Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[deliverable/linux.git] / drivers / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <linux/sched.h>
26 #include <asm/io.h>
27 #include <asm/desc.h>
28
29 #include "segment_descriptor.h"
30
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
33
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
36
37 #ifdef CONFIG_X86_64
38 #define HOST_IS_64 1
39 #else
40 #define HOST_IS_64 0
41 #endif
42
43 static struct vmcs_descriptor {
44 int size;
45 int order;
46 u32 revision_id;
47 } vmcs_descriptor;
48
49 #define VMX_SEGMENT_FIELD(seg) \
50 [VCPU_SREG_##seg] = { \
51 .selector = GUEST_##seg##_SELECTOR, \
52 .base = GUEST_##seg##_BASE, \
53 .limit = GUEST_##seg##_LIMIT, \
54 .ar_bytes = GUEST_##seg##_AR_BYTES, \
55 }
56
57 static struct kvm_vmx_segment_field {
58 unsigned selector;
59 unsigned base;
60 unsigned limit;
61 unsigned ar_bytes;
62 } kvm_vmx_segment_fields[] = {
63 VMX_SEGMENT_FIELD(CS),
64 VMX_SEGMENT_FIELD(DS),
65 VMX_SEGMENT_FIELD(ES),
66 VMX_SEGMENT_FIELD(FS),
67 VMX_SEGMENT_FIELD(GS),
68 VMX_SEGMENT_FIELD(SS),
69 VMX_SEGMENT_FIELD(TR),
70 VMX_SEGMENT_FIELD(LDTR),
71 };
72
73 /*
74 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
75 * away by decrementing the array size.
76 */
77 static const u32 vmx_msr_index[] = {
78 #ifdef CONFIG_X86_64
79 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
80 #endif
81 MSR_EFER, MSR_K6_STAR,
82 };
83 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
84
85 #ifdef CONFIG_X86_64
86 static unsigned msr_offset_kernel_gs_base;
87 #define NR_64BIT_MSRS 4
88 /*
89 * avoid save/load MSR_SYSCALL_MASK and MSR_LSTAR by std vt
90 * mechanism (cpu bug AA24)
91 */
92 #define NR_BAD_MSRS 2
93 #else
94 #define NR_64BIT_MSRS 0
95 #define NR_BAD_MSRS 0
96 #endif
97
98 static inline int is_page_fault(u32 intr_info)
99 {
100 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
101 INTR_INFO_VALID_MASK)) ==
102 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
103 }
104
105 static inline int is_no_device(u32 intr_info)
106 {
107 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
108 INTR_INFO_VALID_MASK)) ==
109 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
110 }
111
112 static inline int is_external_interrupt(u32 intr_info)
113 {
114 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
115 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
116 }
117
118 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
119 {
120 int i;
121
122 for (i = 0; i < vcpu->nmsrs; ++i)
123 if (vcpu->guest_msrs[i].index == msr)
124 return &vcpu->guest_msrs[i];
125 return NULL;
126 }
127
128 static void vmcs_clear(struct vmcs *vmcs)
129 {
130 u64 phys_addr = __pa(vmcs);
131 u8 error;
132
133 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
134 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
135 : "cc", "memory");
136 if (error)
137 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
138 vmcs, phys_addr);
139 }
140
141 static void __vcpu_clear(void *arg)
142 {
143 struct kvm_vcpu *vcpu = arg;
144 int cpu = raw_smp_processor_id();
145
146 if (vcpu->cpu == cpu)
147 vmcs_clear(vcpu->vmcs);
148 if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
149 per_cpu(current_vmcs, cpu) = NULL;
150 }
151
152 static void vcpu_clear(struct kvm_vcpu *vcpu)
153 {
154 if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
155 smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
156 else
157 __vcpu_clear(vcpu);
158 vcpu->launched = 0;
159 }
160
161 static unsigned long vmcs_readl(unsigned long field)
162 {
163 unsigned long value;
164
165 asm volatile (ASM_VMX_VMREAD_RDX_RAX
166 : "=a"(value) : "d"(field) : "cc");
167 return value;
168 }
169
170 static u16 vmcs_read16(unsigned long field)
171 {
172 return vmcs_readl(field);
173 }
174
175 static u32 vmcs_read32(unsigned long field)
176 {
177 return vmcs_readl(field);
178 }
179
180 static u64 vmcs_read64(unsigned long field)
181 {
182 #ifdef CONFIG_X86_64
183 return vmcs_readl(field);
184 #else
185 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
186 #endif
187 }
188
189 static noinline void vmwrite_error(unsigned long field, unsigned long value)
190 {
