KVM: Wire up hypercall handlers to a central arch-independent location
[deliverable/linux.git] / drivers / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/profile.h>
26 #include <asm/io.h>
27 #include <asm/desc.h>
28
29 #include "segment_descriptor.h"
30
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
33
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
36
37 #ifdef CONFIG_X86_64
38 #define HOST_IS_64 1
39 #else
40 #define HOST_IS_64 0
41 #endif
42
43 static struct vmcs_descriptor {
44 int size;
45 int order;
46 u32 revision_id;
47 } vmcs_descriptor;
48
49 #define VMX_SEGMENT_FIELD(seg) \
50 [VCPU_SREG_##seg] = { \
51 .selector = GUEST_##seg##_SELECTOR, \
52 .base = GUEST_##seg##_BASE, \
53 .limit = GUEST_##seg##_LIMIT, \
54 .ar_bytes = GUEST_##seg##_AR_BYTES, \
55 }
56
57 static struct kvm_vmx_segment_field {
58 unsigned selector;
59 unsigned base;
60 unsigned limit;
61 unsigned ar_bytes;
62 } kvm_vmx_segment_fields[] = {
63 VMX_SEGMENT_FIELD(CS),
64 VMX_SEGMENT_FIELD(DS),
65 VMX_SEGMENT_FIELD(ES),
66 VMX_SEGMENT_FIELD(FS),
67 VMX_SEGMENT_FIELD(GS),
68 VMX_SEGMENT_FIELD(SS),
69 VMX_SEGMENT_FIELD(TR),
70 VMX_SEGMENT_FIELD(LDTR),
71 };
72
73 static const u32 vmx_msr_index[] = {
74 #ifdef CONFIG_X86_64
75 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
76 #endif
77 MSR_EFER, MSR_K6_STAR,
78 };
79 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
80
81 static inline int is_page_fault(u32 intr_info)
82 {
83 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
84 INTR_INFO_VALID_MASK)) ==
85 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
86 }
87
88 static inline int is_external_interrupt(u32 intr_info)
89 {
90 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
91 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
92 }
93
94 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
95 {
96 int i;
97
98 for (i = 0; i < vcpu->nmsrs; ++i)
99 if (vcpu->guest_msrs[i].index == msr)
100 return &vcpu->guest_msrs[i];
101 return NULL;
102 }
103
104 static void vmcs_clear(struct vmcs *vmcs)
105 {
106 u64 phys_addr = __pa(vmcs);
107 u8 error;
108
109 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
110 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
111 : "cc", "memory");
112 if (error)
113 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
114 vmcs, phys_addr);
115 }
116
117 static void __vcpu_clear(void *arg)
118 {
119 struct kvm_vcpu *vcpu = arg;
120 int cpu = raw_smp_processor_id();
121
122 if (vcpu->cpu == cpu)
123 vmcs_clear(vcpu->vmcs);
124 if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
125 per_cpu(current_vmcs, cpu) = NULL;
126 }
127
128 static void vcpu_clear(struct kvm_vcpu *vcpu)
129 {
130 if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
131 smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
132 else
133 __vcpu_clear(vcpu);
134 vcpu->launched = 0;
135 }
136
137 static unsigned long vmcs_readl(unsigned long field)
138 {
139 unsigned long value;
140
141 asm volatile (ASM_VMX_VMREAD_RDX_RAX
142 : "=a"(value) : "d"(field) : "cc");
143 return value;
144 }
145
146 static u16 vmcs_read16(unsigned long field)
147 {
148 return vmcs_readl(field);
149 }
150
151 static u32 vmcs_read32(unsigned long field)
152 {
153 return vmcs_readl(field);
154 }
155
156 static u64 vmcs_read64(unsigned long field)
157 {
158 #ifdef CONFIG_X86_64
159 return vmcs_readl(field);
160 #else
161 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
162 #endif
163 }
164
165 static noinline void vmwrite_error(unsigned long field, unsigned long value)
166 {
167 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
168 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
169 dump_stack();
170 }
171
172 static void vmcs_writel(unsigned long field, unsigned long value)
173 {
174 u8 error;
175
176 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
177 : "=q"(error) : "a"(value), "d"(field) : "cc" );
178 if (unlikely(error))
179 vmwrite_error(field, value);
180 }
181
182 static void vmcs_write16(unsigned long field, u16 value)
183 {
184 vmcs_writel(field, value);
185 }
186
187 static void vmcs_write32(unsigned long field, u32 value)
188 {
189 vmcs_writel(field, value);
190 }
191
192 static void vmcs_write64(unsigned long field, u64 value)
193 {
194 #ifdef CONFIG_X86_64
195 vmcs_writel(field, value);
196 #else
197 vmcs_writel(field, value);
198 asm volatile ("");
199 vmcs_writel(field+1, value >> 32);
200 #endif
201 }
202
203 /*
204 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
205 * vcpu mutex is already taken.
206 */
207 static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
208 {
209 u64 phys_addr = __pa(vcpu->vmcs);
210 int cpu;
211
212 cpu = get_cpu();
213
214 if (vcpu->cpu != cpu)
215 vcpu_clear(vcpu);
216
217 if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
218 u8 error;
219
220 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
221 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
222 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
223 : "cc");
224 if (error)
225 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
226 vcpu->vmcs, phys_addr);
227 }
228
229 if (vcpu->cpu != cpu) {
230 struct descriptor_table dt;
231 unsigned long sysenter_esp;
232
233 vcpu->cpu = cpu;
234 /*
235 * Linux uses per-cpu TSS and GDT, so set these when switching
236 * processors.
237 */
238 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
239 get_gdt(&dt);
240 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
241
242 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
243 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
244 }
245 return vcpu;
246 }
247
248 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
249 {
250 put_cpu();
251 }
252
253 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
254 {
255 vcpu_clear(vcpu);
256 }
257
258 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
259 {
260 return vmcs_readl(GUEST_RFLAGS);
261 }
262
263 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
264 {
265 vmcs_writel(GUEST_RFLAGS, rflags);
266 }
267
268 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
269 {
270 unsigned long rip;
271 u32 interruptibility;
272
273 rip = vmcs_readl(GUEST_RIP);
274 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
275 vmcs_writel(GUEST_RIP, rip);
276
277 /*
278 * We emulated an instruction, so temporary interrupt blocking
279 * should be removed, if set.
280 */
281 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
282 if (interruptibility & 3)
283 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
284 interruptibility & ~3);
285 vcpu->interrupt_window_open = 1;
286 }
287
288 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
289 {
290 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
291 vmcs_readl(GUEST_RIP));
292 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
293 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
294 GP_VECTOR |
295 INTR_TYPE_EXCEPTION |
296 INTR_INFO_DELIEVER_CODE_MASK |
297 INTR_INFO_VALID_MASK);
298 }
299
300 /*
301 * reads and returns guest's timestamp counter "register"
302 * guest_tsc = host_tsc + tsc_offset -- 21.3
303 */
304 static u64 guest_read_tsc(void)
305 {
306 u64 host_tsc, tsc_offset;
307
308 rdtscll(host_tsc);
309 tsc_offset = vmcs_read64(TSC_OFFSET);
310 return host_tsc + tsc_offset;
311 }
312
313 /*
314 * writes 'guest_tsc' into guest's timestamp counter "register"
315 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
316 */
317 static void guest_write_tsc(u64 guest_tsc)
318 {
319 u64 host_tsc;
320
321 rdtscll(host_tsc);
322 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
323 }
324
325 static void reload_tss(void)
326 {
327 #ifndef CONFIG_X86_64
328
329 /*
330 * VT restores TR but not its size. Useless.
