[PATCH] KVM: MMU: Detect oom conditions and propagate error to userspace
[deliverable/linux.git] / drivers / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <asm/io.h>
25 #include <asm/desc.h>
26
27 #include "segment_descriptor.h"
28
29
30 MODULE_AUTHOR("Qumranet");
31 MODULE_LICENSE("GPL");
32
33 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
34 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
35
36 #ifdef CONFIG_X86_64
37 #define HOST_IS_64 1
38 #else
39 #define HOST_IS_64 0
40 #endif
41
42 static struct vmcs_descriptor {
43 int size;
44 int order;
45 u32 revision_id;
46 } vmcs_descriptor;
47
48 #define VMX_SEGMENT_FIELD(seg) \
49 [VCPU_SREG_##seg] = { \
50 .selector = GUEST_##seg##_SELECTOR, \
51 .base = GUEST_##seg##_BASE, \
52 .limit = GUEST_##seg##_LIMIT, \
53 .ar_bytes = GUEST_##seg##_AR_BYTES, \
54 }
55
56 static struct kvm_vmx_segment_field {
57 unsigned selector;
58 unsigned base;
59 unsigned limit;
60 unsigned ar_bytes;
61 } kvm_vmx_segment_fields[] = {
62 VMX_SEGMENT_FIELD(CS),
63 VMX_SEGMENT_FIELD(DS),
64 VMX_SEGMENT_FIELD(ES),
65 VMX_SEGMENT_FIELD(FS),
66 VMX_SEGMENT_FIELD(GS),
67 VMX_SEGMENT_FIELD(SS),
68 VMX_SEGMENT_FIELD(TR),
69 VMX_SEGMENT_FIELD(LDTR),
70 };
71
72 static const u32 vmx_msr_index[] = {
73 #ifdef CONFIG_X86_64
74 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
75 #endif
76 MSR_EFER, MSR_K6_STAR,
77 };
78 #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
79
80 static inline int is_page_fault(u32 intr_info)
81 {
82 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
83 INTR_INFO_VALID_MASK)) ==
84 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
85 }
86
87 static inline int is_external_interrupt(u32 intr_info)
88 {
89 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
90 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
91 }
92
93 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
94 {
95 int i;
96
97 for (i = 0; i < vcpu->nmsrs; ++i)
98 if (vcpu->guest_msrs[i].index == msr)
99 return &vcpu->guest_msrs[i];
100 return 0;
101 }
102
103 static void vmcs_clear(struct vmcs *vmcs)
104 {
105 u64 phys_addr = __pa(vmcs);
106 u8 error;
107
108 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
109 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
110 : "cc", "memory");
111 if (error)
112 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
113 vmcs, phys_addr);
114 }
115
116 static void __vcpu_clear(void *arg)
117 {
118 struct kvm_vcpu *vcpu = arg;
119 int cpu = raw_smp_processor_id();
120
121 if (vcpu->cpu == cpu)
122 vmcs_clear(vcpu->vmcs);
123 if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
124 per_cpu(current_vmcs, cpu) = NULL;
125 }
126
127 static unsigned long vmcs_readl(unsigned long field)
128 {
129 unsigned long value;
130
131 asm volatile (ASM_VMX_VMREAD_RDX_RAX
132 : "=a"(value) : "d"(field) : "cc");
133 return value;
134 }
135
136 static u16 vmcs_read16(unsigned long field)
137 {
138 return vmcs_readl(field);
139 }
140
141 static u32 vmcs_read32(unsigned long field)
142 {
143 return vmcs_readl(field);
144 }
145
146 static u64 vmcs_read64(unsigned long field)
147 {
148 #ifdef CONFIG_X86_64
149 return vmcs_readl(field);
150 #else
151 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
152 #endif
153 }
154
155 static void vmcs_writel(unsigned long field, unsigned long value)
156 {
157 u8 error;
158
159 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
160 : "=q"(error) : "a"(value), "d"(field) : "cc" );
161 if (error)
162 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
163 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
164 }
165
166 static void vmcs_write16(unsigned long field, u16 value)
167 {
168 vmcs_writel(field, value);
169 }
170
171 static void vmcs_write32(unsigned long field, u32 value)
172 {
173 vmcs_writel(field, value);
174 }
175
176 static void vmcs_write64(unsigned long field, u64 value)
177 {
178 #ifdef CONFIG_X86_64
179 vmcs_writel(field, value);
180 #else
181 vmcs_writel(field, value);
182 asm volatile ("");
183 vmcs_writel(field+1, value >> 32);
184 #endif
185 }
186
187 /*
188 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
189 * vcpu mutex is already taken.
190 */
191 static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
192 {
193 u64 phys_addr = __pa(vcpu->vmcs);
194 int cpu;
195
196 cpu = get_cpu();
197
198 if (vcpu->cpu != cpu) {
199 smp_call_function(__vcpu_clear, vcpu, 0, 1);
200 vcpu->launched = 0;
201 }
202
203 if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
204 u8 error;
205
206 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
207 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
208 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
209 : "cc");
210 if (error)
211 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
212 vcpu->vmcs, phys_addr);
213 }
214
215 if (vcpu->cpu != cpu) {
216 struct descriptor_table dt;
217 unsigned long sysenter_esp;
218
219 vcpu->cpu = cpu;
220 /*
221 * Linux uses per-cpu TSS and GDT, so set these when switching
222 * processors.
223 */
224 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
225 get_gdt(&dt);
226 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
227
228 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
229 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
230 }
231 return vcpu;
232 }
233
234 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
235 {
236 put_cpu();
237 }
238
239 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
240 {
241 return vmcs_readl(GUEST_RFLAGS);
242 }
243
244 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
245 {
246 vmcs_writel(GUEST_RFLAGS, rflags);
247 }
248
249 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
250 {
251 unsigned long rip;
252 u32 interruptibility;
253
254 rip = vmcs_readl(GUEST_RIP);
255 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
256 vmcs_writel(GUEST_RIP, rip);
257
258 /*
259 * We emulated an instruction, so temporary interrupt blocking
260 * should be removed, if set.
261 */
262 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
263 if (interruptibility & 3)
264 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
265 interruptibility & ~3);
266 vcpu->interrupt_window_open = 1;
267 }
268
269 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
270 {
271 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
272 vmcs_readl(GUEST_RIP));
273 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
274 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
275 GP_VECTOR |
276 INTR_TYPE_EXCEPTION |
277 INTR_INFO_DELIEVER_CODE_MASK |
278 INTR_INFO_VALID_MASK);
279 }
280
281 /*
282 * reads and returns guest's timestamp counter "register"
283 * guest_tsc = host_tsc + tsc_offset -- 21.3
284 */
285 static u64 guest_read_tsc(void)
286 {
287 u64 host_tsc, tsc_offset;
288
289 rdtscll(host_tsc);
290 tsc_offset = vmcs_read64(TSC_OFFSET);
291 return host_tsc + tsc_offset;
292 }
293
294 /*
295 * writes 'guest_tsc' into guest's timestamp counter "register"
296 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
297 */
298 static void guest_write_tsc(u64 guest_tsc)
299 {
300 u64 host_tsc;
301
302 rdtscll(host_tsc);
303 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
304 }
305
306 static void reload_tss(void)
307 {
308 #ifndef CONFIG_X86_64
309
310 /*
311 * VT restores TR but not its size. Useless.