191 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
192 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
193 dump_stack();
194 }
195
196 static void vmcs_writel(unsigned long field, unsigned long value)
197 {
198 u8 error;
199
200 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
201 : "=q"(error) : "a"(value), "d"(field) : "cc" );
202 if (unlikely(error))
203 vmwrite_error(field, value);
204 }
205
206 static void vmcs_write16(unsigned long field, u16 value)
207 {
208 vmcs_writel(field, value);
209 }
210
211 static void vmcs_write32(unsigned long field, u32 value)
212 {
213 vmcs_writel(field, value);
214 }
215
216 static void vmcs_write64(unsigned long field, u64 value)
217 {
218 #ifdef CONFIG_X86_64
219 vmcs_writel(field, value);
220 #else
221 vmcs_writel(field, value);
222 asm volatile ("");
223 vmcs_writel(field+1, value >> 32);
224 #endif
225 }
226
227 static void vmcs_clear_bits(unsigned long field, u32 mask)
228 {
229 vmcs_writel(field, vmcs_readl(field) & ~mask);
230 }
231
232 static void vmcs_set_bits(unsigned long field, u32 mask)
233 {
234 vmcs_writel(field, vmcs_readl(field) | mask);
235 }
236
237 /*
238 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
239 * vcpu mutex is already taken.
240 */
241 static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
242 {
243 u64 phys_addr = __pa(vcpu->vmcs);
244 int cpu;
245
246 cpu = get_cpu();
247
248 if (vcpu->cpu != cpu)
249 vcpu_clear(vcpu);
250
251 if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
252 u8 error;
253
254 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
255 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
256 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
257 : "cc");
258 if (error)
259 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
260 vcpu->vmcs, phys_addr);
261 }
262
263 if (vcpu->cpu != cpu) {
264 struct descriptor_table dt;
265 unsigned long sysenter_esp;
266
267 vcpu->cpu = cpu;
268 /*
269 * Linux uses per-cpu TSS and GDT, so set these when switching
270 * processors.
271 */
272 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
273 get_gdt(&dt);
274 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
275
276 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
277 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
278 }
279 }
280
281 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
282 {
283 kvm_put_guest_fpu(vcpu);
284 put_cpu();
285 }
286
287 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
288 {
289 vcpu_clear(vcpu);
290 }
291
292 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
293 {
294 return vmcs_readl(GUEST_RFLAGS);
295 }
296
297 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
298 {
299 vmcs_writel(GUEST_RFLAGS, rflags);
300 }
301
302 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
303 {
304 unsigned long rip;
305 u32 interruptibility;
306
307 rip = vmcs_readl(GUEST_RIP);
308 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
309 vmcs_writel(GUEST_RIP, rip);
310
311 /*
312 * We emulated an instruction, so temporary interrupt blocking
313 * should be removed, if set.
314 */
315 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
316 if (interruptibility & 3)
317 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
318 interruptibility & ~3);
319 vcpu->interrupt_window_open = 1;
320 }
321
322 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
323 {
324 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
325 vmcs_readl(GUEST_RIP));
326 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
327 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
328 GP_VECTOR |
329 INTR_TYPE_EXCEPTION |
330 INTR_INFO_DELIEVER_CODE_MASK |
331 INTR_INFO_VALID_MASK);
332 }
333
334 /*
335 * Set up the vmcs to automatically save and restore system
336 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
337 * mode, as fiddling with msrs is very expensive.
338 */
339 static void setup_msrs(struct kvm_vcpu *vcpu)
340 {
341 int nr_skip, nr_good_msrs;
342
343 if (is_long_mode(vcpu))
344 nr_skip = NR_BAD_MSRS;
345 else
346 nr_skip = NR_64BIT_MSRS;
347 nr_good_msrs = vcpu->nmsrs - nr_skip;
348
349 /*
350 * MSR_K6_STAR is only needed on long mode guests, and only
351 * if efer.sce is enabled.