331 */
332 struct descriptor_table gdt;
333 struct segment_descriptor *descs;
334
335 get_gdt(&gdt);
336 descs = (void *)gdt.base;
337 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
338 load_TR_desc();
339 #endif
340 }
341
342 /*
343 * Reads an msr value (of 'msr_index') into 'pdata'.
344 * Returns 0 on success, non-0 otherwise.
345 * Assumes vcpu_load() was already called.
346 */
347 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
348 {
349 u64 data;
350 struct vmx_msr_entry *msr;
351
352 if (!pdata) {
353 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
354 return -EINVAL;
355 }
356
357 switch (msr_index) {
358 #ifdef CONFIG_X86_64
359 case MSR_FS_BASE:
360 data = vmcs_readl(GUEST_FS_BASE);
361 break;
362 case MSR_GS_BASE:
363 data = vmcs_readl(GUEST_GS_BASE);
364 break;
365 case MSR_EFER:
366 return kvm_get_msr_common(vcpu, msr_index, pdata);
367 #endif
368 case MSR_IA32_TIME_STAMP_COUNTER:
369 data = guest_read_tsc();
370 break;
371 case MSR_IA32_SYSENTER_CS:
372 data = vmcs_read32(GUEST_SYSENTER_CS);
373 break;
374 case MSR_IA32_SYSENTER_EIP:
375 data = vmcs_read32(GUEST_SYSENTER_EIP);
376 break;
377 case MSR_IA32_SYSENTER_ESP:
378 data = vmcs_read32(GUEST_SYSENTER_ESP);
379 break;
380 default:
381 msr = find_msr_entry(vcpu, msr_index);
382 if (msr) {
383 data = msr->data;
384 break;
385 }
386 return kvm_get_msr_common(vcpu, msr_index, pdata);
387 }
388
389 *pdata = data;
390 return 0;
391 }
392
393 /*
394 * Writes msr value into into the appropriate "register".
395 * Returns 0 on success, non-0 otherwise.
396 * Assumes vcpu_load() was already called.
397 */
398 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
399 {
400 struct vmx_msr_entry *msr;
401 switch (msr_index) {
402 #ifdef CONFIG_X86_64
403 case MSR_EFER:
404 return kvm_set_msr_common(vcpu, msr_index, data);
405 case MSR_FS_BASE:
406 vmcs_writel(GUEST_FS_BASE, data);
407 break;
408 case MSR_GS_BASE:
409 vmcs_writel(GUEST_GS_BASE, data);
410 break;
411 #endif
412 case MSR_IA32_SYSENTER_CS:
413 vmcs_write32(GUEST_SYSENTER_CS, data);
414 break;
415 case MSR_IA32_SYSENTER_EIP:
416 vmcs_write32(GUEST_SYSENTER_EIP, data);
417 break;
418 case MSR_IA32_SYSENTER_ESP:
419 vmcs_write32(GUEST_SYSENTER_ESP, data);
420 break;
421 case MSR_IA32_TIME_STAMP_COUNTER:
422 guest_write_tsc(data);
423 break;
424 default:
425 msr = find_msr_entry(vcpu, msr_index);
426 if (msr) {
427 msr->data = data;
428 break;
429 }
430 return kvm_set_msr_common(vcpu, msr_index, data);
431 msr->data = data;
432 break;
433 }
434
435 return 0;
436 }
437
438 /*
439 * Sync the rsp and rip registers into the vcpu structure. This allows
440 * registers to be accessed by indexing vcpu->regs.
441 */
442 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
443 {
444 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
445 vcpu->rip = vmcs_readl(GUEST_RIP);
446 }
447
448 /*
449 * Syncs rsp and rip back into the vmcs. Should be called after possible
450 * modification.
451 */
452 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
453 {
454 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
455 vmcs_writel(GUEST_RIP, vcpu->rip);
456 }
457
458 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
459 {
460 unsigned long dr7 = 0x400;
461 u32 exception_bitmap;
462 int old_singlestep;
463
464 exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
465 old_singlestep = vcpu->guest_debug.singlestep;
466
467 vcpu->guest_debug.enabled = dbg->enabled;
468 if (vcpu->guest_debug.enabled) {
469 int i;
470
471 dr7 |= 0x200; /* exact */
472 for (i = 0; i < 4; ++i) {
473 if (!dbg->breakpoints[i].enabled)
474 continue;
475 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
476 dr7 |= 2 << (i*2); /* global enable */
477 dr7 |= 0 << (i*4+16); /* execution breakpoint */
478 }
479
480 exception_bitmap |= (1u << 1); /* Trap debug exceptions */
481
482 vcpu->guest_debug.singlestep = dbg->singlestep;
483 } else {
484 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
485 vcpu->guest_debug.singlestep = 0;
486 }
487
488 if (old_singlestep && !vcpu->guest_debug.singlestep) {
489 unsigned long flags;
490
491 flags = vmcs_readl(GUEST_RFLAGS);
492 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
493 vmcs_writel(GUEST_RFLAGS, flags);
494 }
495
496 vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
497 vmcs_writel(GUEST_DR7, dr7);
498
499 return 0;
500 }
501
502 static __init int cpu_has_kvm_support(void)
503 {
504 unsigned long ecx = cpuid_ecx(1);
505 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
506 }
507
508 static __init int vmx_disabled_by_bios(void)
509 {
510 u64 msr;
511
512 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
513 return (msr & 5) == 1; /* locked but not enabled */
514 }
515
516 static void hardware_enable(void *garbage)
517 {
518 int cpu = raw_smp_processor_id();
519 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
520 u64 old;
521
522 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
523 if ((old & 5) != 5)
524 /* enable and lock */
525 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
526 write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
527 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
528 : "memory", "cc");
529 }
530
531 static void hardware_disable(void *garbage)
532 {
533 asm volatile (ASM_VMX_VMXOFF : : : "cc");
534 }
535
536 static __init void setup_vmcs_descriptor(void)
537 {
538 u32 vmx_msr_low, vmx_msr_high;
539
540 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
541 vmcs_descriptor.size = vmx_msr_high & 0x1fff;
542 vmcs_descriptor.order = get_order(vmcs_descriptor.size);
543 vmcs_descriptor.revision_id = vmx_msr_low;
544 }
545
546 static struct vmcs *alloc_vmcs_cpu(int cpu)
547 {
548 int node = cpu_to_node(cpu);
549 struct page *pages;
550 struct vmcs *vmcs;
551
552 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
553 if (!pages)
554 return NULL;
555 vmcs = page_address(pages);
556 memset(vmcs, 0, vmcs_descriptor.size);
557 vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
558 return vmcs;
559 }
560
561 static struct vmcs *alloc_vmcs(void)
562 {
563 return alloc_vmcs_cpu(raw_smp_processor_id());
564 }
565
566 static void free_vmcs(struct vmcs *vmcs)
567 {
568 free_pages((unsigned long)vmcs, vmcs_descriptor.order);
569 }
570
571 static __exit void free_kvm_area(void)
572 {
573 int cpu;
574
575 for_each_online_cpu(cpu)
576 free_vmcs(per_cpu(vmxarea, cpu));
577 }
578
579 extern struct vmcs *alloc_vmcs_cpu(int cpu);
580
581 static __init int alloc_kvm_area(void)
582 {
583 int cpu;
584
585 for_each_online_cpu(cpu) {
586 struct vmcs *vmcs;
587
588 vmcs = alloc_vmcs_cpu(cpu);
589 if (!vmcs) {
590 free_kvm_area();
591 return -ENOMEM;
592 }
593
594 per_cpu(vmxarea, cpu) = vmcs;
595 }
596 return 0;
597 }
598
599 static __init int hardware_setup(void)
600 {
601 setup_vmcs_descriptor();
602 return alloc_kvm_area();
603 }
604
605 static __exit void hardware_unsetup(void)
606 {
607 free_kvm_area();
608 }
609
610 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
611 {
612 if (vcpu->rmode.active)
613 vmcs_write32(EXCEPTION_BITMAP, ~0);
614 else
615 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
616 }
617
618 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
619 {
620 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
621
622 if (vmcs_readl(sf->base) == save->base) {
623 vmcs_write16(sf->selector, save->selector);
624 vmcs_writel(sf->base, save->base);
625 vmcs_write32(sf->limit, save->limit);
626 vmcs_write32(sf->ar_bytes, save->ar);
627 } else {
628 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
629 << AR_DPL_SHIFT;