312 */
313 struct descriptor_table gdt;
314 struct segment_descriptor *descs;
315
316 get_gdt(&gdt);
317 descs = (void *)gdt.base;
318 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
319 load_TR_desc();
320 #endif
321 }
322
323 /*
324 * Reads an msr value (of 'msr_index') into 'pdata'.
325 * Returns 0 on success, non-0 otherwise.
326 * Assumes vcpu_load() was already called.
327 */
328 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
329 {
330 u64 data;
331 struct vmx_msr_entry *msr;
332
333 if (!pdata) {
334 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
335 return -EINVAL;
336 }
337
338 switch (msr_index) {
339 #ifdef CONFIG_X86_64
340 case MSR_FS_BASE:
341 data = vmcs_readl(GUEST_FS_BASE);
342 break;
343 case MSR_GS_BASE:
344 data = vmcs_readl(GUEST_GS_BASE);
345 break;
346 case MSR_EFER:
347 return kvm_get_msr_common(vcpu, msr_index, pdata);
348 #endif
349 case MSR_IA32_TIME_STAMP_COUNTER:
350 data = guest_read_tsc();
351 break;
352 case MSR_IA32_SYSENTER_CS:
353 data = vmcs_read32(GUEST_SYSENTER_CS);
354 break;
355 case MSR_IA32_SYSENTER_EIP:
356 data = vmcs_read32(GUEST_SYSENTER_EIP);
357 break;
358 case MSR_IA32_SYSENTER_ESP:
359 data = vmcs_read32(GUEST_SYSENTER_ESP);
360 break;
361 default:
362 msr = find_msr_entry(vcpu, msr_index);
363 if (msr) {
364 data = msr->data;
365 break;
366 }
367 return kvm_get_msr_common(vcpu, msr_index, pdata);
368 }
369
370 *pdata = data;
371 return 0;
372 }
373
374 /*
375 * Writes msr value into into the appropriate "register".
376 * Returns 0 on success, non-0 otherwise.
377 * Assumes vcpu_load() was already called.
378 */
379 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
380 {
381 struct vmx_msr_entry *msr;
382 switch (msr_index) {
383 #ifdef CONFIG_X86_64
384 case MSR_EFER:
385 return kvm_set_msr_common(vcpu, msr_index, data);
386 case MSR_FS_BASE:
387 vmcs_writel(GUEST_FS_BASE, data);
388 break;
389 case MSR_GS_BASE:
390 vmcs_writel(GUEST_GS_BASE, data);
391 break;
392 #endif
393 case MSR_IA32_SYSENTER_CS:
394 vmcs_write32(GUEST_SYSENTER_CS, data);
395 break;
396 case MSR_IA32_SYSENTER_EIP:
397 vmcs_write32(GUEST_SYSENTER_EIP, data);
398 break;
399 case MSR_IA32_SYSENTER_ESP:
400 vmcs_write32(GUEST_SYSENTER_ESP, data);
401 break;
402 case MSR_IA32_TIME_STAMP_COUNTER: {
403 guest_write_tsc(data);
404 break;
405 }
406 default:
407 msr = find_msr_entry(vcpu, msr_index);
408 if (msr) {
409 msr->data = data;
410 break;
411 }
412 return kvm_set_msr_common(vcpu, msr_index, data);
413 msr->data = data;
414 break;
415 }
416
417 return 0;
418 }
419
420 /*
421 * Sync the rsp and rip registers into the vcpu structure. This allows
422 * registers to be accessed by indexing vcpu->regs.
423 */
424 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
425 {
426 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
427 vcpu->rip = vmcs_readl(GUEST_RIP);
428 }
429
430 /*
431 * Syncs rsp and rip back into the vmcs. Should be called after possible
432 * modification.
433 */
434 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
435 {
436 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
437 vmcs_writel(GUEST_RIP, vcpu->rip);
438 }
439
440 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
441 {
442 unsigned long dr7 = 0x400;
443 u32 exception_bitmap;
444 int old_singlestep;
445
446 exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
447 old_singlestep = vcpu->guest_debug.singlestep;
448
449 vcpu->guest_debug.enabled = dbg->enabled;
450 if (vcpu->guest_debug.enabled) {
451 int i;
452
453 dr7 |= 0x200; /* exact */
454 for (i = 0; i < 4; ++i) {
455 if (!dbg->breakpoints[i].enabled)
456 continue;
457 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
458 dr7 |= 2 << (i*2); /* global enable */
459 dr7 |= 0 << (i*4+16); /* execution breakpoint */
460 }
461
462 exception_bitmap |= (1u << 1); /* Trap debug exceptions */
463
464 vcpu->guest_debug.singlestep = dbg->singlestep;
465 } else {
466 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
467 vcpu->guest_debug.singlestep = 0;
468 }
469
470 if (old_singlestep && !vcpu->guest_debug.singlestep) {
471 unsigned long flags;
472
473 flags = vmcs_readl(GUEST_RFLAGS);
474 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
475 vmcs_writel(GUEST_RFLAGS, flags);
476 }
477
478 vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
479 vmcs_writel(GUEST_DR7, dr7);
480
481 return 0;
482 }
483
484 static __init int cpu_has_kvm_support(void)
485 {
486 unsigned long ecx = cpuid_ecx(1);
487 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
488 }
489
490 static __init int vmx_disabled_by_bios(void)
491 {
492 u64 msr;
493
494 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
495 return (msr & 5) == 1; /* locked but not enabled */
496 }
497
498 static __init void hardware_enable(void *garbage)
499 {
500 int cpu = raw_smp_processor_id();
501 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
502 u64 old;
503
504 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
505 if ((old & 5) != 5)
506 /* enable and lock */
507 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
508 write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
509 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
510 : "memory", "cc");
511 }
512
513 static void hardware_disable(void *garbage)
514 {
515 asm volatile (ASM_VMX_VMXOFF : : : "cc");
516 }
517
518 static __init void setup_vmcs_descriptor(void)
519 {
520 u32 vmx_msr_low, vmx_msr_high;
521
522 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
523 vmcs_descriptor.size = vmx_msr_high & 0x1fff;
524 vmcs_descriptor.order = get_order(vmcs_descriptor.size);
525 vmcs_descriptor.revision_id = vmx_msr_low;
526 }
527
528 static struct vmcs *alloc_vmcs_cpu(int cpu)
529 {
530 int node = cpu_to_node(cpu);
531 struct page *pages;
532 struct vmcs *vmcs;
533
534 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
535 if (!pages)
536 return NULL;
537 vmcs = page_address(pages);
538 memset(vmcs, 0, vmcs_descriptor.size);
539 vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
540 return vmcs;
541 }
542
543 static struct vmcs *alloc_vmcs(void)
544 {
545 return alloc_vmcs_cpu(raw_smp_processor_id());
546 }
547
548 static void free_vmcs(struct vmcs *vmcs)
549 {
550 free_pages((unsigned long)vmcs, vmcs_descriptor.order);
551 }
552
553 static __exit void free_kvm_area(void)
554 {
555 int cpu;
556
557 for_each_online_cpu(cpu)
558 free_vmcs(per_cpu(vmxarea, cpu));
559 }
560
561 extern struct vmcs *alloc_vmcs_cpu(int cpu);
562
563 static __init int alloc_kvm_area(void)
564 {
565 int cpu;
566
567 for_each_online_cpu(cpu) {
568 struct vmcs *vmcs;
569
570 vmcs = alloc_vmcs_cpu(cpu);
571 if (!vmcs) {
572 free_kvm_area();
573 return -ENOMEM;
574 }
575
576 per_cpu(vmxarea, cpu) = vmcs;
577 }
578 return 0;
579 }
580
581 static __init int hardware_setup(void)
582 {
583 setup_vmcs_descriptor();
584 return alloc_kvm_area();
585 }
586
587 static __exit void hardware_unsetup(void)
588 {
589 free_kvm_area();
590 }
591
592 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
593 {
594 if (vcpu->rmode.active)
595 vmcs_write32(EXCEPTION_BITMAP, ~0);
596 else
597 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
598 }
599
600 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
601 {
602 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
603
604 if (vmcs_readl(sf->base) == save->base) {
605 vmcs_write16(sf->selector, save->selector);
606 vmcs_writel(sf->base, save->base);
607 vmcs_write32(sf->limit, save->limit);
