Merge git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[deliverable/linux.git] / drivers / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <asm/io.h>
26 #include <asm/desc.h>
27
28 #include "segment_descriptor.h"
29
30 MODULE_AUTHOR("Qumranet");
31 MODULE_LICENSE("GPL");
32
33 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
34 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
35
36 #ifdef CONFIG_X86_64
37 #define HOST_IS_64 1
38 #else
39 #define HOST_IS_64 0
40 #endif
41
42 static struct vmcs_descriptor {
43 int size;
44 int order;
45 u32 revision_id;
46 } vmcs_descriptor;
47
48 #define VMX_SEGMENT_FIELD(seg) \
49 [VCPU_SREG_##seg] = { \
50 .selector = GUEST_##seg##_SELECTOR, \
51 .base = GUEST_##seg##_BASE, \
52 .limit = GUEST_##seg##_LIMIT, \
53 .ar_bytes = GUEST_##seg##_AR_BYTES, \
54 }
55
56 static struct kvm_vmx_segment_field {
57 unsigned selector;
58 unsigned base;
59 unsigned limit;
60 unsigned ar_bytes;
61 } kvm_vmx_segment_fields[] = {
62 VMX_SEGMENT_FIELD(CS),
63 VMX_SEGMENT_FIELD(DS),
64 VMX_SEGMENT_FIELD(ES),
65 VMX_SEGMENT_FIELD(FS),
66 VMX_SEGMENT_FIELD(GS),
67 VMX_SEGMENT_FIELD(SS),
68 VMX_SEGMENT_FIELD(TR),
69 VMX_SEGMENT_FIELD(LDTR),
70 };
71
72 /*
73 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
74 * away by decrementing the array size.
75 */
76 static const u32 vmx_msr_index[] = {
77 #ifdef CONFIG_X86_64
78 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
79 #endif
80 MSR_EFER, MSR_K6_STAR,
81 };
82 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
83
84 #ifdef CONFIG_X86_64
85 static unsigned msr_offset_kernel_gs_base;
86 #define NR_64BIT_MSRS 4
87 /*
88 * avoid save/load MSR_SYSCALL_MASK and MSR_LSTAR by std vt
89 * mechanism (cpu bug AA24)
90 */
91 #define NR_BAD_MSRS 2
92 #else
93 #define NR_64BIT_MSRS 0
94 #define NR_BAD_MSRS 0
95 #endif
96
97 static inline int is_page_fault(u32 intr_info)
98 {
99 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
100 INTR_INFO_VALID_MASK)) ==
101 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
102 }
103
104 static inline int is_no_device(u32 intr_info)
105 {
106 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
107 INTR_INFO_VALID_MASK)) ==
108 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
109 }
110
111 static inline int is_external_interrupt(u32 intr_info)
112 {
113 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
114 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
115 }
116
117 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
118 {
119 int i;
120
121 for (i = 0; i < vcpu->nmsrs; ++i)
122 if (vcpu->guest_msrs[i].index == msr)
123 return &vcpu->guest_msrs[i];
124 return NULL;
125 }
126
127 static void vmcs_clear(struct vmcs *vmcs)
128 {
129 u64 phys_addr = __pa(vmcs);
130 u8 error;
131
132 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
133 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
134 : "cc", "memory");
135 if (error)
136 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
137 vmcs, phys_addr);
138 }
139
140 static void __vcpu_clear(void *arg)
141 {
142 struct kvm_vcpu *vcpu = arg;
143 int cpu = raw_smp_processor_id();
144
145 if (vcpu->cpu == cpu)
146 vmcs_clear(vcpu->vmcs);
147 if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
148 per_cpu(current_vmcs, cpu) = NULL;
149 }
150
151 static void vcpu_clear(struct kvm_vcpu *vcpu)
152 {
153 if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
154 smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
155 else
156 __vcpu_clear(vcpu);
157 vcpu->launched = 0;
158 }
159
160 static unsigned long vmcs_readl(unsigned long field)
161 {
162 unsigned long value;
163
164 asm volatile (ASM_VMX_VMREAD_RDX_RAX
165 : "=a"(value) : "d"(field) : "cc");
166 return value;
167 }
168
169 static u16 vmcs_read16(unsigned long field)
170 {
171 return vmcs_readl(field);
172 }
173
174 static u32 vmcs_read32(unsigned long field)
175 {
176 return vmcs_readl(field);
177 }
178
179 static u64 vmcs_read64(unsigned long field)
180 {
181 #ifdef CONFIG_X86_64
182 return vmcs_readl(field);
183 #else
184 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
185 #endif
186 }
187
188 static noinline void vmwrite_error(unsigned long field, unsigned long value)
189 {
190 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
191 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
192 dump_stack();
193 }
194
195 static void vmcs_writel(unsigned long field, unsigned long value)
196 {
197 u8 error;
198
199 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
200 : "=q"(error) : "a"(value), "d"(field) : "cc" );
201 if (unlikely(error))
202 vmwrite_error(field, value);
203 }
204
205 static void vmcs_write16(unsigned long field, u16 value)
206 {
207 vmcs_writel(field, value);
208 }
209
210 static void vmcs_write32(unsigned long field, u32 value)
211 {
212 vmcs_writel(field, value);
213 }
214
215 static void vmcs_write64(unsigned long field, u64 value)
216 {
217 #ifdef CONFIG_X86_64
218 vmcs_writel(field, value);
219 #else
220 vmcs_writel(field, value);
221 asm volatile ("");
222 vmcs_writel(field+1, value >> 32);
223 #endif
224 }
225
226 static void vmcs_clear_bits(unsigned long field, u32 mask)
227 {
228 vmcs_writel(field, vmcs_readl(field) & ~mask);
229 }
230
231 static void vmcs_set_bits(unsigned long field, u32 mask)
232 {
233 vmcs_writel(field, vmcs_readl(field) | mask);
234 }
235
236 /*
237 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
238 * vcpu mutex is already taken.
239 */
240 static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
241 {
242 u64 phys_addr = __pa(vcpu->vmcs);
243 int cpu;
244
245 cpu = get_cpu();
246
247 if (vcpu->cpu != cpu)
248 vcpu_clear(vcpu);
249
250 if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
251 u8 error;
252
253 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
254 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
255 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
256 : "cc");
257 if (error)
258 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
259 vcpu->vmcs, phys_addr);
260 }
261
262 if (vcpu->cpu != cpu) {
263 struct descriptor_table dt;
264 unsigned long sysenter_esp;
265
266 vcpu->cpu = cpu;
267 /*
268 * Linux uses per-cpu TSS and GDT, so set these when switching
269 * processors.
270 */
271 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
272 get_gdt(&dt);
273 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
274
275 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
276 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
277 }
278 }
279
280 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
281 {
282 put_cpu();
283 }
284
285 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
286 {
287 vcpu_clear(vcpu);
288 }
289
290 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
291 {
292 return vmcs_readl(GUEST_RFLAGS);
293 }
294
295 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
296 {
297 vmcs_writel(GUEST_RFLAGS, rflags);
298 }
299
300 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
301 {
302 unsigned long rip;
303 u32 interruptibility;
304
305 rip = vmcs_readl(GUEST_RIP);
306 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
307 vmcs_writel(GUEST_RIP, rip);
308
309 /*
310 * We emulated an instruction, so temporary interrupt blocking
311 * should be removed, if set.
312 */
313 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
314 if (interruptibility & 3)
315 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
316 interruptibility & ~3);
317 vcpu->interrupt_window_open = 1;
318 }
319
320 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
321 {
322 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
323 vmcs_readl(GUEST_RIP));
324 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
325 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
326 GP_VECTOR |
327 INTR_TYPE_EXCEPTION |
328 INTR_INFO_DELIEVER_CODE_MASK |
329 INTR_INFO_VALID_MASK);
330 }
331
332 /*
333 * Set up the vmcs to automatically save and restore system
334 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
335 * mode, as fiddling with msrs is very expensive.