630 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
631 }
632 }
633
634 static void enter_pmode(struct kvm_vcpu *vcpu)
635 {
636 unsigned long flags;
637
638 vcpu->rmode.active = 0;
639
640 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
641 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
642 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
643
644 flags = vmcs_readl(GUEST_RFLAGS);
645 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
646 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
647 vmcs_writel(GUEST_RFLAGS, flags);
648
649 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
650 (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
651
652 update_exception_bitmap(vcpu);
653
654 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
655 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
656 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
657 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
658
659 vmcs_write16(GUEST_SS_SELECTOR, 0);
660 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
661
662 vmcs_write16(GUEST_CS_SELECTOR,
663 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
664 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
665 }
666
667 static int rmode_tss_base(struct kvm* kvm)
668 {
669 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
670 return base_gfn << PAGE_SHIFT;
671 }
672
673 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
674 {
675 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
676
677 save->selector = vmcs_read16(sf->selector);
678 save->base = vmcs_readl(sf->base);
679 save->limit = vmcs_read32(sf->limit);
680 save->ar = vmcs_read32(sf->ar_bytes);
681 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
682 vmcs_write32(sf->limit, 0xffff);
683 vmcs_write32(sf->ar_bytes, 0xf3);
684 }
685
686 static void enter_rmode(struct kvm_vcpu *vcpu)
687 {
688 unsigned long flags;
689
690 vcpu->rmode.active = 1;
691
692 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
693 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
694
695 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
696 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
697
698 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
699 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
700
701 flags = vmcs_readl(GUEST_RFLAGS);
702 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
703
704 flags |= IOPL_MASK | X86_EFLAGS_VM;
705
706 vmcs_writel(GUEST_RFLAGS, flags);
707 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
708 update_exception_bitmap(vcpu);
709
710 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
711 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
712 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
713
714 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
715 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
716 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
717
718 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
719 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
720 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
721 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
722 }
723
724 #ifdef CONFIG_X86_64
725
726 static void enter_lmode(struct kvm_vcpu *vcpu)
727 {
728 u32 guest_tr_ar;
729
730 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
731 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
732 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
733 __FUNCTION__);
734 vmcs_write32(GUEST_TR_AR_BYTES,
735 (guest_tr_ar & ~AR_TYPE_MASK)
736 | AR_TYPE_BUSY_64_TSS);
737 }
738
739 vcpu->shadow_efer |= EFER_LMA;
740
741 find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
742 vmcs_write32(VM_ENTRY_CONTROLS,
743 vmcs_read32(VM_ENTRY_CONTROLS)
744 | VM_ENTRY_CONTROLS_IA32E_MASK);
745 }
746
747 static void exit_lmode(struct kvm_vcpu *vcpu)
748 {
749 vcpu->shadow_efer &= ~EFER_LMA;
750
751 vmcs_write32(VM_ENTRY_CONTROLS,
752 vmcs_read32(VM_ENTRY_CONTROLS)
753 & ~VM_ENTRY_CONTROLS_IA32E_MASK);
754 }
755
756 #endif
757
758 static void vmx_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
759 {
760 vcpu->cr0 &= KVM_GUEST_CR0_MASK;
761 vcpu->cr0 |= vmcs_readl(GUEST_CR0) & ~KVM_GUEST_CR0_MASK;
762
763 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
764 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
765 }
766
767 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
768 {
769 if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
770 enter_pmode(vcpu);
771
772 if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
773 enter_rmode(vcpu);
774
775 #ifdef CONFIG_X86_64
776 if (vcpu->shadow_efer & EFER_LME) {
777 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
778 enter_lmode(vcpu);
779 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
780 exit_lmode(vcpu);
781 }
782 #endif
783
784 vmcs_writel(CR0_READ_SHADOW, cr0);
785 vmcs_writel(GUEST_CR0,
786 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
787 vcpu->cr0 = cr0;
788 }
789
790 /*
791 * Used when restoring the VM to avoid corrupting segment registers
792 */
793 static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
794 {
795 if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
796 enter_rmode(vcpu);
797
798 vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
799 update_exception_bitmap(vcpu);
800 vmcs_writel(CR0_READ_SHADOW, cr0);
801 vmcs_writel(GUEST_CR0,
802 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
803 vcpu->cr0 = cr0;
804 }
805
806 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
807 {
808 vmcs_writel(GUEST_CR3, cr3);
809 }
810
811 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
812 {
813 vmcs_writel(CR4_READ_SHADOW, cr4);
814 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
815 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
816 vcpu->cr4 = cr4;
817 }
818
819 #ifdef CONFIG_X86_64
820
821 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
822 {
823 struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
824
825 vcpu->shadow_efer = efer;
826 if (efer & EFER_LMA) {
827 vmcs_write32(VM_ENTRY_CONTROLS,
828 vmcs_read32(VM_ENTRY_CONTROLS) |
829 VM_ENTRY_CONTROLS_IA32E_MASK);
830 msr->data = efer;
831
832 } else {
833 vmcs_write32(VM_ENTRY_CONTROLS,
834 vmcs_read32(VM_ENTRY_CONTROLS) &
835 ~VM_ENTRY_CONTROLS_IA32E_MASK);
836
837 msr->data = efer & ~EFER_LME;
838 }
839 }
840
841 #endif
842
843 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
844 {
845 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
846
847 return vmcs_readl(sf->base);
848 }
849
850 static void vmx_get_segment(struct kvm_vcpu *vcpu,
851 struct kvm_segment *var, int seg)
852 {
853 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
854 u32 ar;
855
856 var->base = vmcs_readl(sf->base);
857 var->limit = vmcs_read32(sf->limit);
858 var->selector = vmcs_read16(sf->selector);
859 ar = vmcs_read32(sf->ar_bytes);
860 if (ar & AR_UNUSABLE_MASK)
861 ar = 0;
862 var->type = ar & 15;
863 var->s = (ar >> 4) & 1;
864 var->dpl = (ar >> 5) & 3;
865 var->present = (ar >> 7) & 1;
866 var->avl = (ar >> 12) & 1;
867 var->l = (ar >> 13) & 1;
868 var->db = (ar >> 14) & 1;
869 var->g = (ar >> 15) & 1;
870 var->unusable = (ar >> 16) & 1;
871 }
872
873 static void vmx_set_segment(struct kvm_vcpu *vcpu,
874 struct kvm_segment *var, int seg)
875 {
876 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
877 u32 ar;
878
879 vmcs_writel(sf->base, var->base);
880 vmcs_write32(sf->limit, var->limit);
881 vmcs_write16(sf->selector, var->selector);
882 if (var->unusable)
883 ar = 1 << 16;
884 else {
885 ar = var->type & 15;
886 ar |= (var->s & 1) << 4;
887 ar |= (var->dpl & 3) << 5;