608 vmcs_write32(sf->ar_bytes, save->ar);
609 } else {
610 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
611 << AR_DPL_SHIFT;
612 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
613 }
614 }
615
616 static void enter_pmode(struct kvm_vcpu *vcpu)
617 {
618 unsigned long flags;
619
620 vcpu->rmode.active = 0;
621
622 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
623 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
624 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
625
626 flags = vmcs_readl(GUEST_RFLAGS);
627 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
628 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
629 vmcs_writel(GUEST_RFLAGS, flags);
630
631 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
632 (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
633
634 update_exception_bitmap(vcpu);
635
636 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
637 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
638 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
639 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
640
641 vmcs_write16(GUEST_SS_SELECTOR, 0);
642 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
643
644 vmcs_write16(GUEST_CS_SELECTOR,
645 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
646 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
647 }
648
649 static int rmode_tss_base(struct kvm* kvm)
650 {
651 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
652 return base_gfn << PAGE_SHIFT;
653 }
654
655 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
656 {
657 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
658
659 save->selector = vmcs_read16(sf->selector);
660 save->base = vmcs_readl(sf->base);
661 save->limit = vmcs_read32(sf->limit);
662 save->ar = vmcs_read32(sf->ar_bytes);
663 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
664 vmcs_write32(sf->limit, 0xffff);
665 vmcs_write32(sf->ar_bytes, 0xf3);
666 }
667
668 static void enter_rmode(struct kvm_vcpu *vcpu)
669 {
670 unsigned long flags;
671
672 vcpu->rmode.active = 1;
673
674 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
675 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
676
677 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
678 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
679
680 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
681 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
682
683 flags = vmcs_readl(GUEST_RFLAGS);
684 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
685
686 flags |= IOPL_MASK | X86_EFLAGS_VM;
687
688 vmcs_writel(GUEST_RFLAGS, flags);
689 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
690 update_exception_bitmap(vcpu);
691
692 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
693 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
694 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
695
696 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
697 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
698 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
699
700 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
701 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
702 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
703 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
704 }
705
706 #ifdef CONFIG_X86_64
707
708 static void enter_lmode(struct kvm_vcpu *vcpu)
709 {
710 u32 guest_tr_ar;
711
712 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
713 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
714 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
715 __FUNCTION__);
716 vmcs_write32(GUEST_TR_AR_BYTES,
717 (guest_tr_ar & ~AR_TYPE_MASK)
718 | AR_TYPE_BUSY_64_TSS);
719 }
720
721 vcpu->shadow_efer |= EFER_LMA;
722
723 find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
724 vmcs_write32(VM_ENTRY_CONTROLS,
725 vmcs_read32(VM_ENTRY_CONTROLS)
726 | VM_ENTRY_CONTROLS_IA32E_MASK);
727 }
728
729 static void exit_lmode(struct kvm_vcpu *vcpu)
730 {
731 vcpu->shadow_efer &= ~EFER_LMA;
732
733 vmcs_write32(VM_ENTRY_CONTROLS,
734 vmcs_read32(VM_ENTRY_CONTROLS)
735 & ~VM_ENTRY_CONTROLS_IA32E_MASK);
736 }
737
738 #endif
739
740 static void vmx_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
741 {
742 vcpu->cr0 &= KVM_GUEST_CR0_MASK;
743 vcpu->cr0 |= vmcs_readl(GUEST_CR0) & ~KVM_GUEST_CR0_MASK;
744
745 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
746 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
747 }
748
749 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
750 {
751 if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
752 enter_pmode(vcpu);
753
754 if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
755 enter_rmode(vcpu);
756
757 #ifdef CONFIG_X86_64
758 if (vcpu->shadow_efer & EFER_LME) {
759 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
760 enter_lmode(vcpu);
761 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
762 exit_lmode(vcpu);
763 }
764 #endif
765
766 vmcs_writel(CR0_READ_SHADOW, cr0);
767 vmcs_writel(GUEST_CR0,
768 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
769 vcpu->cr0 = cr0;
770 }
771
772 /*
773 * Used when restoring the VM to avoid corrupting segment registers
774 */
775 static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
776 {
777 vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
778 update_exception_bitmap(vcpu);
779 vmcs_writel(CR0_READ_SHADOW, cr0);
780 vmcs_writel(GUEST_CR0,
781 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
782 vcpu->cr0 = cr0;
783 }
784
785 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
786 {
787 vmcs_writel(GUEST_CR3, cr3);
788 }
789
790 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
791 {
792 vmcs_writel(CR4_READ_SHADOW, cr4);
793 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
794 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
795 vcpu->cr4 = cr4;
796 }
797
798 #ifdef CONFIG_X86_64
799
800 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
801 {
802 struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
803
804 vcpu->shadow_efer = efer;
805 if (efer & EFER_LMA) {
806 vmcs_write32(VM_ENTRY_CONTROLS,
807 vmcs_read32(VM_ENTRY_CONTROLS) |
808 VM_ENTRY_CONTROLS_IA32E_MASK);
809 msr->data = efer;
810
811 } else {
812 vmcs_write32(VM_ENTRY_CONTROLS,
813 vmcs_read32(VM_ENTRY_CONTROLS) &
814 ~VM_ENTRY_CONTROLS_IA32E_MASK);
815
816 msr->data = efer & ~EFER_LME;
817 }
818 }
819
820 #endif
821
822 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
823 {
824 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
825
826 return vmcs_readl(sf->base);
827 }
828
829 static void vmx_get_segment(struct kvm_vcpu *vcpu,
830 struct kvm_segment *var, int seg)
831 {
832 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
833 u32 ar;
834
835 var->base = vmcs_readl(sf->base);
836 var->limit = vmcs_read32(sf->limit);
837 var->selector = vmcs_read16(sf->selector);
838 ar = vmcs_read32(sf->ar_bytes);
839 if (ar & AR_UNUSABLE_MASK)
840 ar = 0;
841 var->type = ar & 15;
842 var->s = (ar >> 4) & 1;
843 var->dpl = (ar >> 5) & 3;
844 var->present = (ar >> 7) & 1;
845 var->avl = (ar >> 12) & 1;
846 var->l = (ar >> 13) & 1;
847 var->db = (ar >> 14) & 1;
848 var->g = (ar >> 15) & 1;
849 var->unusable = (ar >> 16) & 1;
850 }
851
852 static void vmx_set_segment(struct kvm_vcpu *vcpu,
853 struct kvm_segment *var, int seg)
854 {
855 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
856 u32 ar;
857
858 vmcs_writel(sf->base, var->base);
859 vmcs_write32(sf->limit, var->limit);
