291
1292 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1293 {
1294 u32 intr_info, error_code;
1295 unsigned long cr2, rip;
1296 u32 vect_info;
1297 enum emulation_result er;
1298 int r;
1299
1300 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1301 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1302
1303 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1304 !is_page_fault(intr_info)) {
1305 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1306 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1307 }
1308
1309 if (is_external_interrupt(vect_info)) {
1310 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1311 set_bit(irq, vcpu->irq_pending);
1312 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1313 }
1314
1315 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1316 asm ("int $2");
1317 return 1;
1318 }
1319 error_code = 0;
1320 rip = vmcs_readl(GUEST_RIP);
1321 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1322 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1323 if (is_page_fault(intr_info)) {
1324 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1325
1326 spin_lock(&vcpu->kvm->lock);
1327 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1328 if (r < 0) {
1329 spin_unlock(&vcpu->kvm->lock);
1330 return r;
1331 }
1332 if (!r) {
1333 spin_unlock(&vcpu->kvm->lock);
1334 return 1;
1335 }
1336
1337 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1338 spin_unlock(&vcpu->kvm->lock);
1339
1340 switch (er) {
1341 case EMULATE_DONE:
1342 return 1;
1343 case EMULATE_DO_MMIO:
1344 ++kvm_stat.mmio_exits;
1345 kvm_run->exit_reason = KVM_EXIT_MMIO;
1346 return 0;
1347 case EMULATE_FAIL:
1348 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1349 break;
1350 default:
1351 BUG();
1352 }
1353 }
1354
1355 if (vcpu->rmode.active &&
1356 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1357 error_code))
1358 return 1;
1359
1360 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1361 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1362 return 0;
1363 }
1364 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1365 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1366 kvm_run->ex.error_code = error_code;
1367 return 0;
1368 }
1369
1370 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1371 struct kvm_run *kvm_run)
1372 {
1373 ++kvm_stat.irq_exits;
1374 return 1;
1375 }
1376
1377 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1378 {
1379 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1380 return 0;
1381 }
1382
1383 static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
1384 {
1385 u64 inst;
1386 gva_t rip;
1387 int countr_size;
1388 int i, n;
1389
1390 if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1391 countr_size = 2;
1392 } else {
1393 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1394
1395 countr_size = (cs_ar & AR_L_MASK) ? 8:
1396 (cs_ar & AR_DB_MASK) ? 4: 2;
1397 }
1398
1399 rip = vmcs_readl(GUEST_RIP);
1400 if (countr_size != 8)
1401 rip += vmcs_readl(GUEST_CS_BASE);
1402
1403 n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1404
1405 for (i = 0; i < n; i++) {
1406 switch (((u8*)&inst)[i]) {
1407 case 0xf0:
1408 case 0xf2:
1409 case 0xf3:
1410 case 0x2e:
1411 case 0x36:
1412 case 0x3e:
1413 case 0x26:
1414 case 0x64:
1415 case 0x65:
1416 case 0x66:
1417 break;
1418 case 0x67:
1419 countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1420 default:
1421 goto done;
1422 }
1423 }
1424 return 0;
1425 done:
1426 countr_size *= 8;
1427 *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1428 //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
1429 return 1;
1430 }
1431
1432 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1433 {
1434 u64 exit_qualification;
1435 int size, down, in, string, rep;
1436 unsigned port;
1437 unsigned long count;
1438 gva_t address;
1439
1440 ++kvm_stat.io_exits;
1441 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1442 in = (exit_qualification & 8) != 0;
1443 size = (exit_qualification & 7) + 1;