336 */
337 static void setup_msrs(struct kvm_vcpu *vcpu)
338 {
339 int nr_skip, nr_good_msrs;
340
341 if (is_long_mode(vcpu))
342 nr_skip = NR_BAD_MSRS;
343 else
344 nr_skip = NR_64BIT_MSRS;
345 nr_good_msrs = vcpu->nmsrs - nr_skip;
346
347 /*
348 * MSR_K6_STAR is only needed on long mode guests, and only
349 * if efer.sce is enabled.
350 */
351 if (find_msr_entry(vcpu, MSR_K6_STAR)) {
352 --nr_good_msrs;
353 #ifdef CONFIG_X86_64
354 if (is_long_mode(vcpu) && (vcpu->shadow_efer & EFER_SCE))
355 ++nr_good_msrs;
356 #endif
357 }
358
359 vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
360 virt_to_phys(vcpu->guest_msrs + nr_skip));
361 vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
362 virt_to_phys(vcpu->guest_msrs + nr_skip));
363 vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
364 virt_to_phys(vcpu->host_msrs + nr_skip));
365 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
366 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
367 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
368 }
369
370 /*
371 * reads and returns guest's timestamp counter "register"
372 * guest_tsc = host_tsc + tsc_offset -- 21.3
373 */
374 static u64 guest_read_tsc(void)
375 {
376 u64 host_tsc, tsc_offset;
377
378 rdtscll(host_tsc);
379 tsc_offset = vmcs_read64(TSC_OFFSET);
380 return host_tsc + tsc_offset;
381 }
382
383 /*
384 * writes 'guest_tsc' into guest's timestamp counter "register"
385 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
386 */
387 static void guest_write_tsc(u64 guest_tsc)
388 {
389 u64 host_tsc;
390
391 rdtscll(host_tsc);
392 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
393 }
394
395 static void reload_tss(void)
396 {
397 #ifndef CONFIG_X86_64
398
399 /*
400 * VT restores TR but not its size. Useless.
401 */
402 struct descriptor_table gdt;
403 struct segment_descriptor *descs;
404
405 get_gdt(&gdt);
406 descs = (void *)gdt.base;
407 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
408 load_TR_desc();
409 #endif
410 }
411
412 /*
413 * Reads an msr value (of 'msr_index') into 'pdata'.
414 * Returns 0 on success, non-0 otherwise.
415 * Assumes vcpu_load() was already called.
416 */
417 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
418 {
419 u64 data;
420 struct vmx_msr_entry *msr;
421
422 if (!pdata) {
423 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
424 return -EINVAL;
425 }
426
427 switch (msr_index) {
428 #ifdef CONFIG_X86_64
429 case MSR_FS_BASE:
430 data = vmcs_readl(GUEST_FS_BASE);
431 break;
432 case MSR_GS_BASE:
433 data = vmcs_readl(GUEST_GS_BASE);
434 break;
435 case MSR_EFER:
436 return kvm_get_msr_common(vcpu, msr_index, pdata);
437 #endif
438 case MSR_IA32_TIME_STAMP_COUNTER:
439 data = guest_read_tsc();
440 break;
441 case MSR_IA32_SYSENTER_CS:
442 data = vmcs_read32(GUEST_SYSENTER_CS);
443 break;
444 case MSR_IA32_SYSENTER_EIP:
445 data = vmcs_readl(GUEST_SYSENTER_EIP);
446 break;
447 case MSR_IA32_SYSENTER_ESP:
448 data = vmcs_readl(GUEST_SYSENTER_ESP);
449 break;
450 default:
451 msr = find_msr_entry(vcpu, msr_index);
452 if (msr) {
453 data = msr->data;
454 break;
455 }
456 return kvm_get_msr_common(vcpu, msr_index, pdata);
457 }
458
459 *pdata = data;
460 return 0;
461 }
462
463 /*
464 * Writes msr value into into the appropriate "register".
465 * Returns 0 on success, non-0 otherwise.
466 * Assumes vcpu_load() was already called.
467 */
468 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
469 {
470 struct vmx_msr_entry *msr;
471 switch (msr_index) {
472 #ifdef CONFIG_X86_64
473 case MSR_EFER:
474 return kvm_set_msr_common(vcpu, msr_index, data);
475 case MSR_FS_BASE:
476 vmcs_writel(GUEST_FS_BASE, data);
477 break;
478 case MSR_GS_BASE:
479 vmcs_writel(GUEST_GS_BASE, data);
480 break;
481 #endif
482 case MSR_IA32_SYSENTER_CS:
483 vmcs_write32(GUEST_SYSENTER_CS, data);
484 break;
485 case MSR_IA32_SYSENTER_EIP:
486 vmcs_writel(GUEST_SYSENTER_EIP, data);
487 break;
488 case MSR_IA32_SYSENTER_ESP:
489 vmcs_writel(GUEST_SYSENTER_ESP, data);
490 break;
491 case MSR_IA32_TIME_STAMP_COUNTER:
492 guest_write_tsc(data);
493 break;
494 default:
495 msr = find_msr_entry(vcpu, msr_index);
496 if (msr) {
497 msr->data = data;
498 break;
499 }
500 return kvm_set_msr_common(vcpu, msr_index, data);
501 msr->data = data;
502 break;
503 }
504
505 return 0;
506 }
507
508 /*
509 * Sync the rsp and rip registers into the vcpu structure. This allows
510 * registers to be accessed by indexing vcpu->regs.
511 */
512 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
513 {
514 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
515 vcpu->rip = vmcs_readl(GUEST_RIP);
516 }
517
518 /*
519 * Syncs rsp and rip back into the vmcs. Should be called after possible
520 * modification.