860 vmcs_write16(sf->selector, var->selector);
861 if (var->unusable)
862 ar = 1 << 16;
863 else {
864 ar = var->type & 15;
865 ar |= (var->s & 1) << 4;
866 ar |= (var->dpl & 3) << 5;
867 ar |= (var->present & 1) << 7;
868 ar |= (var->avl & 1) << 12;
869 ar |= (var->l & 1) << 13;
870 ar |= (var->db & 1) << 14;
871 ar |= (var->g & 1) << 15;
872 }
873 if (ar == 0) /* a 0 value means unusable */
874 ar = AR_UNUSABLE_MASK;
875 vmcs_write32(sf->ar_bytes, ar);
876 }
877
878 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
879 {
880 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
881
882 *db = (ar >> 14) & 1;
883 *l = (ar >> 13) & 1;
884 }
885
886 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
887 {
888 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
889 dt->base = vmcs_readl(GUEST_IDTR_BASE);
890 }
891
892 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
893 {
894 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
895 vmcs_writel(GUEST_IDTR_BASE, dt->base);
896 }
897
898 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
899 {
900 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
901 dt->base = vmcs_readl(GUEST_GDTR_BASE);
902 }
903
904 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
905 {
906 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
907 vmcs_writel(GUEST_GDTR_BASE, dt->base);
908 }
909
910 static int init_rmode_tss(struct kvm* kvm)
911 {
912 struct page *p1, *p2, *p3;
913 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
914 char *page;
915
916 p1 = _gfn_to_page(kvm, fn++);
917 p2 = _gfn_to_page(kvm, fn++);
918 p3 = _gfn_to_page(kvm, fn);
919
920 if (!p1 || !p2 || !p3) {
921 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
922 return 0;
923 }
924
925 page = kmap_atomic(p1, KM_USER0);
926 memset(page, 0, PAGE_SIZE);
927 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
928 kunmap_atomic(page, KM_USER0);
929
930 page = kmap_atomic(p2, KM_USER0);
931 memset(page, 0, PAGE_SIZE);
932 kunmap_atomic(page, KM_USER0);
933
934 page = kmap_atomic(p3, KM_USER0);
935 memset(page, 0, PAGE_SIZE);
936 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
937 kunmap_atomic(page, KM_USER0);
938
939 return 1;
940 }
941
942 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
943 {
944 u32 msr_high, msr_low;
945
946 rdmsr(msr, msr_low, msr_high);
947
948 val &= msr_high;
949 val |= msr_low;
950 vmcs_write32(vmcs_field, val);
951 }
952
953 static void seg_setup(int seg)
954 {
955 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
956
957 vmcs_write16(sf->selector, 0);
958 vmcs_writel(sf->base, 0);
959 vmcs_write32(sf->limit, 0xffff);
960 vmcs_write32(sf->ar_bytes, 0x93);
961 }
962
963 /*
964 * Sets up the vmcs for emulated real mode.
965 */
966 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
967 {
968 u32 host_sysenter_cs;
969 u32 junk;
970 unsigned long a;
971 struct descriptor_table dt;
972 int i;
973 int ret = 0;
974 int nr_good_msrs;
975 extern asmlinkage void kvm_vmx_return(void);
976
977 if (!init_rmode_tss(vcpu->kvm)) {
978 ret = -ENOMEM;
979 goto out;
980 }
981
982 memset(vcpu->regs, 0, sizeof(vcpu->regs));
983 vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
984 vcpu->cr8 = 0;
985 vcpu->apic_base = 0xfee00000 |
986 /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
987 MSR_IA32_APICBASE_ENABLE;
988
989 fx_init(vcpu);
990
991 /*
992 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
993 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
994 */
995 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
996 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
997 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
998 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
999
1000 seg_setup(VCPU_SREG_DS);
1001 seg_setup(VCPU_SREG_ES);
1002 seg_setup(VCPU_SREG_FS);
1003 seg_setup(VCPU_SREG_GS);
1004 seg_setup(VCPU_SREG_SS);
1005
1006 vmcs_write16(GUEST_TR_SELECTOR, 0);
1007 vmcs_writel(GUEST_TR_BASE, 0);
1008 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1009 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1010
1011 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1012 vmcs_writel(GUEST_LDTR_BASE, 0);
1013 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1014 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1015
1016 vmcs_write32(GUEST_SYSENTER_CS, 0);
1017 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1018 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1019
1020 vmcs_writel(GUEST_RFLAGS, 0x02);
1021 vmcs_writel(GUEST_RIP, 0xfff0);
1022 vmcs_writel(GUEST_RSP, 0);
1023
1024 vmcs_writel(GUEST_CR3, 0);
1025
1026 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1027 vmcs_writel(GUEST_DR7, 0x400);
1028
1029 vmcs_writel(GUEST_GDTR_BASE, 0);
1030 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1031
1032 vmcs_writel(GUEST_IDTR_BASE, 0);
1033 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1034
1035 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1036 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1037 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1038
1039 /* I/O */
1040 vmcs_write64(IO_BITMAP_A, 0);
1041 vmcs_write64(IO_BITMAP_B, 0);
1042
1043 guest_write_tsc(0);
1044
1045 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1046
1047 /* Special registers */
1048 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1049
1050 /* Control */
1051 vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1052 PIN_BASED_VM_EXEC_CONTROL,
1053 PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
1054 | PIN_BASED_NMI_EXITING /* 20.6.1 */
1055 );
1056 vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1057 CPU_BASED_VM_EXEC_CONTROL,
1058 CPU_BASED_HLT_EXITING /* 20.6.2 */
1059 | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
1060 | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
1061 | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
1062 | CPU_BASED_MOV_DR_EXITING
1063 | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
1064 );
1065
1066 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1067 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1068 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1069 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1070
1071 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1072 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1073 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1074
1075 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1076 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1077 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1078 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1079 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1080 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1081 #ifdef CONFIG_X86_64
1082 rdmsrl(MSR_FS_BASE, a);
1083 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1084 rdmsrl(MSR_GS_BASE, a);
1085 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1086 #else
1087 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1088 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1089 #endif
1090
1091 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1092
1093 get_idt(&dt);
1094 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1095
1096
1097 vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1098