888 ar |= (var->present & 1) << 7;
889 ar |= (var->avl & 1) << 12;
890 ar |= (var->l & 1) << 13;
891 ar |= (var->db & 1) << 14;
892 ar |= (var->g & 1) << 15;
893 }
894 if (ar == 0) /* a 0 value means unusable */
895 ar = AR_UNUSABLE_MASK;
896 vmcs_write32(sf->ar_bytes, ar);
897 }
898
899 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
900 {
901 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
902
903 *db = (ar >> 14) & 1;
904 *l = (ar >> 13) & 1;
905 }
906
907 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
908 {
909 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
910 dt->base = vmcs_readl(GUEST_IDTR_BASE);
911 }
912
913 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
914 {
915 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
916 vmcs_writel(GUEST_IDTR_BASE, dt->base);
917 }
918
919 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
920 {
921 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
922 dt->base = vmcs_readl(GUEST_GDTR_BASE);
923 }
924
925 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
926 {
927 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
928 vmcs_writel(GUEST_GDTR_BASE, dt->base);
929 }
930
931 static int init_rmode_tss(struct kvm* kvm)
932 {
933 struct page *p1, *p2, *p3;
934 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
935 char *page;
936
937 p1 = _gfn_to_page(kvm, fn++);
938 p2 = _gfn_to_page(kvm, fn++);
939 p3 = _gfn_to_page(kvm, fn);
940
941 if (!p1 || !p2 || !p3) {
942 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
943 return 0;
944 }
945
946 page = kmap_atomic(p1, KM_USER0);
947 memset(page, 0, PAGE_SIZE);
948 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
949 kunmap_atomic(page, KM_USER0);
950
951 page = kmap_atomic(p2, KM_USER0);
952 memset(page, 0, PAGE_SIZE);
953 kunmap_atomic(page, KM_USER0);
954
955 page = kmap_atomic(p3, KM_USER0);
956 memset(page, 0, PAGE_SIZE);
957 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
958 kunmap_atomic(page, KM_USER0);
959
960 return 1;
961 }
962
963 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
964 {
965 u32 msr_high, msr_low;
966
967 rdmsr(msr, msr_low, msr_high);
968
969 val &= msr_high;
970 val |= msr_low;
971 vmcs_write32(vmcs_field, val);
972 }
973
974 static void seg_setup(int seg)
975 {
976 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
977
978 vmcs_write16(sf->selector, 0);
979 vmcs_writel(sf->base, 0);
980 vmcs_write32(sf->limit, 0xffff);
981 vmcs_write32(sf->ar_bytes, 0x93);
982 }
983
984 /*
985 * Sets up the vmcs for emulated real mode.
986 */
987 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
988 {
989 u32 host_sysenter_cs;
990 u32 junk;
991 unsigned long a;
992 struct descriptor_table dt;
993 int i;
994 int ret = 0;
995 int nr_good_msrs;
996 extern asmlinkage void kvm_vmx_return(void);
997
998 if (!init_rmode_tss(vcpu->kvm)) {
999 ret = -ENOMEM;
1000 goto out;
1001 }
1002
1003 memset(vcpu->regs, 0, sizeof(vcpu->regs));
1004 vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1005 vcpu->cr8 = 0;
1006 vcpu->apic_base = 0xfee00000 |
1007 /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1008 MSR_IA32_APICBASE_ENABLE;
1009
1010 fx_init(vcpu);
1011
1012 /*
1013 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1014 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1015 */
1016 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1017 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1018 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1019 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1020
1021 seg_setup(VCPU_SREG_DS);
1022 seg_setup(VCPU_SREG_ES);
1023 seg_setup(VCPU_SREG_FS);
1024 seg_setup(VCPU_SREG_GS);
1025 seg_setup(VCPU_SREG_SS);
1026
1027 vmcs_write16(GUEST_TR_SELECTOR, 0);
1028 vmcs_writel(GUEST_TR_BASE, 0);
1029 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1030 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1031
1032 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1033 vmcs_writel(GUEST_LDTR_BASE, 0);
1034 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1035 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1036
1037 vmcs_write32(GUEST_SYSENTER_CS, 0);
1038 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1039 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1040
1041 vmcs_writel(GUEST_RFLAGS, 0x02);
1042 vmcs_writel(GUEST_RIP, 0xfff0);
1043 vmcs_writel(GUEST_RSP, 0);
1044
1045 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1046 vmcs_writel(GUEST_DR7, 0x400);
1047
1048 vmcs_writel(GUEST_GDTR_BASE, 0);
1049 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1050
1051 vmcs_writel(GUEST_IDTR_BASE, 0);
1052 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1053
1054 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1055 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1056 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1057
1058 /* I/O */
1059 vmcs_write64(IO_BITMAP_A, 0);
1060 vmcs_write64(IO_BITMAP_B, 0);
1061
1062 guest_write_tsc(0);
1063
1064 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1065
1066 /* Special registers */
1067 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1068
1069 /* Control */
1070 vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1071 PIN_BASED_VM_EXEC_CONTROL,
1072 PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
1073 | PIN_BASED_NMI_EXITING /* 20.6.1 */
1074 );
1075 vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1076 CPU_BASED_VM_EXEC_CONTROL,
1077 CPU_BASED_HLT_EXITING /* 20.6.2 */
1078 | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
1079 | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
1080 | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
1081 | CPU_BASED_MOV_DR_EXITING
1082 | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
1083 );
1084
1085 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1086 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1087 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1088 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1089
1090 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1091 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1092 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1093
1094 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1095 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1096 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1097 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1098 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1099 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1100 #ifdef CONFIG_X86_64
1101 rdmsrl(MSR_FS_BASE, a);
1102 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1103 rdmsrl(MSR_GS_BASE, a);
1104 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1105 #else
1106 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1107 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1108 #endif
1109
1110 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1111
1112 get_idt(&dt);
1113 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1114
1115
1116 vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1117
1118 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1119 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1120 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1121 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1122 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1123 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1124
1125 for (i = 0; i < NR_VMX_MSR; ++i) {
1126 u32 index = vmx_msr_index[i];
1127 u32 data_low, data_high;
1128 u64 data;
1129 int j = vcpu->nmsrs;
1130