521 */
522 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
523 {
524 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
525 vmcs_writel(GUEST_RIP, vcpu->rip);
526 }
527
528 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
529 {
530 unsigned long dr7 = 0x400;
531 u32 exception_bitmap;
532 int old_singlestep;
533
534 exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
535 old_singlestep = vcpu->guest_debug.singlestep;
536
537 vcpu->guest_debug.enabled = dbg->enabled;
538 if (vcpu->guest_debug.enabled) {
539 int i;
540
541 dr7 |= 0x200; /* exact */
542 for (i = 0; i < 4; ++i) {
543 if (!dbg->breakpoints[i].enabled)
544 continue;
545 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
546 dr7 |= 2 << (i*2); /* global enable */
547 dr7 |= 0 << (i*4+16); /* execution breakpoint */
548 }
549
550 exception_bitmap |= (1u << 1); /* Trap debug exceptions */
551
552 vcpu->guest_debug.singlestep = dbg->singlestep;
553 } else {
554 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
555 vcpu->guest_debug.singlestep = 0;
556 }
557
558 if (old_singlestep && !vcpu->guest_debug.singlestep) {
559 unsigned long flags;
560
561 flags = vmcs_readl(GUEST_RFLAGS);
562 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
563 vmcs_writel(GUEST_RFLAGS, flags);
564 }
565
566 vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
567 vmcs_writel(GUEST_DR7, dr7);
568
569 return 0;
570 }
571
572 static __init int cpu_has_kvm_support(void)
573 {
574 unsigned long ecx = cpuid_ecx(1);
575 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
576 }
577
578 static __init int vmx_disabled_by_bios(void)
579 {
580 u64 msr;
581
582 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
583 return (msr & 5) == 1; /* locked but not enabled */
584 }
585
586 static void hardware_enable(void *garbage)
587 {
588 int cpu = raw_smp_processor_id();
589 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
590 u64 old;
591
592 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
593 if ((old & 5) != 5)
594 /* enable and lock */
595 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
596 write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
597 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
598 : "memory", "cc");
599 }
600
601 static void hardware_disable(void *garbage)
602 {
603 asm volatile (ASM_VMX_VMXOFF : : : "cc");
604 }
605
606 static __init void setup_vmcs_descriptor(void)
607 {
608 u32 vmx_msr_low, vmx_msr_high;
609
610 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
611 vmcs_descriptor.size = vmx_msr_high & 0x1fff;
612 vmcs_descriptor.order = get_order(vmcs_descriptor.size);
613 vmcs_descriptor.revision_id = vmx_msr_low;
614 }
615
616 static struct vmcs *alloc_vmcs_cpu(int cpu)
617 {
618 int node = cpu_to_node(cpu);
619 struct page *pages;
620 struct vmcs *vmcs;
621
622 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
623 if (!pages)
624 return NULL;
625 vmcs = page_address(pages);
626 memset(vmcs, 0, vmcs_descriptor.size);
627 vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
628 return vmcs;
629 }
630
631 static struct vmcs *alloc_vmcs(void)
632 {
633 return alloc_vmcs_cpu(raw_smp_processor_id());
634 }
635
636 static void free_vmcs(struct vmcs *vmcs)
637 {
638 free_pages((unsigned long)vmcs, vmcs_descriptor.order);
639 }
640
641 static __exit void free_kvm_area(void)
642 {
643 int cpu;
644
645 for_each_online_cpu(cpu)
646 free_vmcs(per_cpu(vmxarea, cpu));
647 }
648
649 extern struct vmcs *alloc_vmcs_cpu(int cpu);
650
651 static __init int alloc_kvm_area(void)
652 {
653 int cpu;
654
655 for_each_online_cpu(cpu) {
656 struct vmcs *vmcs;
657
658 vmcs = alloc_vmcs_cpu(cpu);
659 if (!vmcs) {
660 free_kvm_area();
661 return -ENOMEM;
662 }
663
664 per_cpu(vmxarea, cpu) = vmcs;
665 }
666 return 0;
667 }
668
669 static __init int hardware_setup(void)
670 {
671 setup_vmcs_descriptor();
672 return alloc_kvm_area();
673 }
674
675 static __exit void hardware_unsetup(void)
676 {
677 free_kvm_area();
678 }
679
680 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
681 {
682 if (vcpu->rmode.active)
683 vmcs_write32(EXCEPTION_BITMAP, ~0);
684 else
685 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
686 }
687
688 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
689 {
690 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
691
692 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
693 vmcs_write16(sf->selector, save->selector);
694 vmcs_writel(sf->base, save->base);
695 vmcs_write32(sf->limit, save->limit);
696 vmcs_write32(sf->ar_bytes, save->ar);
697 } else {
698 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
699 << AR_DPL_SHIFT;
700 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
701 }
702 }
703
704 static void enter_pmode(struct kvm_vcpu *vcpu)
705 {
706 unsigned long flags;
707
708 vcpu->rmode.active = 0;
709
710 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
711 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
712 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
713
714 flags = vmcs_readl(GUEST_RFLAGS);
715 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
716 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
717 vmcs_writel(GUEST_RFLAGS, flags);
718
719 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
720 (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
721
722 update_exception_bitmap(vcpu);
723
724 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
725 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
726 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
727 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
728
729 vmcs_write16(GUEST_SS_SELECTOR, 0);
730 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
731
732 vmcs_write16(GUEST_CS_SELECTOR,
733 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
734 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
735 }
736
737 static int rmode_tss_base(struct kvm* kvm)
738 {
739 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
740 return base_gfn << PAGE_SHIFT;
741 }
742
743 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
744 {
745 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
746
747 save->selector = vmcs_read16(sf->selector);
748 save->base = vmcs_readl(sf->base);
749 save->limit = vmcs_read32(sf->limit);
750 save->ar = vmcs_read32(sf->ar_bytes);
751 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
752 vmcs_write32(sf->limit, 0xffff);
753 vmcs_write32(sf->ar_bytes, 0xf3);
754 }
755
756 static void enter_rmode(struct kvm_vcpu *vcpu)
757 {
758 unsigned long flags;
759
760 vcpu->rmode.active = 1;
761
762 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
763 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
764
765 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
766 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
767
768 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
769 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
770
771 flags = vmcs_readl(GUEST_RFLAGS);
772 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
773
774 flags |= IOPL_MASK | X86_EFLAGS_VM;
775
776 vmcs_writel(GUEST_RFLAGS, flags);
777 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
778 update_exception_bitmap(vcpu);
779
780 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
781 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
782 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
783
784 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
785 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
786 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
787 vmcs_writel(GUEST_CS_BASE, 0xf0000);
788 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
789
790 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
791 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
792 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
793 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
794 }
795
796 #ifdef CONFIG_X86_64
797
798 static void enter_lmode(struct kvm_vcpu *vcpu)
799 {
800 u32 guest_tr_ar;
801
802 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
803 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
804 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
805 __FUNCTION__);
806 vmcs_write32(GUEST_TR_AR_BYTES,
807 (guest_tr_ar & ~AR_TYPE_MASK)
808 | AR_TYPE_BUSY_64_TSS);
809 }
810
811 vcpu->shadow_efer |= EFER_LMA;
812
813 find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
814 vmcs_write32(VM_ENTRY_CONTROLS,
815 vmcs_read32(VM_ENTRY_CONTROLS)
816 | VM_ENTRY_CONTROLS_IA32E_MASK);
817 }
818
819 static void exit_lmode(struct kvm_vcpu *vcpu)
820 {
821 vcpu->shadow_efer &= ~EFER_LMA;
822
823 vmcs_write32(VM_ENTRY_CONTROLS,
824 vmcs_read32(VM_ENTRY_CONTROLS)
825 & ~VM_ENTRY_CONTROLS_IA32E_MASK);
826 }
827
828 #endif
829
830 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
831 {
832 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
833 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
834 }
835
836 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
837 {
838 if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
839 enter_pmode(vcpu);
840
841 if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
842 enter_rmode(vcpu);
843
844 #ifdef CONFIG_X86_64
845 if (vcpu->shadow_efer & EFER_LME) {
846 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
847 enter_lmode(vcpu);
848 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
849 exit_lmode(vcpu);
850 }
851 #endif
852
853 if (!(cr0 & CR0_TS_MASK)) {
854 vcpu->fpu_active = 1;
855 vmcs_clear_bits(EXCEPTION_BITMAP, CR0_TS_MASK);
856 }
857
858 vmcs_writel(CR0_READ_SHADOW, cr0);
859 vmcs_writel(GUEST_CR0,
860 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
861 vcpu->cr0 = cr0;
862 }
863
864 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
865 {
866 vmcs_writel(GUEST_CR3, cr3);
867
868 if (!(vcpu->cr0 & CR0_TS_MASK)) {
869 vcpu->fpu_active = 0;
870 vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
871 vmcs_set_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
872 }
873 }
874
875 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
876 {
877 vmcs_writel(CR4_READ_SHADOW, cr4);
878 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
879 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
880 vcpu->cr4 = cr4;
881 }
882
883 #ifdef CONFIG_X86_64
884
885 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
886 {
887 struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
888
889 vcpu->shadow_efer = efer;
890 if (efer & EFER_LMA) {
891 vmcs_write32(VM_ENTRY_CONTROLS,
892 vmcs_read32(VM_ENTRY_CONTROLS) |
893 VM_ENTRY_CONTROLS_IA32E_MASK);
894 msr->data = efer;
895
896 } else {
897 vmcs_write32(VM_ENTRY_CONTROLS,
898 vmcs_read32(VM_ENTRY_CONTROLS) &
899 ~VM_ENTRY_CONTROLS_IA32E_MASK);
900
901 msr->data = efer & ~EFER_LME;
902 }
903 setup_msrs(vcpu);
904 }
905
906 #endif
907
908 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
909 {
910 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
911
912 return vmcs_readl(sf->base);
913 }
914
915 static void vmx_get_segment(struct kvm_vcpu *vcpu,
916 struct kvm_segment *var, int seg)
917 {
918 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
919 u32 ar;
920
921 var->base = vmcs_readl(sf->base);
922 var->limit = vmcs_read32(sf->limit);
923 var->selector = vmcs_read16(sf->selector);
924 ar = vmcs_read32(sf->ar_bytes);
925 if (ar & AR_UNUSABLE_MASK)
926 ar = 0;
927 var->type = ar & 15;
928 var->s = (ar >> 4) & 1;
929 var->dpl = (ar >> 5) & 3;
930 var->present = (ar >> 7) & 1;
931 var->avl = (ar >> 12) & 1;
932 var->l = (ar >> 13) & 1;
933 var->db = (ar >> 14) & 1;
934 var->g = (ar >> 15) & 1;
935 var->unusable = (ar >> 16) & 1;
936 }
937
938 static void vmx_set_segment(struct kvm_vcpu *vcpu,
939 struct kvm_segment *var, int seg)
940 {
941 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
942 u32 ar;
943
944 vmcs_writel(sf->base, var->base);
945 vmcs_write32(sf->limit, var->limit);
946 vmcs_write16(sf->selector, var->selector);
947 if (vcpu->rmode.active && var->s) {
948 /*
949 * Hack real-mode segments into vm86 compatibility.