1444 string = (exit_qualification & 16) != 0;
1445 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1446 count = 1;
1447 rep = (exit_qualification & 32) != 0;
1448 port = exit_qualification >> 16;
1449 address = 0;
1450 if (string) {
1451 if (rep && !get_io_count(vcpu, &count))
1452 return 1;
1453 address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1454 }
1455 return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1456 address, rep, port);
1457 }
1458
1459 static void
1460 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1461 {
1462 /*
1463 * Patch in the VMCALL instruction:
1464 */
1465 hypercall[0] = 0x0f;
1466 hypercall[1] = 0x01;
1467 hypercall[2] = 0xc1;
1468 hypercall[3] = 0xc3;
1469 }
1470
1471 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1472 {
1473 u64 exit_qualification;
1474 int cr;
1475 int reg;
1476
1477 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1478 cr = exit_qualification & 15;
1479 reg = (exit_qualification >> 8) & 15;
1480 switch ((exit_qualification >> 4) & 3) {
1481 case 0: /* mov to cr */
1482 switch (cr) {
1483 case 0:
1484 vcpu_load_rsp_rip(vcpu);
1485 set_cr0(vcpu, vcpu->regs[reg]);
1486 skip_emulated_instruction(vcpu);
1487 return 1;
1488 case 3:
1489 vcpu_load_rsp_rip(vcpu);
1490 set_cr3(vcpu, vcpu->regs[reg]);
1491 skip_emulated_instruction(vcpu);
1492 return 1;
1493 case 4:
1494 vcpu_load_rsp_rip(vcpu);
1495 set_cr4(vcpu, vcpu->regs[reg]);
1496 skip_emulated_instruction(vcpu);
1497 return 1;
1498 case 8:
1499 vcpu_load_rsp_rip(vcpu);
1500 set_cr8(vcpu, vcpu->regs[reg]);
1501 skip_emulated_instruction(vcpu);
1502 return 1;
1503 };
1504 break;
1505 case 1: /*mov from cr*/
1506 switch (cr) {
1507 case 3:
1508 vcpu_load_rsp_rip(vcpu);
1509 vcpu->regs[reg] = vcpu->cr3;
1510 vcpu_put_rsp_rip(vcpu);
1511 skip_emulated_instruction(vcpu);
1512 return 1;
1513 case 8:
1514 printk(KERN_DEBUG "handle_cr: read CR8 "
1515 "cpu erratum AA15\n");
1516 vcpu_load_rsp_rip(vcpu);
1517 vcpu->regs[reg] = vcpu->cr8;
1518 vcpu_put_rsp_rip(vcpu);
1519 skip_emulated_instruction(vcpu);
1520 return 1;
1521 }
1522 break;
1523 case 3: /* lmsw */
1524 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1525
1526 skip_emulated_instruction(vcpu);
1527 return 1;
1528 default:
1529 break;
1530 }
1531 kvm_run->exit_reason = 0;
1532 printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1533 (int)(exit_qualification >> 4) & 3, cr);
1534 return 0;
1535 }
1536
1537 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1538 {
1539 u64 exit_qualification;
1540 unsigned long val;
1541 int dr, reg;
1542
1543 /*
1544 * FIXME: this code assumes the host is debugging the guest.
1545 * need to deal with guest debugging itself too.
1546 */
1547 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1548 dr = exit_qualification & 7;
1549 reg = (exit_qualification >> 8) & 15;
1550 vcpu_load_rsp_rip(vcpu);
1551 if (exit_qualification & 16) {
1552 /* mov from dr */
1553 switch (dr) {
1554 case 6:
1555 val = 0xffff0ff0;
1556 break;
1557 case 7:
1558 val = 0x400;
1559 break;
1560 default:
1561 val = 0;
1562 }
1563 vcpu->regs[reg] = val;
1564 } else {
1565 /* mov to dr */
1566 }
1567 vcpu_put_rsp_rip(vcpu);
1568 skip_emulated_instruction(vcpu);
1569 return 1;
1570 }
1571
1572 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1573 {
1574 kvm_emulate_cpuid(vcpu);
1575 return 1;
1576 }
1577
1578 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1579 {
1580 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1581 u64 data;
1582
1583 if (vmx_get_msr(vcpu, ecx, &data)) {
1584 vmx_inject_gp(vcpu, 0);
1585 return 1;
1586 }
1587
1588 /* FIXME: handling of bits 32:63 of rax, rdx */
1589 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1590 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1591 skip_emulated_instruction(vcpu);
1592 return 1;
1593 }
1594
1595 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1596 {
1597 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1598 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1599 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1600