1131 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1132 continue;
1133 if (wrmsr_safe(index, data_low, data_high) < 0)
1134 continue;
1135 data = data_low | ((u64)data_high << 32);
1136 vcpu->host_msrs[j].index = index;
1137 vcpu->host_msrs[j].reserved = 0;
1138 vcpu->host_msrs[j].data = data;
1139 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1140 ++vcpu->nmsrs;
1141 }
1142 printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
1143
1144 nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
1145 vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
1146 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1147 vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
1148 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1149 vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
1150 virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
1151 vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1152 (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
1153 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
1154 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1155 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1156
1157
1158 /* 22.2.1, 20.8.1 */
1159 vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1160 VM_ENTRY_CONTROLS, 0);
1161 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1162
1163 #ifdef CONFIG_X86_64
1164 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1165 vmcs_writel(TPR_THRESHOLD, 0);
1166 #endif
1167
1168 vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1169 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1170
1171 vcpu->cr0 = 0x60000010;
1172 vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1173 vmx_set_cr4(vcpu, 0);
1174 #ifdef CONFIG_X86_64
1175 vmx_set_efer(vcpu, 0);
1176 #endif
1177
1178 return 0;
1179
1180 out:
1181 return ret;
1182 }
1183
1184 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1185 {
1186 u16 ent[2];
1187 u16 cs;
1188 u16 ip;
1189 unsigned long flags;
1190 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1191 u16 sp = vmcs_readl(GUEST_RSP);
1192 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1193
1194 if (sp > ss_limit || sp - 6 > sp) {
1195 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1196 __FUNCTION__,
1197 vmcs_readl(GUEST_RSP),
1198 vmcs_readl(GUEST_SS_BASE),
1199 vmcs_read32(GUEST_SS_LIMIT));
1200 return;
1201 }
1202
1203 if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1204 sizeof(ent)) {
1205 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1206 return;
1207 }
1208
1209 flags = vmcs_readl(GUEST_RFLAGS);
1210 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1211 ip = vmcs_readl(GUEST_RIP);
1212
1213
1214 if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1215 kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1216 kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1217 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1218 return;
1219 }
1220
1221 vmcs_writel(GUEST_RFLAGS, flags &
1222 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1223 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1224 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1225 vmcs_writel(GUEST_RIP, ent[0]);
1226 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1227 }
1228
1229 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1230 {
1231 int word_index = __ffs(vcpu->irq_summary);
1232 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1233 int irq = word_index * BITS_PER_LONG + bit_index;
1234
1235 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1236 if (!vcpu->irq_pending[word_index])
1237 clear_bit(word_index, &vcpu->irq_summary);
1238
1239 if (vcpu->rmode.active) {
1240 inject_rmode_irq(vcpu, irq);
1241 return;
1242 }
1243 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1244 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1245 }
1246
1247
1248 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1249 struct kvm_run *kvm_run)
1250 {
1251 u32 cpu_based_vm_exec_control;
1252
1253 vcpu->interrupt_window_open =
1254 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1255 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1256
1257 if (vcpu->interrupt_window_open &&
1258 vcpu->irq_summary &&
1259 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1260 /*
1261 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1262 */
1263 kvm_do_inject_irq(vcpu);
1264
1265 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1266 if (!vcpu->interrupt_window_open &&
1267 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1268 /*
1269 * Interrupts blocked. Wait for unblock.
1270 */
1271 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1272 else
1273 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1274 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1275 }
1276
1277 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1278 {
1279 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1280
1281 set_debugreg(dbg->bp[0], 0);
1282 set_debugreg(dbg->bp[1], 1);
1283 set_debugreg(dbg->bp[2], 2);
1284 set_debugreg(dbg->bp[3], 3);
1285
1286 if (dbg->singlestep) {
1287 unsigned long flags;
1288
1289 flags = vmcs_readl(GUEST_RFLAGS);
1290 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1291 vmcs_writel(GUEST_RFLAGS, flags);
1292 }
1293 }
1294
1295 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1296 int vec, u32 err_code)
1297 {
1298 if (!vcpu->rmode.active)
1299 return 0;
1300
1301 if (vec == GP_VECTOR && err_code == 0)
1302 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1303 return 1;
1304 return 0;
1305 }
1306
1307 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1308 {
1309 u32 intr_info, error_code;
1310 unsigned long cr2, rip;
1311 u32 vect_info;
1312 enum emulation_result er;
1313 int r;
1314
1315 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1316 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1317
1318 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1319 !is_page_fault(intr_info)) {
1320 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1321 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1322 }
1323
1324 if (is_external_interrupt(vect_info)) {
1325 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1326 set_bit(irq, vcpu->irq_pending);
1327 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1328 }
1329
1330 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1331 asm ("int $2");
1332 return 1;
1333 }
1334 error_code = 0;
1335 rip = vmcs_readl(GUEST_RIP);
1336 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1337 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1338 if (is_page_fault(intr_info)) {
1339 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1340
1341 spin_lock(&vcpu->kvm->lock);
1342 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1343 if (r < 0) {
1344 spin_unlock(&vcpu->kvm->lock);
1345 return r;
1346 }
1347 if (!r) {
1348 spin_unlock(&vcpu->kvm->lock);
1349 return 1;
1350 }
1351
1352 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1353 spin_unlock(&vcpu->kvm->lock);
1354
1355 switch (er) {
1356 case EMULATE_DONE:
1357 return 1;
1358 case EMULATE_DO_MMIO:
1359 ++kvm_stat.mmio_exits;
1360 kvm_run->exit_reason = KVM_EXIT_MMIO;
1361 return 0;
1362 case EMULATE_FAIL:
1363 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1364 break;
1365 default:
1366 BUG();
1367 }
1368 }
1369
1370 if (vcpu->rmode.active &&
1371 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1372 error_code))
1373 return 1;
1374
1375 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1376 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1377 return 0;
1378 }