950 */
951 if (var->base == 0xffff0000 && var->selector == 0xf000)
952 vmcs_writel(sf->base, 0xf0000);
953 ar = 0xf3;
954 } else if (var->unusable)
955 ar = 1 << 16;
956 else {
957 ar = var->type & 15;
958 ar |= (var->s & 1) << 4;
959 ar |= (var->dpl & 3) << 5;
960 ar |= (var->present & 1) << 7;
961 ar |= (var->avl & 1) << 12;
962 ar |= (var->l & 1) << 13;
963 ar |= (var->db & 1) << 14;
964 ar |= (var->g & 1) << 15;
965 }
966 if (ar == 0) /* a 0 value means unusable */
967 ar = AR_UNUSABLE_MASK;
968 vmcs_write32(sf->ar_bytes, ar);
969 }
970
971 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
972 {
973 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
974
975 *db = (ar >> 14) & 1;
976 *l = (ar >> 13) & 1;
977 }
978
979 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
980 {
981 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
982 dt->base = vmcs_readl(GUEST_IDTR_BASE);
983 }
984
985 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
986 {
987 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
988 vmcs_writel(GUEST_IDTR_BASE, dt->base);
989 }
990
991 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
992 {
993 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
994 dt->base = vmcs_readl(GUEST_GDTR_BASE);
995 }
996
997 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
998 {
999 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1000 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1001 }
1002
1003 static int init_rmode_tss(struct kvm* kvm)
1004 {
1005 struct page *p1, *p2, *p3;
1006 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1007 char *page;
1008
1009 p1 = gfn_to_page(kvm, fn++);
1010 p2 = gfn_to_page(kvm, fn++);
1011 p3 = gfn_to_page(kvm, fn);
1012
1013 if (!p1 || !p2 || !p3) {
1014 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1015 return 0;
1016 }
1017
1018 page = kmap_atomic(p1, KM_USER0);
1019 memset(page, 0, PAGE_SIZE);
1020 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1021 kunmap_atomic(page, KM_USER0);
1022
1023 page = kmap_atomic(p2, KM_USER0);
1024 memset(page, 0, PAGE_SIZE);
1025 kunmap_atomic(page, KM_USER0);
1026
1027 page = kmap_atomic(p3, KM_USER0);
1028 memset(page, 0, PAGE_SIZE);
1029 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1030 kunmap_atomic(page, KM_USER0);
1031
1032 return 1;
1033 }
1034
1035 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
1036 {
1037 u32 msr_high, msr_low;
1038
1039 rdmsr(msr, msr_low, msr_high);
1040
1041 val &= msr_high;
1042 val |= msr_low;
1043 vmcs_write32(vmcs_field, val);
1044 }
1045
1046 static void seg_setup(int seg)
1047 {
1048 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1049
1050 vmcs_write16(sf->selector, 0);
1051 vmcs_writel(sf->base, 0);
1052 vmcs_write32(sf->limit, 0xffff);
1053 vmcs_write32(sf->ar_bytes, 0x93);
1054 }
1055
1056 /*
1057 * Sets up the vmcs for emulated real mode.
1058 */
1059 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
1060 {
1061 u32 host_sysenter_cs;
1062 u32 junk;
1063 unsigned long a;
1064 struct descriptor_table dt;
1065 int i;
1066 int ret = 0;
1067 extern asmlinkage void kvm_vmx_return(void);
1068
1069 if (!init_rmode_tss(vcpu->kvm)) {
1070 ret = -ENOMEM;
1071 goto out;
1072 }
1073
1074 memset(vcpu->regs, 0, sizeof(vcpu->regs));
1075 vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1076 vcpu->cr8 = 0;
1077 vcpu->apic_base = 0xfee00000 |
1078 /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1079 MSR_IA32_APICBASE_ENABLE;
1080
1081 fx_init(vcpu);
1082
1083 /*
1084 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1085 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1086 */
1087 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1088 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1089 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1090 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1091
1092 seg_setup(VCPU_SREG_DS);
1093 seg_setup(VCPU_SREG_ES);
1094 seg_setup(VCPU_SREG_FS);
1095 seg_setup(VCPU_SREG_GS);
1096 seg_setup(VCPU_SREG_SS);
1097
1098 vmcs_write16(GUEST_TR_SELECTOR, 0);
1099 vmcs_writel(GUEST_TR_BASE, 0);
1100 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1101 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1102
1103 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1104 vmcs_writel(GUEST_LDTR_BASE, 0);
1105 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1106 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1107
1108 vmcs_write32(GUEST_SYSENTER_CS, 0);
1109 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1110 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1111
1112 vmcs_writel(GUEST_RFLAGS, 0x02);
1113 vmcs_writel(GUEST_RIP, 0xfff0);
1114 vmcs_writel(GUEST_RSP, 0);
1115
1116 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1117 vmcs_writel(GUEST_DR7, 0x400);
1118
1119 vmcs_writel(GUEST_GDTR_BASE, 0);
1120 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1121
1122 vmcs_writel(GUEST_IDTR_BASE, 0);
1123 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1124
1125 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1126 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1127 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1128
1129 /* I/O */
1130 vmcs_write64(IO_BITMAP_A, 0);
1131 vmcs_write64(IO_BITMAP_B, 0);
1132
1133 guest_write_tsc(0);
1134
1135 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1136
1137 /* Special registers */
1138 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1139
1140 /* Control */
1141 vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1142 PIN_BASED_VM_EXEC_CONTROL,
1143 PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
1144 | PIN_BASED_NMI_EXITING /* 20.6.1 */
1145 );
1146 vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1147 CPU_BASED_VM_EXEC_CONTROL,
1148 CPU_BASED_HLT_EXITING /* 20.6.2 */
1149 | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
1150 | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
1151 | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
1152 | CPU_BASED_MOV_DR_EXITING
1153 | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
1154 );
1155
1156 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1157 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1158 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1159 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1160
1161 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1162 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1163 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1164
1165 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1166 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1167 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1168 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1169 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1170 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1171 #ifdef CONFIG_X86_64
1172 rdmsrl(MSR_FS_BASE, a);
1173 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1174 rdmsrl(MSR_GS_BASE, a);
1175 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1176 #else
1177 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1178 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1179 #endif
1180
1181 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1182
1183 get_idt(&dt);
1184 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1185
1186
1187 vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1188
1189 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1190 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1191 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1192 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1193 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1194 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1195