1601 if (vmx_set_msr(vcpu, ecx, data) != 0) {
1602 vmx_inject_gp(vcpu, 0);
1603 return 1;
1604 }
1605
1606 skip_emulated_instruction(vcpu);
1607 return 1;
1608 }
1609
1610 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1611 struct kvm_run *kvm_run)
1612 {
1613 kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1614 kvm_run->cr8 = vcpu->cr8;
1615 kvm_run->apic_base = vcpu->apic_base;
1616 kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1617 vcpu->irq_summary == 0);
1618 }
1619
1620 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1621 struct kvm_run *kvm_run)
1622 {
1623 /*
1624 * If the user space waits to inject interrupts, exit as soon as
1625 * possible
1626 */
1627 if (kvm_run->request_interrupt_window &&
1628 !vcpu->irq_summary) {
1629 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1630 ++kvm_stat.irq_window_exits;
1631 return 0;
1632 }
1633 return 1;
1634 }
1635
1636 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1637 {
1638 skip_emulated_instruction(vcpu);
1639 if (vcpu->irq_summary)
1640 return 1;
1641
1642 kvm_run->exit_reason = KVM_EXIT_HLT;
1643 ++kvm_stat.halt_exits;
1644 return 0;
1645 }
1646
1647 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1648 {
1649 skip_emulated_instruction(vcpu);
1650 return kvm_hypercall(vcpu, kvm_run);
1651 }
1652
1653 /*
1654 * The exit handlers return 1 if the exit was handled fully and guest execution
1655 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
1656 * to be done to userspace and return 0.
1657 */
1658 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1659 struct kvm_run *kvm_run) = {
1660 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
1661 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
1662 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
1663 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
1664 [EXIT_REASON_CR_ACCESS] = handle_cr,
1665 [EXIT_REASON_DR_ACCESS] = handle_dr,
1666 [EXIT_REASON_CPUID] = handle_cpuid,
1667 [EXIT_REASON_MSR_READ] = handle_rdmsr,
1668 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
1669 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
1670 [EXIT_REASON_HLT] = handle_halt,
1671 [EXIT_REASON_VMCALL] = handle_vmcall,
1672 };
1673
1674 static const int kvm_vmx_max_exit_handlers =
1675 sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1676
1677 /*
1678 * The guest has exited. See if we can fix it or if we need userspace
1679 * assistance.
1680 */
1681 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1682 {
1683 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1684 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1685
1686 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1687 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1688 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1689 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1690 kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1691 if (exit_reason < kvm_vmx_max_exit_handlers
1692 && kvm_vmx_exit_handlers[exit_reason])
1693 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1694 else {
1695 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1696 kvm_run->hw.hardware_exit_reason = exit_reason;
1697 }
1698 return 0;
1699 }
1700
1701 /*
1702 * Check if userspace requested an interrupt window, and that the
1703 * interrupt window is open.
1704 *
1705 * No need to exit to userspace if we already have an interrupt queued.
1706 */
1707 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1708 struct kvm_run *kvm_run)
1709 {
1710 return (!vcpu->irq_summary &&
1711 kvm_run->request_interrupt_window &&
1712 vcpu->interrupt_window_open &&
1713 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1714 }
1715
1716 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1717 {
1718 u8 fail;
1719 u16 fs_sel, gs_sel, ldt_sel;
1720 int fs_gs_ldt_reload_needed;
1721 int r;
1722
1723 again:
1724 /*
1725 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1726 * allow segment selectors with cpl > 0 or ti == 1.