1379 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1380 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1381 kvm_run->ex.error_code = error_code;
1382 return 0;
1383 }
1384
1385 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1386 struct kvm_run *kvm_run)
1387 {
1388 ++kvm_stat.irq_exits;
1389 return 1;
1390 }
1391
1392 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1393 {
1394 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1395 return 0;
1396 }
1397
1398 static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
1399 {
1400 u64 inst;
1401 gva_t rip;
1402 int countr_size;
1403 int i, n;
1404
1405 if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1406 countr_size = 2;
1407 } else {
1408 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1409
1410 countr_size = (cs_ar & AR_L_MASK) ? 8:
1411 (cs_ar & AR_DB_MASK) ? 4: 2;
1412 }
1413
1414 rip = vmcs_readl(GUEST_RIP);
1415 if (countr_size != 8)
1416 rip += vmcs_readl(GUEST_CS_BASE);
1417
1418 n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1419
1420 for (i = 0; i < n; i++) {
1421 switch (((u8*)&inst)[i]) {
1422 case 0xf0:
1423 case 0xf2:
1424 case 0xf3:
1425 case 0x2e:
1426 case 0x36:
1427 case 0x3e:
1428 case 0x26:
1429 case 0x64:
1430 case 0x65:
1431 case 0x66:
1432 break;
1433 case 0x67:
1434 countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1435 default:
1436 goto done;
1437 }
1438 }
1439 return 0;
1440 done:
1441 countr_size *= 8;
1442 *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1443 return 1;
1444 }
1445
1446 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1447 {
1448 u64 exit_qualification;
1449
1450 ++kvm_stat.io_exits;
1451 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1452 kvm_run->exit_reason = KVM_EXIT_IO;
1453 if (exit_qualification & 8)
1454 kvm_run->io.direction = KVM_EXIT_IO_IN;
1455 else
1456 kvm_run->io.direction = KVM_EXIT_IO_OUT;
1457 kvm_run->io.size = (exit_qualification & 7) + 1;
1458 kvm_run->io.string = (exit_qualification & 16) != 0;
1459 kvm_run->io.string_down
1460 = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1461 kvm_run->io.rep = (exit_qualification & 32) != 0;
1462 kvm_run->io.port = exit_qualification >> 16;
1463 if (kvm_run->io.string) {
1464 if (!get_io_count(vcpu, &kvm_run->io.count))
1465 return 1;
1466 kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1467 } else
1468 kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
1469 return 0;
1470 }
1471
1472 static void
1473 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1474 {
1475 /*
1476 * Patch in the VMCALL instruction:
1477 */
1478 hypercall[0] = 0x0f;
1479 hypercall[1] = 0x01;
1480 hypercall[2] = 0xc1;
1481 hypercall[3] = 0xc3;
1482 }
1483
1484 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1485 {
1486 u64 exit_qualification;
1487 int cr;
1488 int reg;
1489
1490 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1491 cr = exit_qualification & 15;
1492 reg = (exit_qualification >> 8) & 15;
1493 switch ((exit_qualification >> 4) & 3) {
1494 case 0: /* mov to cr */
1495 switch (cr) {
1496 case 0:
1497 vcpu_load_rsp_rip(vcpu);
1498 set_cr0(vcpu, vcpu->regs[reg]);
1499 skip_emulated_instruction(vcpu);
1500 return 1;
1501 case 3:
1502 vcpu_load_rsp_rip(vcpu);
1503 set_cr3(vcpu, vcpu->regs[reg]);
1504 skip_emulated_instruction(vcpu);
1505 return 1;
1506 case 4:
1507 vcpu_load_rsp_rip(vcpu);
1508 set_cr4(vcpu, vcpu->regs[reg]);
1509 skip_emulated_instruction(vcpu);
1510 return 1;
1511 case 8:
1512 vcpu_load_rsp_rip(vcpu);
1513 set_cr8(vcpu, vcpu->regs[reg]);
1514 skip_emulated_instruction(vcpu);
1515 return 1;
1516 };
1517 break;
1518 case 1: /*mov from cr*/
1519 switch (cr) {
1520 case 3:
1521 vcpu_load_rsp_rip(vcpu);
1522 vcpu->regs[reg] = vcpu->cr3;
1523 vcpu_put_rsp_rip(vcpu);
1524 skip_emulated_instruction(vcpu);
1525 return 1;
1526 case 8:
1527 printk(KERN_DEBUG "handle_cr: read CR8 "
1528 "cpu erratum AA15\n");
1529 vcpu_load_rsp_rip(vcpu);
1530 vcpu->regs[reg] = vcpu->cr8;
1531 vcpu_put_rsp_rip(vcpu);
1532 skip_emulated_instruction(vcpu);
1533 return 1;
1534 }
1535 break;
1536 case 3: /* lmsw */
1537 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1538
1539 skip_emulated_instruction(vcpu);
1540 return 1;
1541 default:
1542 break;
1543 }
1544 kvm_run->exit_reason = 0;
1545 printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1546 (int)(exit_qualification >> 4) & 3, cr);
1547 return 0;
1548 }
1549
1550 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1551 {
1552 u64 exit_qualification;
1553 unsigned long val;
1554 int dr, reg;
1555
1556 /*
1557 * FIXME: this code assumes the host is debugging the guest.
1558 * need to deal with guest debugging itself too.
1559 */
1560 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1561 dr = exit_qualification & 7;
1562 reg = (exit_qualification >> 8) & 15;
1563 vcpu_load_rsp_rip(vcpu);
1564 if (exit_qualification & 16) {
1565 /* mov from dr */
1566 switch (dr) {
1567 case 6:
1568 val = 0xffff0ff0;
1569 break;
1570 case 7:
1571 val = 0x400;
1572 break;
1573 default:
1574 val = 0;
1575 }
1576 vcpu->regs[reg] = val;
1577 } else {
1578 /* mov to dr */
1579 }
1580 vcpu_put_rsp_rip(vcpu);
1581 skip_emulated_instruction(vcpu);
1582 return 1;
1583 }
1584
1585 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1586 {
1587 kvm_run->exit_reason = KVM_EXIT_CPUID;
1588 return 0;
1589 }
1590
1591 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1592 {
1593 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1594 u64 data;
1595
1596 if (vmx_get_msr(vcpu, ecx, &data)) {
1597 vmx_inject_gp(vcpu, 0);
1598 return 1;
1599 }
1600
1601 /* FIXME: handling of bits 32:63 of rax, rdx */
1602 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1603 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1604 skip_emulated_instruction(vcpu);
1605 return 1;
1606 }
1607
1608 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1609 {
1610 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1611 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1612 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1613
1614 if (vmx_set_msr(vcpu, ecx, data) != 0) {
1615 vmx_inject_gp(vcpu, 0);
1616 return 1;
1617 }
1618
1619 skip_emulated_instruction(vcpu);
1620 return 1;
1621 }
1622
1623 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1624 struct kvm_run *kvm_run)
1625 {
1626 kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1627 kvm_run->cr8 = vcpu->cr8;
1628 kvm_run->apic_base = vcpu->apic_base;
1629 kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1630 vcpu->irq_summary == 0);
1631 }
1632
1633 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1634 struct kvm_run *kvm_run)
1635 {
1636 /*
1637 * If the user space waits to inject interrupts, exit as soon as
1638 * possible
1639 */
1640 if (kvm_run->request_interrupt_window &&
1641 !vcpu->irq_summary) {
1642 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1643 ++kvm_stat.irq_window_exits;
1644 return 0;
1645 }
1646 return 1;
1647 }
1648
1649 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1650 {
1651 skip_emulated_instruction(vcpu);
1652 if (vcpu->irq_summary)
1653 return 1;
1654
1655 kvm_run->exit_reason = KVM_EXIT_HLT;
1656 ++kvm_stat.halt_exits;
1657 return 0;
1658 }
1659
1660 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1661 {
1662 vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP)+3);
1663 return kvm_hypercall(vcpu, kvm_run);
1664 }
1665
1666 /*
1667 * The exit handlers return 1 if the exit was handled fully and guest execution
1668 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
1669 * to be done to userspace and return 0.