1099 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1100 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1101 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1102 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1103 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1104 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1105
1106 for (i = 0; i < NR_VMX_MSR; ++i) {
1107 u32 index = vmx_msr_index[i];
1108 u32 data_low, data_high;
1109 u64 data;
1110 int j = vcpu->nmsrs;
1111
1112 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1113 continue;
1114 data = data_low | ((u64)data_high << 32);
1115 vcpu->host_msrs[j].index = index;
1116 vcpu->host_msrs[j].reserved = 0;
1117 vcpu->host_msrs[j].data = data;
1118 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1119 ++vcpu->nmsrs;
1120 }
1121 printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
1122
1123 nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
1124 vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
1125 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1126 vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
1127 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1128 vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
1129 virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
1130 vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1131 (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
1132 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
1133 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1134 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1135
1136
1137 /* 22.2.1, 20.8.1 */
1138 vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1139 VM_ENTRY_CONTROLS, 0);
1140 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1141
1142 #ifdef CONFIG_X86_64
1143 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1144 vmcs_writel(TPR_THRESHOLD, 0);
1145 #endif
1146
1147 vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1148 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1149
1150 vcpu->cr0 = 0x60000010;
1151 vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1152 vmx_set_cr4(vcpu, 0);
1153 #ifdef CONFIG_X86_64
1154 vmx_set_efer(vcpu, 0);
1155 #endif
1156
1157 return 0;
1158
1159 out:
1160 return ret;
1161 }
1162
1163 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1164 {
1165 u16 ent[2];
1166 u16 cs;
1167 u16 ip;
1168 unsigned long flags;
1169 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1170 u16 sp = vmcs_readl(GUEST_RSP);
1171 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1172
1173 if (sp > ss_limit || sp - 6 > sp) {
1174 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1175 __FUNCTION__,
1176 vmcs_readl(GUEST_RSP),
1177 vmcs_readl(GUEST_SS_BASE),
1178 vmcs_read32(GUEST_SS_LIMIT));
1179 return;
1180 }
1181
1182 if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1183 sizeof(ent)) {
1184 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1185 return;
1186 }
1187
1188 flags = vmcs_readl(GUEST_RFLAGS);
1189 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1190 ip = vmcs_readl(GUEST_RIP);
1191
1192
1193 if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1194 kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1195 kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1196 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1197 return;
1198 }
1199
1200 vmcs_writel(GUEST_RFLAGS, flags &
1201 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1202 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1203 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1204 vmcs_writel(GUEST_RIP, ent[0]);
1205 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1206 }
1207
1208 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1209 {
1210 int word_index = __ffs(vcpu->irq_summary);
1211 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1212 int irq = word_index * BITS_PER_LONG + bit_index;
1213
1214 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1215 if (!vcpu->irq_pending[word_index])
1216 clear_bit(word_index, &vcpu->irq_summary);
1217
1218 if (vcpu->rmode.active) {
1219 inject_rmode_irq(vcpu, irq);
1220 return;
1221 }
1222 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1223 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1224 }
1225
1226
1227 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1228 struct kvm_run *kvm_run)
1229 {
1230 u32 cpu_based_vm_exec_control;
1231
1232 vcpu->interrupt_window_open =
1233 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1234 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1235
1236 if (vcpu->interrupt_window_open &&
1237 vcpu->irq_summary &&
1238 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1239 /*
1240 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1241 */
1242 kvm_do_inject_irq(vcpu);
1243
1244 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1245 if (!vcpu->interrupt_window_open &&
1246 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1247 /*
1248 * Interrupts blocked. Wait for unblock.
1249 */
1250 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1251 else
1252 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1253 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1254 }
1255
1256 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1257 {
1258 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1259
1260 set_debugreg(dbg->bp[0], 0);
1261 set_debugreg(dbg->bp[1], 1);
1262 set_debugreg(dbg->bp[2], 2);
1263 set_debugreg(dbg->bp[3], 3);
1264
1265 if (dbg->singlestep) {
1266 unsigned long flags;
1267
1268 flags = vmcs_readl(GUEST_RFLAGS);
1269 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1270 vmcs_writel(GUEST_RFLAGS, flags);
1271 }
1272 }
1273
1274 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1275 int vec, u32 err_code)
1276 {
1277 if (!vcpu->rmode.active)
1278 return 0;
1279
1280 if (vec == GP_VECTOR && err_code == 0)
1281 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1282 return 1;
1283 return 0;
1284 }
1285
1286 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1287 {
1288 u32 intr_info, error_code;
1289 unsigned long cr2, rip;
1290 u32 vect_info;
1291 enum emulation_result er;
1292 int r;
1293
1294 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1295 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1296
1297 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1298 !is_page_fault(intr_info)) {
1299 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1300 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1301 }
1302
1303 if (is_external_interrupt(vect_info)) {
1304 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1305 set_bit(irq, vcpu->irq_pending);
1306 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1307 }
1308
1309 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1310 asm ("int $2");
1311 return 1;
1312 }
1313 error_code = 0;
1314 rip = vmcs_readl(GUEST_RIP);
1315 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1316 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1317 if (is_page_fault(intr_info)) {
1318 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1319
1320 spin_lock(&vcpu->kvm->lock);
1321 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1322 if (r < 0) {
1323 spin_unlock(&vcpu->kvm->lock);
1324 return r;
1325 }
1326 if (!r) {
1327 spin_unlock(&vcpu->kvm->lock);
1328 return 1;
1329 }
1330
1331 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1332 spin_unlock(&vcpu->kvm->lock);
1333
1334 switch (er) {
1335 case EMULATE_DONE:
1336 return 1;
1337 case EMULATE_DO_MMIO:
1338 ++kvm_stat.mmio_exits;
1339 kvm_run->exit_reason = KVM_EXIT_MMIO;
1340 return 0;