352 */
353 if (find_msr_entry(vcpu, MSR_K6_STAR)) {
354 --nr_good_msrs;
355 #ifdef CONFIG_X86_64
356 if (is_long_mode(vcpu) && (vcpu->shadow_efer & EFER_SCE))
357 ++nr_good_msrs;
358 #endif
359 }
360
361 vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
362 virt_to_phys(vcpu->guest_msrs + nr_skip));
363 vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
364 virt_to_phys(vcpu->guest_msrs + nr_skip));
365 vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
366 virt_to_phys(vcpu->host_msrs + nr_skip));
367 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
368 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
369 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
370 }
371
372 /*
373 * reads and returns guest's timestamp counter "register"
374 * guest_tsc = host_tsc + tsc_offset -- 21.3
375 */
376 static u64 guest_read_tsc(void)
377 {
378 u64 host_tsc, tsc_offset;
379
380 rdtscll(host_tsc);
381 tsc_offset = vmcs_read64(TSC_OFFSET);
382 return host_tsc + tsc_offset;
383 }
384
385 /*
386 * writes 'guest_tsc' into guest's timestamp counter "register"
387 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
388 */
389 static void guest_write_tsc(u64 guest_tsc)
390 {
391 u64 host_tsc;
392
393 rdtscll(host_tsc);
394 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
395 }
396
397 static void reload_tss(void)
398 {
399 #ifndef CONFIG_X86_64
400
401 /*
402 * VT restores TR but not its size. Useless.
403 */
404 struct descriptor_table gdt;
405 struct segment_descriptor *descs;
406
407 get_gdt(&gdt);
408 descs = (void *)gdt.base;
409 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
410 load_TR_desc();
411 #endif
412 }
413
414 /*
415 * Reads an msr value (of 'msr_index') into 'pdata'.
416 * Returns 0 on success, non-0 otherwise.
417 * Assumes vcpu_load() was already called.
418 */
419 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
420 {
421 u64 data;
422 struct vmx_msr_entry *msr;
423
424 if (!pdata) {
425 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
426 return -EINVAL;
427 }
428
429 switch (msr_index) {
430 #ifdef CONFIG_X86_64
431 case MSR_FS_BASE:
432 data = vmcs_readl(GUEST_FS_BASE);
433 break;
434 case MSR_GS_BASE:
435 data = vmcs_readl(GUEST_GS_BASE);
436 break;
437 case MSR_EFER:
438 return kvm_get_msr_common(vcpu, msr_index, pdata);
439 #endif
440 case MSR_IA32_TIME_STAMP_COUNTER:
441 data = guest_read_tsc();
442 break;
443 case MSR_IA32_SYSENTER_CS:
444 data = vmcs_read32(GUEST_SYSENTER_CS);
445 break;
446 case MSR_IA32_SYSENTER_EIP:
447 data = vmcs_readl(GUEST_SYSENTER_EIP);
448 break;
449 case MSR_IA32_SYSENTER_ESP:
450 data = vmcs_readl(GUEST_SYSENTER_ESP);
451 break;
452 default:
453 msr = find_msr_entry(vcpu, msr_index);
454 if (msr) {
455 data = msr->data;
456 break;
457 }
458 return kvm_get_msr_common(vcpu, msr_index, pdata);
459 }
460
461 *pdata = data;
462 return 0;
463 }
464
465 /*
466 * Writes msr value into into the appropriate "register".
467 * Returns 0 on success, non-0 otherwise.
468 * Assumes vcpu_load() was already called.
469 */
470 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
471 {
472 struct vmx_msr_entry *msr;
473 switch (msr_index) {
474 #ifdef CONFIG_X86_64
475 case MSR_EFER:
476 return kvm_set_msr_common(vcpu, msr_index, data);
477 case MSR_FS_BASE:
478 vmcs_writel(GUEST_FS_BASE, data);
479 break;
480 case MSR_GS_BASE:
481 vmcs_writel(GUEST_GS_BASE, data);
482 break;
483 #endif
484 case MSR_IA32_SYSENTER_CS:
485 vmcs_write32(GUEST_SYSENTER_CS, data);
486 break;
487 case MSR_IA32_SYSENTER_EIP:
488 vmcs_writel(GUEST_SYSENTER_EIP, data);
489 break;
490 case MSR_IA32_SYSENTER_ESP:
491 vmcs_writel(GUEST_SYSENTER_ESP, data);
492 break;
493 case MSR_IA32_TIME_STAMP_COUNTER:
494 guest_write_tsc(data);
495 break;
496 default:
497 msr = find_msr_entry(vcpu, msr_index);
498 if (msr) {
499 msr->data = data;
500 break;
501 }
502 return kvm_set_msr_common(vcpu, msr_index, data);
503 msr->data = data;
504 break;
505 }
506
507 return 0;
508 }
509
510 /*
511 * Sync the rsp and rip registers into the vcpu structure. This allows
512 * registers to be accessed by indexing vcpu->regs.