1727 */
1728 fs_sel = read_fs();
1729 gs_sel = read_gs();
1730 ldt_sel = read_ldt();
1731 fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1732 if (!fs_gs_ldt_reload_needed) {
1733 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1734 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1735 } else {
1736 vmcs_write16(HOST_FS_SELECTOR, 0);
1737 vmcs_write16(HOST_GS_SELECTOR, 0);
1738 }
1739
1740 #ifdef CONFIG_X86_64
1741 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1742 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1743 #else
1744 vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1745 vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1746 #endif
1747
1748 if (!vcpu->mmio_read_completed)
1749 do_interrupt_requests(vcpu, kvm_run);
1750
1751 if (vcpu->guest_debug.enabled)
1752 kvm_guest_debug_pre(vcpu);
1753
1754 fx_save(vcpu->host_fx_image);
1755 fx_restore(vcpu->guest_fx_image);
1756
1757 save_msrs(vcpu->host_msrs, vcpu->nmsrs);
1758 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1759
1760 asm (
1761 /* Store host registers */
1762 "pushf \n\t"
1763 #ifdef CONFIG_X86_64
1764 "push %%rax; push %%rbx; push %%rdx;"
1765 "push %%rsi; push %%rdi; push %%rbp;"
1766 "push %%r8; push %%r9; push %%r10; push %%r11;"
1767 "push %%r12; push %%r13; push %%r14; push %%r15;"
1768 "push %%rcx \n\t"
1769 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1770 #else
1771 "pusha; push %%ecx \n\t"
1772 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1773 #endif
1774 /* Check if vmlaunch of vmresume is needed */
1775 "cmp $0, %1 \n\t"
1776 /* Load guest registers. Don't clobber flags. */
1777 #ifdef CONFIG_X86_64
1778 "mov %c[cr2](%3), %%rax \n\t"
1779 "mov %%rax, %%cr2 \n\t"
1780 "mov %c[rax](%3), %%rax \n\t"
1781 "mov %c[rbx](%3), %%rbx \n\t"
1782 "mov %c[rdx](%3), %%rdx \n\t"
1783 "mov %c[rsi](%3), %%rsi \n\t"
1784 "mov %c[rdi](%3), %%rdi \n\t"
1785 "mov %c[rbp](%3), %%rbp \n\t"
1786 "mov %c[r8](%3), %%r8 \n\t"
1787 "mov %c[r9](%3), %%r9 \n\t"
1788 "mov %c[r10](%3), %%r10 \n\t"
1789 "mov %c[r11](%3), %%r11 \n\t"
1790 "mov %c[r12](%3), %%r12 \n\t"
1791 "mov %c[r13](%3), %%r13 \n\t"
1792 "mov %c[r14](%3), %%r14 \n\t"
1793 "mov %c[r15](%3), %%r15 \n\t"
1794 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1795 #else
1796 "mov %c[cr2](%3), %%eax \n\t"
1797 "mov %%eax, %%cr2 \n\t"
1798 "mov %c[rax](%3), %%eax \n\t"
1799 "mov %c[rbx](%3), %%ebx \n\t"
1800 "mov %c[rdx](%3), %%edx \n\t"
1801 "mov %c[rsi](%3), %%esi \n\t"
1802 "mov %c[rdi](%3), %%edi \n\t"
1803 "mov %c[rbp](%3), %%ebp \n\t"
1804 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1805 #endif
1806 /* Enter guest mode */
1807 "jne launched \n\t"
1808 ASM_VMX_VMLAUNCH "\n\t"
1809 "jmp kvm_vmx_return \n\t"
1810 "launched: " ASM_VMX_VMRESUME "\n\t"
1811 ".globl kvm_vmx_return \n\t"
1812 "kvm_vmx_return: "
1813 /* Save guest registers, load host registers, keep flags */
1814 #ifdef CONFIG_X86_64
1815 "xchg %3, (%%rsp) \n\t"
1816 "mov %%rax, %c[rax](%3) \n\t"
1817 "mov %%rbx, %c[rbx](%3) \n\t"
1818 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
1819 "mov %%rdx, %c[rdx](%3) \n\t"
1820 "mov %%rsi, %c[rsi](%3) \n\t"
1821 "mov %%rdi, %c[rdi](%3) \n\t"
1822 "mov %%rbp, %c[rbp](%3) \n\t"
1823 "mov %%r8, %c[r8](%3) \n\t"
1824 "mov %%r9, %c[r9](%3) \n\t"
1825 "mov %%r10, %c[r10](%3) \n\t"
1826 "mov %%r11, %c[r11](%3) \n\t"
1827 "mov %%r12, %c[r12](%3) \n\t"
1828 "mov %%r13, %c[r13](%3) \n\t"
1829 "mov %%r14, %c[r14](%3) \n\t"
1830 "mov %%r15, %c[r15](%3) \n\t"
1831 "mov %%cr2, %%rax \n\t"
1832 "mov %%rax, %c[cr2](%3) \n\t"
1833 "mov (%%rsp), %3 \n\t"
1834
1835 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1836 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1837 "pop %%rbp; pop %%rdi; pop %%rsi;"