1341 case EMULATE_FAIL:
1342 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1343 break;
1344 default:
1345 BUG();
1346 }
1347 }
1348
1349 if (vcpu->rmode.active &&
1350 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1351 error_code))
1352 return 1;
1353
1354 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1355 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1356 return 0;
1357 }
1358 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1359 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1360 kvm_run->ex.error_code = error_code;
1361 return 0;
1362 }
1363
1364 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1365 struct kvm_run *kvm_run)
1366 {
1367 ++kvm_stat.irq_exits;
1368 return 1;
1369 }
1370
1371
1372 static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
1373 {
1374 u64 inst;
1375 gva_t rip;
1376 int countr_size;
1377 int i, n;
1378
1379 if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1380 countr_size = 2;
1381 } else {
1382 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1383
1384 countr_size = (cs_ar & AR_L_MASK) ? 8:
1385 (cs_ar & AR_DB_MASK) ? 4: 2;
1386 }
1387
1388 rip = vmcs_readl(GUEST_RIP);
1389 if (countr_size != 8)
1390 rip += vmcs_readl(GUEST_CS_BASE);
1391
1392 n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1393
1394 for (i = 0; i < n; i++) {
1395 switch (((u8*)&inst)[i]) {
1396 case 0xf0:
1397 case 0xf2:
1398 case 0xf3:
1399 case 0x2e:
1400 case 0x36:
1401 case 0x3e:
1402 case 0x26:
1403 case 0x64:
1404 case 0x65:
1405 case 0x66:
1406 break;
1407 case 0x67:
1408 countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1409 default:
1410 goto done;
1411 }
1412 }
1413 return 0;
1414 done:
1415 countr_size *= 8;
1416 *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1417 return 1;
1418 }
1419
1420 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1421 {
1422 u64 exit_qualification;
1423
1424 ++kvm_stat.io_exits;
1425 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1426 kvm_run->exit_reason = KVM_EXIT_IO;
1427 if (exit_qualification & 8)
1428 kvm_run->io.direction = KVM_EXIT_IO_IN;
1429 else
1430 kvm_run->io.direction = KVM_EXIT_IO_OUT;
1431 kvm_run->io.size = (exit_qualification & 7) + 1;
1432 kvm_run->io.string = (exit_qualification & 16) != 0;
1433 kvm_run->io.string_down
1434 = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1435 kvm_run->io.rep = (exit_qualification & 32) != 0;
1436 kvm_run->io.port = exit_qualification >> 16;
1437 if (kvm_run->io.string) {
1438 if (!get_io_count(vcpu, &kvm_run->io.count))
1439 return 1;
1440 kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1441 } else
1442 kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
1443 return 0;
1444 }
1445
1446 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1447 {
1448 u64 exit_qualification;
1449 int cr;
1450 int reg;
1451
1452 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1453 cr = exit_qualification & 15;
1454 reg = (exit_qualification >> 8) & 15;
1455 switch ((exit_qualification >> 4) & 3) {
1456 case 0: /* mov to cr */
1457 switch (cr) {
1458 case 0:
1459 vcpu_load_rsp_rip(vcpu);
1460 set_cr0(vcpu, vcpu->regs[reg]);
1461 skip_emulated_instruction(vcpu);
1462 return 1;
1463 case 3:
1464 vcpu_load_rsp_rip(vcpu);
1465 set_cr3(vcpu, vcpu->regs[reg]);
1466 skip_emulated_instruction(vcpu);
1467 return 1;
1468 case 4:
1469 vcpu_load_rsp_rip(vcpu);
1470 set_cr4(vcpu, vcpu->regs[reg]);
1471 skip_emulated_instruction(vcpu);
1472 return 1;
1473 case 8:
1474 vcpu_load_rsp_rip(vcpu);
1475 set_cr8(vcpu, vcpu->regs[reg]);
1476 skip_emulated_instruction(vcpu);
1477 return 1;
1478 };
1479 break;
1480 case 1: /*mov from cr*/
1481 switch (cr) {
1482 case 3:
1483 vcpu_load_rsp_rip(vcpu);
1484 vcpu->regs[reg] = vcpu->cr3;
1485 vcpu_put_rsp_rip(vcpu);
1486 skip_emulated_instruction(vcpu);
1487 return 1;
1488 case 8:
1489 printk(KERN_DEBUG "handle_cr: read CR8 "
1490 "cpu erratum AA15\n");
1491 vcpu_load_rsp_rip(vcpu);
1492 vcpu->regs[reg] = vcpu->cr8;
1493 vcpu_put_rsp_rip(vcpu);
1494 skip_emulated_instruction(vcpu);
1495 return 1;
1496 }
1497 break;
1498 case 3: /* lmsw */
1499 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1500
1501 skip_emulated_instruction(vcpu);
1502 return 1;
1503 default:
1504 break;
1505 }
1506 kvm_run->exit_reason = 0;
1507 printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1508 (int)(exit_qualification >> 4) & 3, cr);
1509 return 0;
1510 }
1511
1512 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1513 {
1514 u64 exit_qualification;
1515 unsigned long val;
1516 int dr, reg;
1517
1518 /*
1519 * FIXME: this code assumes the host is debugging the guest.
1520 * need to deal with guest debugging itself too.
1521 */
1522 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1523 dr = exit_qualification & 7;
1524 reg = (exit_qualification >> 8) & 15;
1525 vcpu_load_rsp_rip(vcpu);
1526 if (exit_qualification & 16) {
1527 /* mov from dr */
1528 switch (dr) {
1529 case 6:
1530 val = 0xffff0ff0;
1531 break;
1532 case 7:
1533 val = 0x400;
1534 break;
1535 default:
1536 val = 0;
1537 }
1538 vcpu->regs[reg] = val;
1539 } else {
1540 /* mov to dr */
1541 }
1542 vcpu_put_rsp_rip(vcpu);
1543 skip_emulated_instruction(vcpu);
1544 return 1;
1545 }
1546
1547 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1548 {
1549 kvm_run->exit_reason = KVM_EXIT_CPUID;
1550 return 0;
1551 }
1552
1553 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1554 {
1555 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1556 u64 data;
1557
1558 if (vmx_get_msr(vcpu, ecx, &data)) {
1559 vmx_inject_gp(vcpu, 0);
1560 return 1;
1561 }
1562
1563 /* FIXME: handling of bits 32:63 of rax, rdx */
1564 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1565 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1566 skip_emulated_instruction(vcpu);
1567 return 1;
1568 }
1569
1570 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1571 {
1572 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1573 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1574 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1575
1576 if (vmx_set_msr(vcpu, ecx, data) != 0) {
1577 vmx_inject_gp(vcpu, 0);
1578 return 1;
1579 }
1580
1581 skip_emulated_instruction(vcpu);
1582 return 1;
1583 }
1584
1585 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1586 struct kvm_run *kvm_run)
1587 {
1588 kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1589 kvm_run->cr8 = vcpu->cr8;
1590 kvm_run->apic_base = vcpu->apic_base;
1591 kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1592 vcpu->irq_summary == 0);
1593 }
1594
1595 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1596 struct kvm_run *kvm_run)
1597 {
1598 /*
1599 * If the user space waits to inject interrupts, exit as soon as
1600 * possible
1601 */
1602 if (kvm_run->request_interrupt_window &&
1603 !vcpu->irq_summary &&
1604 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)) {
1605 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1606 ++kvm_stat.irq_window_exits;
1607 return 0;
1608 }
1609 return 1;
1610 }
1611
1612 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1613 {
1614 skip_emulated_instruction(vcpu);
1615 if (vcpu->irq_summary)
1616 return 1;
1617
1618 kvm_run->exit_reason = KVM_EXIT_HLT;
1619 ++kvm_stat.halt_exits;
1620 return 0;
1621 }
1622
1623 /*
1624 * The exit handlers return 1 if the exit was handled fully and guest execution
1625 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
1626 * to be done to userspace and return 0.