1196 for (i = 0; i < NR_VMX_MSR; ++i) {
1197 u32 index = vmx_msr_index[i];
1198 u32 data_low, data_high;
1199 u64 data;
1200 int j = vcpu->nmsrs;
1201
1202 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1203 continue;
1204 if (wrmsr_safe(index, data_low, data_high) < 0)
1205 continue;
1206 data = data_low | ((u64)data_high << 32);
1207 vcpu->host_msrs[j].index = index;
1208 vcpu->host_msrs[j].reserved = 0;
1209 vcpu->host_msrs[j].data = data;
1210 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1211 #ifdef CONFIG_X86_64
1212 if (index == MSR_KERNEL_GS_BASE)
1213 msr_offset_kernel_gs_base = j;
1214 #endif
1215 ++vcpu->nmsrs;
1216 }
1217
1218 setup_msrs(vcpu);
1219
1220 vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1221 (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
1222
1223 /* 22.2.1, 20.8.1 */
1224 vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1225 VM_ENTRY_CONTROLS, 0);
1226 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1227
1228 #ifdef CONFIG_X86_64
1229 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1230 vmcs_writel(TPR_THRESHOLD, 0);
1231 #endif
1232
1233 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1234 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1235
1236 vcpu->cr0 = 0x60000010;
1237 vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1238 vmx_set_cr4(vcpu, 0);
1239 #ifdef CONFIG_X86_64
1240 vmx_set_efer(vcpu, 0);
1241 #endif
1242
1243 return 0;
1244
1245 out:
1246 return ret;
1247 }
1248
1249 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1250 {
1251 u16 ent[2];
1252 u16 cs;
1253 u16 ip;
1254 unsigned long flags;
1255 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1256 u16 sp = vmcs_readl(GUEST_RSP);
1257 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1258
1259 if (sp > ss_limit || sp < 6 ) {
1260 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1261 __FUNCTION__,
1262 vmcs_readl(GUEST_RSP),
1263 vmcs_readl(GUEST_SS_BASE),
1264 vmcs_read32(GUEST_SS_LIMIT));
1265 return;
1266 }
1267
1268 if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1269 sizeof(ent)) {
1270 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1271 return;
1272 }
1273
1274 flags = vmcs_readl(GUEST_RFLAGS);
1275 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1276 ip = vmcs_readl(GUEST_RIP);
1277
1278
1279 if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1280 kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1281 kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1282 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1283 return;
1284 }
1285
1286 vmcs_writel(GUEST_RFLAGS, flags &
1287 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1288 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1289 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1290 vmcs_writel(GUEST_RIP, ent[0]);
1291 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1292 }
1293
1294 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1295 {
1296 int word_index = __ffs(vcpu->irq_summary);
1297 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1298 int irq = word_index * BITS_PER_LONG + bit_index;
1299
1300 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1301 if (!vcpu->irq_pending[word_index])
1302 clear_bit(word_index, &vcpu->irq_summary);
1303
1304 if (vcpu->rmode.active) {
1305 inject_rmode_irq(vcpu, irq);
1306 return;
1307 }
1308 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1309 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1310 }
1311
1312
1313 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1314 struct kvm_run *kvm_run)
1315 {
1316 u32 cpu_based_vm_exec_control;
1317
1318 vcpu->interrupt_window_open =
1319 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1320 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1321
1322 if (vcpu->interrupt_window_open &&
1323 vcpu->irq_summary &&
1324 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1325 /*
1326 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1327 */
1328 kvm_do_inject_irq(vcpu);
1329
1330 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1331 if (!vcpu->interrupt_window_open &&
1332 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1333 /*
1334 * Interrupts blocked. Wait for unblock.
1335 */
1336 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1337 else
1338 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1339 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1340 }
1341
1342 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1343 {
1344 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1345
1346 set_debugreg(dbg->bp[0], 0);
1347 set_debugreg(dbg->bp[1], 1);
1348 set_debugreg(dbg->bp[2], 2);
1349 set_debugreg(dbg->bp[3], 3);
1350
1351 if (dbg->singlestep) {
1352 unsigned long flags;
1353
1354 flags = vmcs_readl(GUEST_RFLAGS);
1355 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1356 vmcs_writel(GUEST_RFLAGS, flags);
1357 }
1358 }
1359
1360 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1361 int vec, u32 err_code)
1362 {
1363 if (!vcpu->rmode.active)
1364 return 0;
1365
1366 if (vec == GP_VECTOR && err_code == 0)
1367 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1368 return 1;
1369 return 0;
1370 }
1371
1372 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1373 {
1374 u32 intr_info, error_code;
1375 unsigned long cr2, rip;
1376 u32 vect_info;
1377 enum emulation_result er;
1378 int r;
1379
1380 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1381 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1382
1383 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1384 !is_page_fault(intr_info)) {
1385 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1386 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1387 }
1388
1389 if (is_external_interrupt(vect_info)) {
1390 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1391 set_bit(irq, vcpu->irq_pending);
1392 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1393 }
1394
1395 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1396 asm ("int $2");
1397 return 1;
1398 }
1399
1400 if (is_no_device(intr_info)) {
1401 vcpu->fpu_active = 1;
1402 vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
1403 if (!(vcpu->cr0 & CR0_TS_MASK))
1404 vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
1405 return 1;
1406 }
1407
1408 error_code = 0;
1409 rip = vmcs_readl(GUEST_RIP);
1410 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1411 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1412 if (is_page_fault(intr_info)) {
1413 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1414
1415 spin_lock(&vcpu->kvm->lock);
1416 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1417 if (r < 0) {
1418 spin_unlock(&vcpu->kvm->lock);
1419 return r;
1420 }
1421 if (!r) {
1422 spin_unlock(&vcpu->kvm->lock);
1423 return 1;
1424 }
1425
1426 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1427 spin_unlock(&vcpu->kvm->lock);
1428
1429 switch (er) {
1430 case EMULATE_DONE:
1431 return 1;
1432 case EMULATE_DO_MMIO:
1433 ++vcpu->stat.mmio_exits;
1434 kvm_run->exit_reason = KVM_EXIT_MMIO;
1435 return 0;
1436 case EMULATE_FAIL:
1437 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1438 break;
1439 default:
1440 BUG();
1441 }
1442 }
1443
1444 if (vcpu->rmode.active &&
1445 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1446 error_code))
1447 return 1;
1448
1449 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1450 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1451 return 0;
1452 }
1453 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1454 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1455 kvm_run->ex.error_code = error_code;