1838 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
1839 #else
1840 "xchg %3, (%%esp) \n\t"
1841 "mov %%eax, %c[rax](%3) \n\t"
1842 "mov %%ebx, %c[rbx](%3) \n\t"
1843 "pushl (%%esp); popl %c[rcx](%3) \n\t"
1844 "mov %%edx, %c[rdx](%3) \n\t"
1845 "mov %%esi, %c[rsi](%3) \n\t"
1846 "mov %%edi, %c[rdi](%3) \n\t"
1847 "mov %%ebp, %c[rbp](%3) \n\t"
1848 "mov %%cr2, %%eax \n\t"
1849 "mov %%eax, %c[cr2](%3) \n\t"
1850 "mov (%%esp), %3 \n\t"
1851
1852 "pop %%ecx; popa \n\t"
1853 #endif
1854 "setbe %0 \n\t"
1855 "popf \n\t"
1856 : "=q" (fail)
1857 : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1858 "c"(vcpu),
1859 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1860 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1861 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1862 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1863 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1864 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1865 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1866 #ifdef CONFIG_X86_64
1867 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1868 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1869 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1870 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1871 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1872 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1873 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1874 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1875 #endif
1876 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1877 : "cc", "memory" );
1878
1879 /*
1880 * Reload segment selectors ASAP. (it's needed for a functional
1881 * kernel: x86 relies on having __KERNEL_PDA in %fs and x86_64
1882 * relies on having 0 in %gs for the CPU PDA to work.)
1883 */
1884 if (fs_gs_ldt_reload_needed) {
1885 load_ldt(ldt_sel);
1886 load_fs(fs_sel);
1887 /*
1888 * If we have to reload gs, we must take care to
1889 * preserve our gs base.
1890 */
1891 local_irq_disable();
1892 load_gs(gs_sel);
1893 #ifdef CONFIG_X86_64
1894 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1895 #endif
1896 local_irq_enable();
1897
1898 reload_tss();
1899 }
1900 ++kvm_stat.exits;
1901
1902 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1903 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1904
1905 fx_save(vcpu->guest_fx_image);
1906 fx_restore(vcpu->host_fx_image);
1907 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
1908
1909 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1910
1911 if (fail) {
1912 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1913 kvm_run->fail_entry.hardware_entry_failure_reason
1914 = vmcs_read32(VM_INSTRUCTION_ERROR);
1915 r = 0;
1916 } else {
1917 /*
1918 * Profile KVM exit RIPs:
1919 */
1920 if (unlikely(prof_on == KVM_PROFILING))
1921 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
1922
1923 vcpu->launched = 1;
1924 r = kvm_handle_exit(kvm_run, vcpu);
1925 if (r > 0) {
1926 /* Give scheduler a change to reschedule. */
1927 if (signal_pending(current)) {
1928 ++kvm_stat.signal_exits;
1929 post_kvm_run_save(vcpu, kvm_run);
1930 kvm_run->exit_reason = KVM_EXIT_INTR;
1931 return -EINTR;
1932 }
1933
1934 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1935 ++kvm_stat.request_irq_exits;
1936 post_kvm_run_save(vcpu, kvm_run);
1937 kvm_run->exit_reason = KVM_EXIT_INTR;
1938 return -EINTR;
1939 }
1940
1941 kvm_resched(vcpu);
1942 goto again;
1943 }
1944 }
1945
1946 post_kvm_run_save(vcpu, kvm_run);
1947 return r;
1948 }
1949
1950 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1951 {
1952 vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1953 }
1954