513 */
514 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
515 {
516 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
517 vcpu->rip = vmcs_readl(GUEST_RIP);
518 }
519
520 /*
521 * Syncs rsp and rip back into the vmcs. Should be called after possible
522 * modification.
523 */
524 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
525 {
526 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
527 vmcs_writel(GUEST_RIP, vcpu->rip);
528 }
529
530 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
531 {
532 unsigned long dr7 = 0x400;
533 u32 exception_bitmap;
534 int old_singlestep;
535
536 exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
537 old_singlestep = vcpu->guest_debug.singlestep;
538
539 vcpu->guest_debug.enabled = dbg->enabled;
540 if (vcpu->guest_debug.enabled) {
541 int i;
542
543 dr7 |= 0x200; /* exact */
544 for (i = 0; i < 4; ++i) {
545 if (!dbg->breakpoints[i].enabled)
546 continue;
547 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
548 dr7 |= 2 << (i*2); /* global enable */
549 dr7 |= 0 << (i*4+16); /* execution breakpoint */
550 }
551
552 exception_bitmap |= (1u << 1); /* Trap debug exceptions */
553
554 vcpu->guest_debug.singlestep = dbg->singlestep;
555 } else {
556 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
557 vcpu->guest_debug.singlestep = 0;
558 }
559
560 if (old_singlestep && !vcpu->guest_debug.singlestep) {
561 unsigned long flags;
562
563 flags = vmcs_readl(GUEST_RFLAGS);
564 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
565 vmcs_writel(GUEST_RFLAGS, flags);
566 }
567
568 vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
569 vmcs_writel(GUEST_DR7, dr7);
570
571 return 0;
572 }
573
574 static __init int cpu_has_kvm_support(void)
575 {
576 unsigned long ecx = cpuid_ecx(1);
577 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
578 }
579
580 static __init int vmx_disabled_by_bios(void)
581 {
582 u64 msr;
583
584 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
585 return (msr & 5) == 1; /* locked but not enabled */
586 }
587
588 static void hardware_enable(void *garbage)
589 {
590 int cpu = raw_smp_processor_id();
591 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
592 u64 old;
593
594 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
595 if ((old & 5) != 5)
596 /* enable and lock */
597 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
598 write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
599 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
600 : "memory", "cc");
601 }
602
603 static void hardware_disable(void *garbage)
604 {
605 asm volatile (ASM_VMX_VMXOFF : : : "cc");
606 }
607
608 static __init void setup_vmcs_descriptor(void)
609 {
610 u32 vmx_msr_low, vmx_msr_high;
611
612 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
613 vmcs_descriptor.size = vmx_msr_high & 0x1fff;
614 vmcs_descriptor.order = get_order(vmcs_descriptor.size);
615 vmcs_descriptor.revision_id = vmx_msr_low;
616 }
617
618 static struct vmcs *alloc_vmcs_cpu(int cpu)
619 {
620 int node = cpu_to_node(cpu);
621 struct page *pages;
622 struct vmcs *vmcs;
623
624 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
625 if (!pages)
626 return NULL;
627 vmcs = page_address(pages);
628 memset(vmcs, 0, vmcs_descriptor.size);
629 vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
630 return vmcs;
631 }
632
633 static struct vmcs *alloc_vmcs(void)
634 {
635 return alloc_vmcs_cpu(raw_smp_processor_id());
636 }
637
638 static void free_vmcs(struct vmcs *vmcs)
639 {
640 free_pages((unsigned long)vmcs, vmcs_descriptor.order);
641 }
642
643 static void free_kvm_area(void)
644 {
645 int cpu;
646
647 for_each_online_cpu(cpu)
648 free_vmcs(per_cpu(vmxarea, cpu));
649 }
650
651 extern struct vmcs *alloc_vmcs_cpu(int cpu);
652
653 static __init int alloc_kvm_area(void)
654 {
655 int cpu;
656
657 for_each_online_cpu(cpu) {
658 struct vmcs *vmcs;
659
660 vmcs = alloc_vmcs_cpu(cpu);
661 if (!vmcs) {
662 free_kvm_area();
663 return -ENOMEM;
664 }
665
666 per_cpu(vmxarea, cpu) = vmcs;
667 }
668 return 0;
669 }
670
671 static __init int hardware_setup(void)
672 {
673 setup_vmcs_descriptor();
674 return alloc_kvm_area();
675 }
676
677 static __exit void hardware_unsetup(void)
678 {
679 free_kvm_area();
680 }
681
682 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
683 {
684 if (vcpu->rmode.active)
685 vmcs_write32(EXCEPTION_BITMAP, ~0);
686 else
687 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
688 }
689
690 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