1627 */
1628 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1629 struct kvm_run *kvm_run) = {
1630 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
1631 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
1632 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
1633 [EXIT_REASON_CR_ACCESS] = handle_cr,
1634 [EXIT_REASON_DR_ACCESS] = handle_dr,
1635 [EXIT_REASON_CPUID] = handle_cpuid,
1636 [EXIT_REASON_MSR_READ] = handle_rdmsr,
1637 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
1638 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
1639 [EXIT_REASON_HLT] = handle_halt,
1640 };
1641
1642 static const int kvm_vmx_max_exit_handlers =
1643 sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1644
1645 /*
1646 * The guest has exited. See if we can fix it or if we need userspace
1647 * assistance.
1648 */
1649 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1650 {
1651 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1652 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1653
1654 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1655 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1656 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1657 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1658 kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1659 if (exit_reason < kvm_vmx_max_exit_handlers
1660 && kvm_vmx_exit_handlers[exit_reason])
1661 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1662 else {
1663 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1664 kvm_run->hw.hardware_exit_reason = exit_reason;
1665 }
1666 return 0;
1667 }
1668
1669 /*
1670 * Check if userspace requested an interrupt window, and that the
1671 * interrupt window is open.
1672 *
1673 * No need to exit to userspace if we already have an interrupt queued.
1674 */
1675 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1676 struct kvm_run *kvm_run)
1677 {
1678 return (!vcpu->irq_summary &&
1679 kvm_run->request_interrupt_window &&
1680 vcpu->interrupt_window_open &&
1681 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1682 }
1683
1684 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1685 {
1686 u8 fail;
1687 u16 fs_sel, gs_sel, ldt_sel;
1688 int fs_gs_ldt_reload_needed;
1689 int r;
1690
1691 again:
1692 /*
1693 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1694 * allow segment selectors with cpl > 0 or ti == 1.
1695 */
1696 fs_sel = read_fs();
1697 gs_sel = read_gs();
1698 ldt_sel = read_ldt();
1699 fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1700 if (!fs_gs_ldt_reload_needed) {
1701 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1702 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1703 } else {
1704 vmcs_write16(HOST_FS_SELECTOR, 0);
1705 vmcs_write16(HOST_GS_SELECTOR, 0);
1706 }
1707
1708 #ifdef CONFIG_X86_64
1709 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1710 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1711 #else
1712 vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1713 vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1714 #endif
1715
1716 do_interrupt_requests(vcpu, kvm_run);
1717
1718 if (vcpu->guest_debug.enabled)
1719 kvm_guest_debug_pre(vcpu);
1720
1721 fx_save(vcpu->host_fx_image);
1722 fx_restore(vcpu->guest_fx_image);
1723
1724 save_msrs(vcpu->host_msrs, vcpu->nmsrs);
1725 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1726
1727 asm (
1728 /* Store host registers */
1729 "pushf \n\t"
1730 #ifdef CONFIG_X86_64
1731 "push %%rax; push %%rbx; push %%rdx;"
1732 "push %%rsi; push %%rdi; push %%rbp;"
1733 "push %%r8; push %%r9; push %%r10; push %%r11;"
1734 "push %%r12; push %%r13; push %%r14; push %%r15;"
1735 "push %%rcx \n\t"
1736 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1737 #else
1738 "pusha; push %%ecx \n\t"
1739 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1740 #endif
1741 /* Check if vmlaunch of vmresume is needed */
1742 "cmp $0, %1 \n\t"
1743 /* Load guest registers. Don't clobber flags. */
1744 #ifdef CONFIG_X86_64
1745 "mov %c[cr2](%3), %%rax \n\t"
1746 "mov %%rax, %%cr2 \n\t"
1747 "mov %c[rax](%3), %%rax \n\t"
1748 "mov %c[rbx](%3), %%rbx \n\t"
1749 "mov %c[rdx](%3), %%rdx \n\t"
1750 "mov %c[rsi](%3), %%rsi \n\t"
1751 "mov %c[rdi](%3), %%rdi \n\t"
1752 "mov %c[rbp](%3), %%rbp \n\t"
1753 "mov %c[r8](%3), %%r8 \n\t"
1754 "mov %c[r9](%3), %%r9 \n\t"
1755 "mov %c[r10](%3), %%r10 \n\t"
1756 "mov %c[r11](%3), %%r11 \n\t"
1757 "mov %c[r12](%3), %%r12 \n\t"
1758 "mov %c[r13](%3), %%r13 \n\t"
1759 "mov %c[r14](%3), %%r14 \n\t"
1760 "mov %c[r15](%3), %%r15 \n\t"
1761 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1762 #else
1763 "mov %c[cr2](%3), %%eax \n\t"
1764 "mov %%eax, %%cr2 \n\t"
1765 "mov %c[rax](%3), %%eax \n\t"
1766 "mov %c[rbx](%3), %%ebx \n\t"
1767 "mov %c[rdx](%3), %%edx \n\t"
1768 "mov %c[rsi](%3), %%esi \n\t"
1769 "mov %c[rdi](%3), %%edi \n\t"
1770 "mov %c[rbp](%3), %%ebp \n\t"
1771 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1772 #endif
1773 /* Enter guest mode */
1774 "jne launched \n\t"
1775 ASM_VMX_VMLAUNCH "\n\t"
1776 "jmp kvm_vmx_return \n\t"
1777 "launched: " ASM_VMX_VMRESUME "\n\t"
1778 ".globl kvm_vmx_return \n\t"
1779 "kvm_vmx_return: "
1780 /* Save guest registers, load host registers, keep flags */
1781 #ifdef CONFIG_X86_64
1782 "xchg %3, 0(%%rsp) \n\t"
1783 "mov %%rax, %c[rax](%3) \n\t"
1784 "mov %%rbx, %c[rbx](%3) \n\t"
1785 "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
1786 "mov %%rdx, %c[rdx](%3) \n\t"
1787 "mov %%rsi, %c[rsi](%3) \n\t"
1788 "mov %%rdi, %c[rdi](%3) \n\t"
1789 "mov %%rbp, %c[rbp](%3) \n\t"
1790 "mov %%r8, %c[r8](%3) \n\t"
1791 "mov %%r9, %c[r9](%3) \n\t"
1792 "mov %%r10, %c[r10](%3) \n\t"
1793 "mov %%r11, %c[r11](%3) \n\t"
1794 "mov %%r12, %c[r12](%3) \n\t"
1795 "mov %%r13, %c[r13](%3) \n\t"
1796 "mov %%r14, %c[r14](%3) \n\t"
1797 "mov %%r15, %c[r15](%3) \n\t"
1798 "mov %%cr2, %%rax \n\t"
1799 "mov %%rax, %c[cr2](%3) \n\t"
1800 "mov 0(%%rsp), %3 \n\t"
1801
1802 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1803 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1804 "pop %%rbp; pop %%rdi; pop %%rsi;"
1805 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
1806 #else
1807 "xchg %3, 0(%%esp) \n\t"
1808 "mov %%eax, %c[rax](%3) \n\t"
1809 "mov %%ebx, %c[rbx](%3) \n\t"
1810 "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
1811 "mov %%edx, %c[rdx](%3) \n\t"
1812 "mov %%esi, %c[rsi](%3) \n\t"
1813 "mov %%edi, %c[rdi](%3) \n\t"
1814 "mov %%ebp, %c[rbp](%3) \n\t"
1815 "mov %%cr2, %%eax \n\t"
1816 "mov %%eax, %c[cr2](%3) \n\t"
1817 "mov 0(%%esp), %3 \n\t"
1818
1819 "pop %%ecx; popa \n\t"
1820 #endif
1821 "setbe %0 \n\t"
1822 "popf \n\t"
1823 : "=g" (fail)
1824 : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1825 "c"(vcpu),
1826 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1827 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1828 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1829 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1830 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1831 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1832 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1833 #ifdef CONFIG_X86_64
1834 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1835 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1836 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1837 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1838 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1839 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1840 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1841 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1842 #endif
1843 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1844 : "cc", "memory" );
1845
1846 ++kvm_stat.exits;
1847
1848 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1849 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1850
1851 fx_save(vcpu->guest_fx_image);
1852 fx_restore(vcpu->host_fx_image);
1853 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
1854
1855 #ifndef CONFIG_X86_64
1856 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1857 #endif
1858
1859 kvm_run->exit_type = 0;
1860 if (fail) {
1861 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1862 kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
1863 r = 0;
1864 } else {
1865 if (fs_gs_ldt_reload_needed) {
1866 load_ldt(ldt_sel);
1867 load_fs(fs_sel);
1868 /*
1869 * If we have to reload gs, we must take care to
1870 * preserve our gs base.