1456 return 0;
1457 }
1458
1459 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1460 struct kvm_run *kvm_run)
1461 {
1462 ++vcpu->stat.irq_exits;
1463 return 1;
1464 }
1465
1466 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1467 {
1468 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1469 return 0;
1470 }
1471
1472 static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
1473 {
1474 u64 inst;
1475 gva_t rip;
1476 int countr_size;
1477 int i, n;
1478
1479 if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1480 countr_size = 2;
1481 } else {
1482 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1483
1484 countr_size = (cs_ar & AR_L_MASK) ? 8:
1485 (cs_ar & AR_DB_MASK) ? 4: 2;
1486 }
1487
1488 rip = vmcs_readl(GUEST_RIP);
1489 if (countr_size != 8)
1490 rip += vmcs_readl(GUEST_CS_BASE);
1491
1492 n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1493
1494 for (i = 0; i < n; i++) {
1495 switch (((u8*)&inst)[i]) {
1496 case 0xf0:
1497 case 0xf2:
1498 case 0xf3:
1499 case 0x2e:
1500 case 0x36:
1501 case 0x3e:
1502 case 0x26:
1503 case 0x64:
1504 case 0x65:
1505 case 0x66:
1506 break;
1507 case 0x67:
1508 countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1509 default:
1510 goto done;
1511 }
1512 }
1513 return 0;
1514 done:
1515 countr_size *= 8;
1516 *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1517 //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
1518 return 1;
1519 }
1520
1521 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1522 {
1523 u64 exit_qualification;
1524 int size, down, in, string, rep;
1525 unsigned port;
1526 unsigned long count;
1527 gva_t address;
1528
1529 ++vcpu->stat.io_exits;
1530 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1531 in = (exit_qualification & 8) != 0;
1532 size = (exit_qualification & 7) + 1;
1533 string = (exit_qualification & 16) != 0;
1534 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1535 count = 1;
1536 rep = (exit_qualification & 32) != 0;
1537 port = exit_qualification >> 16;
1538 address = 0;
1539 if (string) {
1540 if (rep && !get_io_count(vcpu, &count))
1541 return 1;
1542 address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1543 }
1544 return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1545 address, rep, port);
1546 }
1547
1548 static void
1549 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1550 {
1551 /*
1552 * Patch in the VMCALL instruction:
1553 */
1554 hypercall[0] = 0x0f;
1555 hypercall[1] = 0x01;
1556 hypercall[2] = 0xc1;
1557 hypercall[3] = 0xc3;
1558 }
1559
1560 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1561 {
1562 u64 exit_qualification;
1563 int cr;
1564 int reg;
1565
1566 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1567 cr = exit_qualification & 15;
1568 reg = (exit_qualification >> 8) & 15;
1569 switch ((exit_qualification >> 4) & 3) {
1570 case 0: /* mov to cr */
1571 switch (cr) {
1572 case 0:
1573 vcpu_load_rsp_rip(vcpu);
1574 set_cr0(vcpu, vcpu->regs[reg]);
1575 skip_emulated_instruction(vcpu);
1576 return 1;
1577 case 3:
1578 vcpu_load_rsp_rip(vcpu);
1579 set_cr3(vcpu, vcpu->regs[reg]);
1580 skip_emulated_instruction(vcpu);
1581 return 1;
1582 case 4:
1583 vcpu_load_rsp_rip(vcpu);
1584 set_cr4(vcpu, vcpu->regs[reg]);
1585 skip_emulated_instruction(vcpu);
1586 return 1;
1587 case 8:
1588 vcpu_load_rsp_rip(vcpu);
1589 set_cr8(vcpu, vcpu->regs[reg]);
1590 skip_emulated_instruction(vcpu);
1591 return 1;
1592 };
1593 break;
1594 case 2: /* clts */
1595 vcpu_load_rsp_rip(vcpu);
1596 vcpu->fpu_active = 1;
1597 vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
1598 vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
1599 vcpu->cr0 &= ~CR0_TS_MASK;
1600 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1601 skip_emulated_instruction(vcpu);
1602 return 1;
1603 case 1: /*mov from cr*/
1604 switch (cr) {
1605 case 3:
1606 vcpu_load_rsp_rip(vcpu);
1607 vcpu->regs[reg] = vcpu->cr3;
1608 vcpu_put_rsp_rip(vcpu);
1609 skip_emulated_instruction(vcpu);
1610 return 1;
1611 case 8:
1612 vcpu_load_rsp_rip(vcpu);
1613 vcpu->regs[reg] = vcpu->cr8;
1614 vcpu_put_rsp_rip(vcpu);
1615 skip_emulated_instruction(vcpu);
1616 return 1;
1617 }
1618 break;
1619 case 3: /* lmsw */
1620 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1621
1622 skip_emulated_instruction(vcpu);
1623 return 1;
1624 default:
1625 break;
1626 }
1627 kvm_run->exit_reason = 0;
1628 printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1629 (int)(exit_qualification >> 4) & 3, cr);
1630 return 0;
1631 }
1632
1633 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1634 {
1635 u64 exit_qualification;
1636 unsigned long val;
1637 int dr, reg;
1638
1639 /*
1640 * FIXME: this code assumes the host is debugging the guest.
1641 * need to deal with guest debugging itself too.
1642 */
1643 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1644 dr = exit_qualification & 7;
1645 reg = (exit_qualification >> 8) & 15;
1646 vcpu_load_rsp_rip(vcpu);
1647 if (exit_qualification & 16) {
1648 /* mov from dr */
1649 switch (dr) {
1650 case 6:
1651 val = 0xffff0ff0;
1652 break;
1653 case 7:
1654 val = 0x400;
1655 break;
1656 default:
1657 val = 0;
1658 }
1659 vcpu->regs[reg] = val;
1660 } else {
1661 /* mov to dr */
1662 }
1663 vcpu_put_rsp_rip(vcpu);
1664 skip_emulated_instruction(vcpu);
1665 return 1;
1666 }
1667
1668 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1669 {
1670 kvm_emulate_cpuid(vcpu);
1671 return 1;
1672 }
1673
1674 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1675 {
1676 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1677 u64 data;
1678
1679 if (vmx_get_msr(vcpu, ecx, &data)) {
1680 vmx_inject_gp(vcpu, 0);
1681 return 1;
1682 }
1683
1684 /* FIXME: handling of bits 32:63 of rax, rdx */
1685 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1686 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1687 skip_emulated_instruction(vcpu);
1688 return 1;
1689 }
1690
1691 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1692 {
1693 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1694 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1695 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1696
1697 if (vmx_set_msr(vcpu, ecx, data) != 0) {
1698 vmx_inject_gp(vcpu, 0);
1699 return 1;
1700 }
1701
1702 skip_emulated_instruction(vcpu);
1703 return 1;
1704 }
1705
1706 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1707 struct kvm_run *kvm_run)
1708 {
1709 kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1710 kvm_run->cr8 = vcpu->cr8;
1711 kvm_run->apic_base = vcpu->apic_base;
1712 kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1713 vcpu->irq_summary == 0);
1714 }
1715
1716 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1717 struct kvm_run *kvm_run)
1718 {
1719 /*
1720 * If the user space waits to inject interrupts, exit as soon as
1721 * possible
1722 */
1723 if (kvm_run->request_interrupt_window &&
1724 !vcpu->irq_summary) {
1725 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1726 ++vcpu->stat.irq_window_exits;
1727 return 0;
1728 }
1729 return 1;
1730 }
1731
1732 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1733 {
1734 skip_emulated_instruction(vcpu);
1735 if (vcpu->irq_summary)
1736 return 1;
1737
1738 kvm_run->exit_reason = KVM_EXIT_HLT;
1739 ++vcpu->stat.halt_exits;
1740 return 0;
1741 }
1742
1743 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1744 {
1745 skip_emulated_instruction(vcpu);
1746 return kvm_hypercall(vcpu, kvm_run);
1747 }
1748
1749 /*
1750 * The exit handlers return 1 if the exit was handled fully and guest execution
1751 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
1752 * to be done to userspace and return 0.