1955 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1956 unsigned long addr,
1957 u32 err_code)
1958 {
1959 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1960
1961 ++kvm_stat.pf_guest;
1962
1963 if (is_page_fault(vect_info)) {
1964 printk(KERN_DEBUG "inject_page_fault: "
1965 "double fault 0x%lx @ 0x%lx\n",
1966 addr, vmcs_readl(GUEST_RIP));
1967 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
1968 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1969 DF_VECTOR |
1970 INTR_TYPE_EXCEPTION |
1971 INTR_INFO_DELIEVER_CODE_MASK |
1972 INTR_INFO_VALID_MASK);
1973 return;
1974 }
1975 vcpu->cr2 = addr;
1976 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
1977 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1978 PF_VECTOR |
1979 INTR_TYPE_EXCEPTION |
1980 INTR_INFO_DELIEVER_CODE_MASK |
1981 INTR_INFO_VALID_MASK);
1982
1983 }
1984
1985 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
1986 {
1987 if (vcpu->vmcs) {
1988 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
1989 free_vmcs(vcpu->vmcs);
1990 vcpu->vmcs = NULL;
1991 }
1992 }
1993
1994 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
1995 {
1996 vmx_free_vmcs(vcpu);
1997 }
1998
1999 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
2000 {
2001 struct vmcs *vmcs;
2002
2003 vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2004 if (!vcpu->guest_msrs)
2005 return -ENOMEM;
2006
2007 vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2008 if (!vcpu->host_msrs)
2009 goto out_free_guest_msrs;
2010
2011 vmcs = alloc_vmcs();
2012 if (!vmcs)
2013 goto out_free_msrs;
2014
2015 vmcs_clear(vmcs);
2016 vcpu->vmcs = vmcs;
2017 vcpu->launched = 0;
2018
2019 return 0;
2020
2021 out_free_msrs:
2022 kfree(vcpu->host_msrs);
2023 vcpu->host_msrs = NULL;
2024
2025 out_free_guest_msrs:
2026 kfree(vcpu->guest_msrs);
2027 vcpu->guest_msrs = NULL;
2028
2029 return -ENOMEM;
2030 }
2031
2032 static struct kvm_arch_ops vmx_arch_ops = {
2033 .cpu_has_kvm_support = cpu_has_kvm_support,
2034 .disabled_by_bios = vmx_disabled_by_bios,
2035 .hardware_setup = hardware_setup,
2036 .hardware_unsetup = hardware_unsetup,
2037 .hardware_enable = hardware_enable,
2038 .hardware_disable = hardware_disable,
2039
2040 .vcpu_create = vmx_create_vcpu,
2041 .vcpu_free = vmx_free_vcpu,
2042
2043 .vcpu_load = vmx_vcpu_load,
2044 .vcpu_put = vmx_vcpu_put,
2045 .vcpu_decache = vmx_vcpu_decache,
2046
2047 .set_guest_debug = set_guest_debug,
2048 .get_msr = vmx_get_msr,
2049 .set_msr = vmx_set_msr,
2050 .get_segment_base = vmx_get_segment_base,
2051 .get_segment = vmx_get_segment,
2052 .set_segment = vmx_set_segment,
2053 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2054 .decache_cr0_cr4_guest_bits = vmx_decache_cr0_cr4_guest_bits,
2055 .set_cr0 = vmx_set_cr0,
2056 .set_cr3 = vmx_set_cr3,
2057 .set_cr4 = vmx_set_cr4,
2058 #ifdef CONFIG_X86_64
2059 .set_efer = vmx_set_efer,
2060 #endif
2061 .get_idt = vmx_get_idt,
2062 .set_idt = vmx_set_idt,
2063 .get_gdt = vmx_get_gdt,
2064 .set_gdt = vmx_set_gdt,
2065 .cache_regs = vcpu_load_rsp_rip,
2066 .decache_regs = vcpu_put_rsp_rip,
2067 .get_rflags = vmx_get_rflags,
2068 .set_rflags = vmx_set_rflags,
2069
2070 .tlb_flush = vmx_flush_tlb,
2071 .inject_page_fault = vmx_inject_page_fault,
2072
2073 .inject_gp = vmx_inject_gp,
2074
2075 .run = vmx_vcpu_run,
2076 .skip_emulated_instruction = skip_emulated_instruction,
2077 .vcpu_setup = vmx_vcpu_setup,
2078 .patch_hypercall = vmx_patch_hypercall,
2079 };
2080
2081 static int __init vmx_init(void)
2082 {
2083 return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2084 }
2085
2086 static void __exit vmx_exit(void)
2087 {
2088 kvm_exit_arch();
2089 }
2090
2091 module_init(vmx_init)
2092 module_exit(vmx_exit)
This page took 0.134196 seconds and 4 git commands to generate.