1670 */
1671 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1672 struct kvm_run *kvm_run) = {
1673 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
1674 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
1675 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
1676 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
1677 [EXIT_REASON_CR_ACCESS] = handle_cr,
1678 [EXIT_REASON_DR_ACCESS] = handle_dr,
1679 [EXIT_REASON_CPUID] = handle_cpuid,
1680 [EXIT_REASON_MSR_READ] = handle_rdmsr,
1681 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
1682 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
1683 [EXIT_REASON_HLT] = handle_halt,
1684 [EXIT_REASON_VMCALL] = handle_vmcall,
1685 };
1686
1687 static const int kvm_vmx_max_exit_handlers =
1688 sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1689
1690 /*
1691 * The guest has exited. See if we can fix it or if we need userspace
1692 * assistance.
1693 */
1694 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1695 {
1696 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1697 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1698
1699 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1700 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1701 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1702 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1703 kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1704 if (exit_reason < kvm_vmx_max_exit_handlers
1705 && kvm_vmx_exit_handlers[exit_reason])
1706 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1707 else {
1708 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1709 kvm_run->hw.hardware_exit_reason = exit_reason;
1710 }
1711 return 0;
1712 }
1713
1714 /*
1715 * Check if userspace requested an interrupt window, and that the
1716 * interrupt window is open.
1717 *
1718 * No need to exit to userspace if we already have an interrupt queued.
1719 */
1720 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1721 struct kvm_run *kvm_run)
1722 {
1723 return (!vcpu->irq_summary &&
1724 kvm_run->request_interrupt_window &&
1725 vcpu->interrupt_window_open &&
1726 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1727 }
1728
1729 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1730 {
1731 u8 fail;
1732 u16 fs_sel, gs_sel, ldt_sel;
1733 int fs_gs_ldt_reload_needed;
1734 int r;
1735
1736 again:
1737 /*
1738 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1739 * allow segment selectors with cpl > 0 or ti == 1.
1740 */
1741 fs_sel = read_fs();
1742 gs_sel = read_gs();
1743 ldt_sel = read_ldt();
1744 fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1745 if (!fs_gs_ldt_reload_needed) {
1746 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1747 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1748 } else {
1749 vmcs_write16(HOST_FS_SELECTOR, 0);
1750 vmcs_write16(HOST_GS_SELECTOR, 0);
1751 }
1752
1753 #ifdef CONFIG_X86_64
1754 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1755 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1756 #else
1757 vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1758 vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1759 #endif
1760
1761 if (!vcpu->mmio_read_completed)
1762 do_interrupt_requests(vcpu, kvm_run);
1763
1764 if (vcpu->guest_debug.enabled)
1765 kvm_guest_debug_pre(vcpu);
1766
1767 fx_save(vcpu->host_fx_image);
1768 fx_restore(vcpu->guest_fx_image);
1769
1770 save_msrs(vcpu->host_msrs, vcpu->nmsrs);
1771 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1772
1773 asm (
1774 /* Store host registers */
1775 "pushf \n\t"
1776 #ifdef CONFIG_X86_64
1777 "push %%rax; push %%rbx; push %%rdx;"
1778 "push %%rsi; push %%rdi; push %%rbp;"
1779 "push %%r8; push %%r9; push %%r10; push %%r11;"
1780 "push %%r12; push %%r13; push %%r14; push %%r15;"
1781 "push %%rcx \n\t"
1782 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1783 #else
1784 "pusha; push %%ecx \n\t"
1785 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1786 #endif
1787 /* Check if vmlaunch of vmresume is needed */
1788 "cmp $0, %1 \n\t"
1789 /* Load guest registers. Don't clobber flags. */
1790 #ifdef CONFIG_X86_64
1791 "mov %c[cr2](%3), %%rax \n\t"
1792 "mov %%rax, %%cr2 \n\t"
1793 "mov %c[rax](%3), %%rax \n\t"
1794 "mov %c[rbx](%3), %%rbx \n\t"
1795 "mov %c[rdx](%3), %%rdx \n\t"
1796 "mov %c[rsi](%3), %%rsi \n\t"
1797 "mov %c[rdi](%3), %%rdi \n\t"
1798 "mov %c[rbp](%3), %%rbp \n\t"
1799 "mov %c[r8](%3), %%r8 \n\t"
1800 "mov %c[r9](%3), %%r9 \n\t"
1801 "mov %c[r10](%3), %%r10 \n\t"
1802 "mov %c[r11](%3), %%r11 \n\t"
1803 "mov %c[r12](%3), %%r12 \n\t"
1804 "mov %c[r13](%3), %%r13 \n\t"
1805 "mov %c[r14](%3), %%r14 \n\t"
1806 "mov %c[r15](%3), %%r15 \n\t"
1807 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1808 #else
1809 "mov %c[cr2](%3), %%eax \n\t"
1810 "mov %%eax, %%cr2 \n\t"
1811 "mov %c[rax](%3), %%eax \n\t"
1812 "mov %c[rbx](%3), %%ebx \n\t"
1813 "mov %c[rdx](%3), %%edx \n\t"
1814 "mov %c[rsi](%3), %%esi \n\t"
1815 "mov %c[rdi](%3), %%edi \n\t"
1816 "mov %c[rbp](%3), %%ebp \n\t"
1817 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1818 #endif
1819 /* Enter guest mode */
1820 "jne launched \n\t"
1821 ASM_VMX_VMLAUNCH "\n\t"
1822 "jmp kvm_vmx_return \n\t"
1823 "launched: " ASM_VMX_VMRESUME "\n\t"
1824 ".globl kvm_vmx_return \n\t"
1825 "kvm_vmx_return: "
1826 /* Save guest registers, load host registers, keep flags */
1827 #ifdef CONFIG_X86_64
1828 "xchg %3, (%%rsp) \n\t"
1829 "mov %%rax, %c[rax](%3) \n\t"
1830 "mov %%rbx, %c[rbx](%3) \n\t"
1831 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
1832 "mov %%rdx, %c[rdx](%3) \n\t"
1833 "mov %%rsi, %c[rsi](%3) \n\t"
1834 "mov %%rdi, %c[rdi](%3) \n\t"
1835 "mov %%rbp, %c[rbp](%3) \n\t"
1836 "mov %%r8, %c[r8](%3) \n\t"
1837 "mov %%r9, %c[r9](%3) \n\t"
1838 "mov %%r10, %c[r10](%3) \n\t"
1839 "mov %%r11, %c[r11](%3) \n\t"
1840 "mov %%r12, %c[r12](%3) \n\t"
1841 "mov %%r13, %c[r13](%3) \n\t"
1842 "mov %%r14, %c[r14](%3) \n\t"
1843 "mov %%r15, %c[r15](%3) \n\t"
1844 "mov %%cr2, %%rax \n\t"
1845 "mov %%rax, %c[cr2](%3) \n\t"
1846 "mov (%%rsp), %3 \n\t"
1847
1848 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1849 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1850 "pop %%rbp; pop %%rdi; pop %%rsi;"
1851 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
1852 #else
1853 "xchg %3, (%%esp) \n\t"
1854 "mov %%eax, %c[rax](%3) \n\t"
1855 "mov %%ebx, %c[rbx](%3) \n\t"
1856 "pushl (%%esp); popl %c[rcx](%3) \n\t"
1857 "mov %%edx, %c[rdx](%3) \n\t"
1858 "mov %%esi, %c[rsi](%3) \n\t"
1859 "mov %%edi, %c[rdi](%3) \n\t"
1860 "mov %%ebp, %c[rbp](%3) \n\t"
1861 "mov %%cr2, %%eax \n\t"
1862 "mov %%eax, %c[cr2](%3) \n\t"
1863 "mov (%%esp), %3 \n\t"
1864
1865 "pop %%ecx; popa \n\t"
1866 #endif
1867 "setbe %0 \n\t"
1868 "popf \n\t"
1869 : "=q" (fail)
1870 : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1871 "c"(vcpu),
1872 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1873 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1874 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1875 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1876 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1877 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1878 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1879 #ifdef CONFIG_X86_64
1880 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1881 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1882 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1883 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1884 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1885 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1886 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1887 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1888 #endif
1889 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1890 : "cc", "memory" );
1891
1892 ++kvm_stat.exits;
1893
1894 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1895 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1896
1897 fx_save(vcpu->guest_fx_image);
1898 fx_restore(vcpu->host_fx_image);
1899 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
1900
1901 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1902
1903 kvm_run->exit_type = 0;
1904 if (fail) {
1905 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1906 kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
1907 r = 0;
1908 } else {
1909 if (fs_gs_ldt_reload_needed) {
1910 load_ldt(ldt_sel);
1911 load_fs(fs_sel);
1912 /*
1913 * If we have to reload gs, we must take care to
1914 * preserve our gs base.