1753 */
1754 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1755 struct kvm_run *kvm_run) = {
1756 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
1757 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
1758 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
1759 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
1760 [EXIT_REASON_CR_ACCESS] = handle_cr,
1761 [EXIT_REASON_DR_ACCESS] = handle_dr,
1762 [EXIT_REASON_CPUID] = handle_cpuid,
1763 [EXIT_REASON_MSR_READ] = handle_rdmsr,
1764 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
1765 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
1766 [EXIT_REASON_HLT] = handle_halt,
1767 [EXIT_REASON_VMCALL] = handle_vmcall,
1768 };
1769
1770 static const int kvm_vmx_max_exit_handlers =
1771 sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1772
1773 /*
1774 * The guest has exited. See if we can fix it or if we need userspace
1775 * assistance.
1776 */
1777 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1778 {
1779 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1780 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1781
1782 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1783 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1784 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1785 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1786 if (exit_reason < kvm_vmx_max_exit_handlers
1787 && kvm_vmx_exit_handlers[exit_reason])
1788 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1789 else {
1790 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1791 kvm_run->hw.hardware_exit_reason = exit_reason;
1792 }
1793 return 0;
1794 }
1795
1796 /*
1797 * Check if userspace requested an interrupt window, and that the
1798 * interrupt window is open.
1799 *
1800 * No need to exit to userspace if we already have an interrupt queued.
1801 */
1802 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1803 struct kvm_run *kvm_run)
1804 {
1805 return (!vcpu->irq_summary &&
1806 kvm_run->request_interrupt_window &&
1807 vcpu->interrupt_window_open &&
1808 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1809 }
1810
1811 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1812 {
1813 u8 fail;
1814 u16 fs_sel, gs_sel, ldt_sel;
1815 int fs_gs_ldt_reload_needed;
1816 int r;
1817
1818 again:
1819 /*
1820 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1821 * allow segment selectors with cpl > 0 or ti == 1.
1822 */
1823 fs_sel = read_fs();
1824 gs_sel = read_gs();
1825 ldt_sel = read_ldt();
1826 fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1827 if (!fs_gs_ldt_reload_needed) {
1828 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1829 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1830 } else {
1831 vmcs_write16(HOST_FS_SELECTOR, 0);
1832 vmcs_write16(HOST_GS_SELECTOR, 0);
1833 }
1834
1835 #ifdef CONFIG_X86_64
1836 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1837 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1838 #else
1839 vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1840 vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1841 #endif
1842
1843 if (!vcpu->mmio_read_completed)
1844 do_interrupt_requests(vcpu, kvm_run);
1845
1846 if (vcpu->guest_debug.enabled)
1847 kvm_guest_debug_pre(vcpu);
1848
1849 if (vcpu->fpu_active) {
1850 fx_save(vcpu->host_fx_image);
1851 fx_restore(vcpu->guest_fx_image);
1852 }
1853 /*
1854 * Loading guest fpu may have cleared host cr0.ts
1855 */
1856 vmcs_writel(HOST_CR0, read_cr0());
1857
1858 #ifdef CONFIG_X86_64
1859 if (is_long_mode(vcpu)) {
1860 save_msrs(vcpu->host_msrs + msr_offset_kernel_gs_base, 1);
1861 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1862 }
1863 #endif
1864
1865 asm (
1866 /* Store host registers */
1867 "pushf \n\t"
1868 #ifdef CONFIG_X86_64
1869 "push %%rax; push %%rbx; push %%rdx;"
1870 "push %%rsi; push %%rdi; push %%rbp;"
1871 "push %%r8; push %%r9; push %%r10; push %%r11;"
1872 "push %%r12; push %%r13; push %%r14; push %%r15;"
1873 "push %%rcx \n\t"
1874 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1875 #else
1876 "pusha; push %%ecx \n\t"
1877 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1878 #endif
1879 /* Check if vmlaunch of vmresume is needed */
1880 "cmp $0, %1 \n\t"
1881 /* Load guest registers. Don't clobber flags. */
1882 #ifdef CONFIG_X86_64
1883 "mov %c[cr2](%3), %%rax \n\t"
1884 "mov %%rax, %%cr2 \n\t"
1885 "mov %c[rax](%3), %%rax \n\t"
1886 "mov %c[rbx](%3), %%rbx \n\t"
1887 "mov %c[rdx](%3), %%rdx \n\t"
1888 "mov %c[rsi](%3), %%rsi \n\t"
1889 "mov %c[rdi](%3), %%rdi \n\t"
1890 "mov %c[rbp](%3), %%rbp \n\t"
1891 "mov %c[r8](%3), %%r8 \n\t"
1892 "mov %c[r9](%3), %%r9 \n\t"
1893 "mov %c[r10](%3), %%r10 \n\t"
1894 "mov %c[r11](%3), %%r11 \n\t"
1895 "mov %c[r12](%3), %%r12 \n\t"
1896 "mov %c[r13](%3), %%r13 \n\t"
1897 "mov %c[r14](%3), %%r14 \n\t"
1898 "mov %c[r15](%3), %%r15 \n\t"
1899 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1900 #else
1901 "mov %c[cr2](%3), %%eax \n\t"
1902 "mov %%eax, %%cr2 \n\t"
1903 "mov %c[rax](%3), %%eax \n\t"
1904 "mov %c[rbx](%3), %%ebx \n\t"
1905 "mov %c[rdx](%3), %%edx \n\t"
1906 "mov %c[rsi](%3), %%esi \n\t"
1907 "mov %c[rdi](%3), %%edi \n\t"
1908 "mov %c[rbp](%3), %%ebp \n\t"
1909 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1910 #endif
1911 /* Enter guest mode */
1912 "jne launched \n\t"
1913 ASM_VMX_VMLAUNCH "\n\t"
1914 "jmp kvm_vmx_return \n\t"
1915 "launched: " ASM_VMX_VMRESUME "\n\t"
1916 ".globl kvm_vmx_return \n\t"
1917 "kvm_vmx_return: "
1918 /* Save guest registers, load host registers, keep flags */
1919 #ifdef CONFIG_X86_64
1920 "xchg %3, (%%rsp) \n\t"
1921 "mov %%rax, %c[rax](%3) \n\t"
1922 "mov %%rbx, %c[rbx](%3) \n\t"
1923 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
1924 "mov %%rdx, %c[rdx](%3) \n\t"
1925 "mov %%rsi, %c[rsi](%3) \n\t"
1926 "mov %%rdi, %c[rdi](%3) \n\t"
1927 "mov %%rbp, %c[rbp](%3) \n\t"
1928 "mov %%r8, %c[r8](%3) \n\t"
1929 "mov %%r9, %c[r9](%3) \n\t"
1930 "mov %%r10, %c[r10](%3) \n\t"
1931 "mov %%r11, %c[r11](%3) \n\t"
1932 "mov %%r12, %c[r12](%3) \n\t"
1933 "mov %%r13, %c[r13](%3) \n\t"
1934 "mov %%r14, %c[r14](%3) \n\t"
1935 "mov %%r15, %c[r15](%3) \n\t"
1936 "mov %%cr2, %%rax \n\t"
1937 "mov %%rax, %c[cr2](%3) \n\t"
1938 "mov (%%rsp), %3 \n\t"
1939
1940 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1941 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1942 "pop %%rbp; pop %%rdi; pop %%rsi;"
1943 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
1944 #else
1945 "xchg %3, (%%esp) \n\t"
1946 "mov %%eax, %c[rax](%3) \n\t"
1947 "mov %%ebx, %c[rbx](%3) \n\t"
1948 "pushl (%%esp); popl %c[rcx](%3) \n\t"
1949 "mov %%edx, %c[rdx](%3) \n\t"
1950 "mov %%esi, %c[rsi](%3) \n\t"
1951 "mov %%edi, %c[rdi](%3) \n\t"
1952 "mov %%ebp, %c[rbp](%3) \n\t"
1953 "mov %%cr2, %%eax \n\t"
1954 "mov %%eax, %c[cr2](%3) \n\t"
1955 "mov (%%esp), %3 \n\t"
1956
1957 "pop %%ecx; popa \n\t"
1958 #endif
1959 "setbe %0 \n\t"
1960 "popf \n\t"
1961 : "=q" (fail)
1962 : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1963 "c"(vcpu),
1964 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1965 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1966 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1967 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1968 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1969 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1970 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1971 #ifdef CONFIG_X86_64
1972 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1973 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1974 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1975 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1976 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1977 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1978 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1979 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1980 #endif
1981 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1982 : "cc", "memory" );
1983
1984 /*
1985 * Reload segment selectors ASAP. (it's needed for a functional
1986 * kernel: x86 relies on having __KERNEL_PDA in %fs and x86_64
1987 * relies on having 0 in %gs for the CPU PDA to work.)