1871 */
1872 local_irq_disable();
1873 load_gs(gs_sel);
1874 #ifdef CONFIG_X86_64
1875 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1876 #endif
1877 local_irq_enable();
1878
1879 reload_tss();
1880 }
1881 vcpu->launched = 1;
1882 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1883 r = kvm_handle_exit(kvm_run, vcpu);
1884 if (r > 0) {
1885 /* Give scheduler a change to reschedule. */
1886 if (signal_pending(current)) {
1887 ++kvm_stat.signal_exits;
1888 post_kvm_run_save(vcpu, kvm_run);
1889 return -EINTR;
1890 }
1891
1892 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1893 ++kvm_stat.request_irq_exits;
1894 post_kvm_run_save(vcpu, kvm_run);
1895 return -EINTR;
1896 }
1897
1898 kvm_resched(vcpu);
1899 goto again;
1900 }
1901 }
1902
1903 post_kvm_run_save(vcpu, kvm_run);
1904 return r;
1905 }
1906
1907 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1908 {
1909 vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1910 }
1911
1912 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1913 unsigned long addr,
1914 u32 err_code)
1915 {
1916 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1917
1918 ++kvm_stat.pf_guest;
1919
1920 if (is_page_fault(vect_info)) {
1921 printk(KERN_DEBUG "inject_page_fault: "
1922 "double fault 0x%lx @ 0x%lx\n",
1923 addr, vmcs_readl(GUEST_RIP));
1924 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
1925 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1926 DF_VECTOR |
1927 INTR_TYPE_EXCEPTION |
1928 INTR_INFO_DELIEVER_CODE_MASK |
1929 INTR_INFO_VALID_MASK);
1930 return;
1931 }
1932 vcpu->cr2 = addr;
1933 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
1934 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1935 PF_VECTOR |
1936 INTR_TYPE_EXCEPTION |
1937 INTR_INFO_DELIEVER_CODE_MASK |
1938 INTR_INFO_VALID_MASK);
1939
1940 }
1941
1942 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
1943 {
1944 if (vcpu->vmcs) {
1945 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
1946 free_vmcs(vcpu->vmcs);
1947 vcpu->vmcs = NULL;
1948 }
1949 }
1950
1951 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
1952 {
1953 vmx_free_vmcs(vcpu);
1954 }
1955
1956 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
1957 {
1958 struct vmcs *vmcs;
1959
1960 vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1961 if (!vcpu->guest_msrs)
1962 return -ENOMEM;
1963
1964 vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1965 if (!vcpu->host_msrs)
1966 goto out_free_guest_msrs;
1967
1968 vmcs = alloc_vmcs();
1969 if (!vmcs)
1970 goto out_free_msrs;
1971
1972 vmcs_clear(vmcs);
1973 vcpu->vmcs = vmcs;
1974 vcpu->launched = 0;
1975
1976 return 0;
1977
1978 out_free_msrs:
1979 kfree(vcpu->host_msrs);
1980 vcpu->host_msrs = NULL;
1981
1982 out_free_guest_msrs:
1983 kfree(vcpu->guest_msrs);
1984 vcpu->guest_msrs = NULL;
1985
1986 return -ENOMEM;
1987 }
1988
1989 static struct kvm_arch_ops vmx_arch_ops = {
1990 .cpu_has_kvm_support = cpu_has_kvm_support,
1991 .disabled_by_bios = vmx_disabled_by_bios,
1992 .hardware_setup = hardware_setup,
1993 .hardware_unsetup = hardware_unsetup,
1994 .hardware_enable = hardware_enable,
1995 .hardware_disable = hardware_disable,
1996
1997 .vcpu_create = vmx_create_vcpu,
1998 .vcpu_free = vmx_free_vcpu,
1999
2000 .vcpu_load = vmx_vcpu_load,
2001 .vcpu_put = vmx_vcpu_put,
2002
2003 .set_guest_debug = set_guest_debug,
2004 .get_msr = vmx_get_msr,
2005 .set_msr = vmx_set_msr,
2006 .get_segment_base = vmx_get_segment_base,
2007 .get_segment = vmx_get_segment,
2008 .set_segment = vmx_set_segment,
2009 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2010 .decache_cr0_cr4_guest_bits = vmx_decache_cr0_cr4_guest_bits,
2011 .set_cr0 = vmx_set_cr0,
2012 .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
2013 .set_cr3 = vmx_set_cr3,
2014 .set_cr4 = vmx_set_cr4,
2015 #ifdef CONFIG_X86_64
2016 .set_efer = vmx_set_efer,
2017 #endif
2018 .get_idt = vmx_get_idt,
2019 .set_idt = vmx_set_idt,
2020 .get_gdt = vmx_get_gdt,
2021 .set_gdt = vmx_set_gdt,
2022 .cache_regs = vcpu_load_rsp_rip,
2023 .decache_regs = vcpu_put_rsp_rip,
2024 .get_rflags = vmx_get_rflags,
2025 .set_rflags = vmx_set_rflags,
2026
2027 .tlb_flush = vmx_flush_tlb,
2028 .inject_page_fault = vmx_inject_page_fault,
2029
2030 .inject_gp = vmx_inject_gp,
2031
2032 .run = vmx_vcpu_run,
2033 .skip_emulated_instruction = skip_emulated_instruction,
2034 .vcpu_setup = vmx_vcpu_setup,
2035 };
2036
2037 static int __init vmx_init(void)
2038 {
2039 return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2040 }
2041
2042 static void __exit vmx_exit(void)
2043 {
2044 kvm_exit_arch();
2045 }
2046
2047 module_init(vmx_init)
2048 module_exit(vmx_exit)
This page took 0.075268 seconds and 5 git commands to generate.