1915 */
1916 local_irq_disable();
1917 load_gs(gs_sel);
1918 #ifdef CONFIG_X86_64
1919 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1920 #endif
1921 local_irq_enable();
1922
1923 reload_tss();
1924 }
1925 /*
1926 * Profile KVM exit RIPs:
1927 */
1928 if (unlikely(prof_on == KVM_PROFILING))
1929 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
1930
1931 vcpu->launched = 1;
1932 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1933 r = kvm_handle_exit(kvm_run, vcpu);
1934 if (r > 0) {
1935 /* Give scheduler a change to reschedule. */
1936 if (signal_pending(current)) {
1937 ++kvm_stat.signal_exits;
1938 post_kvm_run_save(vcpu, kvm_run);
1939 return -EINTR;
1940 }
1941
1942 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1943 ++kvm_stat.request_irq_exits;
1944 post_kvm_run_save(vcpu, kvm_run);
1945 return -EINTR;
1946 }
1947
1948 kvm_resched(vcpu);
1949 goto again;
1950 }
1951 }
1952
1953 post_kvm_run_save(vcpu, kvm_run);
1954 return r;
1955 }
1956
1957 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1958 {
1959 vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1960 }
1961
1962 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1963 unsigned long addr,
1964 u32 err_code)
1965 {
1966 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1967
1968 ++kvm_stat.pf_guest;
1969
1970 if (is_page_fault(vect_info)) {
1971 printk(KERN_DEBUG "inject_page_fault: "
1972 "double fault 0x%lx @ 0x%lx\n",
1973 addr, vmcs_readl(GUEST_RIP));
1974 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
1975 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1976 DF_VECTOR |
1977 INTR_TYPE_EXCEPTION |
1978 INTR_INFO_DELIEVER_CODE_MASK |
1979 INTR_INFO_VALID_MASK);
1980 return;
1981 }
1982 vcpu->cr2 = addr;
1983 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
1984 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1985 PF_VECTOR |
1986 INTR_TYPE_EXCEPTION |
1987 INTR_INFO_DELIEVER_CODE_MASK |
1988 INTR_INFO_VALID_MASK);
1989
1990 }
1991
1992 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
1993 {
1994 if (vcpu->vmcs) {
1995 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
1996 free_vmcs(vcpu->vmcs);
1997 vcpu->vmcs = NULL;
1998 }
1999 }
2000
2001 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2002 {
2003 vmx_free_vmcs(vcpu);
2004 }
2005
2006 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
2007 {
2008 struct vmcs *vmcs;
2009
2010 vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2011 if (!vcpu->guest_msrs)
2012 return -ENOMEM;
2013
2014 vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2015 if (!vcpu->host_msrs)
2016 goto out_free_guest_msrs;
2017
2018 vmcs = alloc_vmcs();
2019 if (!vmcs)
2020 goto out_free_msrs;
2021
2022 vmcs_clear(vmcs);
2023 vcpu->vmcs = vmcs;
2024 vcpu->launched = 0;
2025
2026 return 0;
2027
2028 out_free_msrs:
2029 kfree(vcpu->host_msrs);
2030 vcpu->host_msrs = NULL;
2031
2032 out_free_guest_msrs:
2033 kfree(vcpu->guest_msrs);
2034 vcpu->guest_msrs = NULL;
2035
2036 return -ENOMEM;
2037 }
2038
2039 static struct kvm_arch_ops vmx_arch_ops = {
2040 .cpu_has_kvm_support = cpu_has_kvm_support,
2041 .disabled_by_bios = vmx_disabled_by_bios,
2042 .hardware_setup = hardware_setup,
2043 .hardware_unsetup = hardware_unsetup,
2044 .hardware_enable = hardware_enable,
2045 .hardware_disable = hardware_disable,
2046
2047 .vcpu_create = vmx_create_vcpu,
2048 .vcpu_free = vmx_free_vcpu,
2049
2050 .vcpu_load = vmx_vcpu_load,
2051 .vcpu_put = vmx_vcpu_put,
2052 .vcpu_decache = vmx_vcpu_decache,
2053
2054 .set_guest_debug = set_guest_debug,
2055 .get_msr = vmx_get_msr,
2056 .set_msr = vmx_set_msr,
2057 .get_segment_base = vmx_get_segment_base,
2058 .get_segment = vmx_get_segment,
2059 .set_segment = vmx_set_segment,
2060 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2061 .decache_cr0_cr4_guest_bits = vmx_decache_cr0_cr4_guest_bits,
2062 .set_cr0 = vmx_set_cr0,
2063 .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
2064 .set_cr3 = vmx_set_cr3,
2065 .set_cr4 = vmx_set_cr4,
2066 #ifdef CONFIG_X86_64
2067 .set_efer = vmx_set_efer,
2068 #endif
2069 .get_idt = vmx_get_idt,
2070 .set_idt = vmx_set_idt,
2071 .get_gdt = vmx_get_gdt,
2072 .set_gdt = vmx_set_gdt,
2073 .cache_regs = vcpu_load_rsp_rip,
2074 .decache_regs = vcpu_put_rsp_rip,
2075 .get_rflags = vmx_get_rflags,
2076 .set_rflags = vmx_set_rflags,
2077
2078 .tlb_flush = vmx_flush_tlb,
2079 .inject_page_fault = vmx_inject_page_fault,
2080
2081 .inject_gp = vmx_inject_gp,
2082
2083 .run = vmx_vcpu_run,
2084 .skip_emulated_instruction = skip_emulated_instruction,
2085 .vcpu_setup = vmx_vcpu_setup,
2086 .patch_hypercall = vmx_patch_hypercall,
2087 };
2088
2089 static int __init vmx_init(void)
2090 {
2091 return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2092 }
2093
2094 static void __exit vmx_exit(void)
2095 {
2096 kvm_exit_arch();
2097 }
2098
2099 module_init(vmx_init)
2100 module_exit(vmx_exit)
This page took 0.075089 seconds and 6 git commands to generate.