1988 */
1989 if (fs_gs_ldt_reload_needed) {
1990 load_ldt(ldt_sel);
1991 load_fs(fs_sel);
1992 /*
1993 * If we have to reload gs, we must take care to
1994 * preserve our gs base.
1995 */
1996 local_irq_disable();
1997 load_gs(gs_sel);
1998 #ifdef CONFIG_X86_64
1999 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
2000 #endif
2001 local_irq_enable();
2002
2003 reload_tss();
2004 }
2005 ++vcpu->stat.exits;
2006
2007 #ifdef CONFIG_X86_64
2008 if (is_long_mode(vcpu)) {
2009 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
2010 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
2011 }
2012 #endif
2013
2014 if (vcpu->fpu_active) {
2015 fx_save(vcpu->guest_fx_image);
2016 fx_restore(vcpu->host_fx_image);
2017 }
2018
2019 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2020
2021 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2022
2023 if (fail) {
2024 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2025 kvm_run->fail_entry.hardware_entry_failure_reason
2026 = vmcs_read32(VM_INSTRUCTION_ERROR);
2027 r = 0;
2028 } else {
2029 /*
2030 * Profile KVM exit RIPs:
2031 */
2032 if (unlikely(prof_on == KVM_PROFILING))
2033 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
2034
2035 vcpu->launched = 1;
2036 r = kvm_handle_exit(kvm_run, vcpu);
2037 if (r > 0) {
2038 /* Give scheduler a change to reschedule. */
2039 if (signal_pending(current)) {
2040 ++vcpu->stat.signal_exits;
2041 post_kvm_run_save(vcpu, kvm_run);
2042 kvm_run->exit_reason = KVM_EXIT_INTR;
2043 return -EINTR;
2044 }
2045
2046 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2047 ++vcpu->stat.request_irq_exits;
2048 post_kvm_run_save(vcpu, kvm_run);
2049 kvm_run->exit_reason = KVM_EXIT_INTR;
2050 return -EINTR;
2051 }
2052
2053 kvm_resched(vcpu);
2054 goto again;
2055 }
2056 }
2057
2058 post_kvm_run_save(vcpu, kvm_run);
2059 return r;
2060 }
2061
2062 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2063 {
2064 vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
2065 }
2066
2067 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2068 unsigned long addr,
2069 u32 err_code)
2070 {
2071 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2072
2073 ++vcpu->stat.pf_guest;
2074
2075 if (is_page_fault(vect_info)) {
2076 printk(KERN_DEBUG "inject_page_fault: "
2077 "double fault 0x%lx @ 0x%lx\n",
2078 addr, vmcs_readl(GUEST_RIP));
2079 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2080 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2081 DF_VECTOR |
2082 INTR_TYPE_EXCEPTION |
2083 INTR_INFO_DELIEVER_CODE_MASK |
2084 INTR_INFO_VALID_MASK);
2085 return;
2086 }
2087 vcpu->cr2 = addr;
2088 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2089 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2090 PF_VECTOR |
2091 INTR_TYPE_EXCEPTION |
2092 INTR_INFO_DELIEVER_CODE_MASK |
2093 INTR_INFO_VALID_MASK);
2094
2095 }
2096
2097 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2098 {
2099 if (vcpu->vmcs) {
2100 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
2101 free_vmcs(vcpu->vmcs);
2102 vcpu->vmcs = NULL;
2103 }
2104 }
2105
2106 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2107 {
2108 vmx_free_vmcs(vcpu);
2109 }
2110
2111 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
2112 {
2113 struct vmcs *vmcs;
2114
2115 vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2116 if (!vcpu->guest_msrs)
2117 return -ENOMEM;
2118
2119 vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2120 if (!vcpu->host_msrs)
2121 goto out_free_guest_msrs;
2122
2123 vmcs = alloc_vmcs();
2124 if (!vmcs)
2125 goto out_free_msrs;
2126
2127 vmcs_clear(vmcs);
2128 vcpu->vmcs = vmcs;
2129 vcpu->launched = 0;
2130 vcpu->fpu_active = 1;
2131
2132 return 0;
2133
2134 out_free_msrs:
2135 kfree(vcpu->host_msrs);
2136 vcpu->host_msrs = NULL;
2137
2138 out_free_guest_msrs:
2139 kfree(vcpu->guest_msrs);
2140 vcpu->guest_msrs = NULL;
2141
2142 return -ENOMEM;
2143 }
2144
2145 static struct kvm_arch_ops vmx_arch_ops = {
2146 .cpu_has_kvm_support = cpu_has_kvm_support,
2147 .disabled_by_bios = vmx_disabled_by_bios,
2148 .hardware_setup = hardware_setup,
2149 .hardware_unsetup = hardware_unsetup,
2150 .hardware_enable = hardware_enable,
2151 .hardware_disable = hardware_disable,
2152
2153 .vcpu_create = vmx_create_vcpu,
2154 .vcpu_free = vmx_free_vcpu,
2155
2156 .vcpu_load = vmx_vcpu_load,
2157 .vcpu_put = vmx_vcpu_put,
2158 .vcpu_decache = vmx_vcpu_decache,
2159
2160 .set_guest_debug = set_guest_debug,
2161 .get_msr = vmx_get_msr,
2162 .set_msr = vmx_set_msr,
2163 .get_segment_base = vmx_get_segment_base,
2164 .get_segment = vmx_get_segment,
2165 .set_segment = vmx_set_segment,
2166 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2167 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2168 .set_cr0 = vmx_set_cr0,
2169 .set_cr3 = vmx_set_cr3,
2170 .set_cr4 = vmx_set_cr4,
2171 #ifdef CONFIG_X86_64
2172 .set_efer = vmx_set_efer,
2173 #endif
2174 .get_idt = vmx_get_idt,
2175 .set_idt = vmx_set_idt,
2176 .get_gdt = vmx_get_gdt,
2177 .set_gdt = vmx_set_gdt,
2178 .cache_regs = vcpu_load_rsp_rip,
2179 .decache_regs = vcpu_put_rsp_rip,
2180 .get_rflags = vmx_get_rflags,
2181 .set_rflags = vmx_set_rflags,
2182
2183 .tlb_flush = vmx_flush_tlb,
2184 .inject_page_fault = vmx_inject_page_fault,
2185
2186 .inject_gp = vmx_inject_gp,
2187
2188 .run = vmx_vcpu_run,
2189 .skip_emulated_instruction = skip_emulated_instruction,
2190 .vcpu_setup = vmx_vcpu_setup,
2191 .patch_hypercall = vmx_patch_hypercall,
2192 };
2193
2194 static int __init vmx_init(void)
2195 {
2196 return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2197 }
2198
2199 static void __exit vmx_exit(void)
2200 {
2201 kvm_exit_arch();
2202 }
2203
2204 module_init(vmx_init)
2205 module_exit(vmx_exit)
This page took 0.122806 seconds and 6 git commands to generate.