691 {
692 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
693
694 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
695 vmcs_write16(sf->selector, save->selector);
696 vmcs_writel(sf->base, save->base);
697 vmcs_write32(sf->limit, save->limit);
698 vmcs_write32(sf->ar_bytes, save->ar);
699 } else {
700 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
701 << AR_DPL_SHIFT;
702 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
703 }
704 }
705
706 static void enter_pmode(struct kvm_vcpu *vcpu)
707 {
708 unsigned long flags;
709
710 vcpu->rmode.active = 0;
711
712 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
713 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
714 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
715
716 flags = vmcs_readl(GUEST_RFLAGS);
717 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
718 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
719 vmcs_writel(GUEST_RFLAGS, flags);
720
721 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
722 (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
723
724 update_exception_bitmap(vcpu);
725
726 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
727 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
728 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
729 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
730
731 vmcs_write16(GUEST_SS_SELECTOR, 0);
732 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
733
734 vmcs_write16(GUEST_CS_SELECTOR,
735 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
736 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
737 }
738
739 static int rmode_tss_base(struct kvm* kvm)
740 {
741 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
742 return base_gfn << PAGE_SHIFT;
743 }
744
745 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
746 {
747 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
748
749 save->selector = vmcs_read16(sf->selector);
750 save->base = vmcs_readl(sf->base);
751 save->limit = vmcs_read32(sf->limit);
752 save->ar = vmcs_read32(sf->ar_bytes);
753 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
754 vmcs_write32(sf->limit, 0xffff);
755 vmcs_write32(sf->ar_bytes, 0xf3);
756 }
757
758 static void enter_rmode(struct kvm_vcpu *vcpu)
759 {
760 unsigned long flags;
761
762 vcpu->rmode.active = 1;
763
764 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
765 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
766
767 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
768 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
769
770 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
771 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
772
773 flags = vmcs_readl(GUEST_RFLAGS);
774 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
775
776 flags |= IOPL_MASK | X86_EFLAGS_VM;
777
778 vmcs_writel(GUEST_RFLAGS, flags);
779 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
780 update_exception_bitmap(vcpu);
781
782 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
783 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
784 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
785
786 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
787 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
788 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
789 vmcs_writel(GUEST_CS_BASE, 0xf0000);
790 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
791
792 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
793 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
794 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
795 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
796 }
797
798 #ifdef CONFIG_X86_64
799
800 static void enter_lmode(struct kvm_vcpu *vcpu)
801 {
802 u32 guest_tr_ar;
803
804 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
805 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
806 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
807 __FUNCTION__);
808 vmcs_write32(GUEST_TR_AR_BYTES,
809 (guest_tr_ar & ~AR_TYPE_MASK)
810 | AR_TYPE_BUSY_64_TSS);
811 }
812
813 vcpu->shadow_efer |= EFER_LMA;
814
815 find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
816 vmcs_write32(VM_ENTRY_CONTROLS,
817 vmcs_read32(VM_ENTRY_CONTROLS)
818 | VM_ENTRY_CONTROLS_IA32E_MASK);
819 }
820
821 static void exit_lmode(struct kvm_vcpu *vcpu)
822 {
823 vcpu->shadow_efer &= ~EFER_LMA;
824
825 vmcs_write32(VM_ENTRY_CONTROLS,
826 vmcs_read32(VM_ENTRY_CONTROLS)
827 & ~VM_ENTRY_CONTROLS_IA32E_MASK);
828 }
829
830 #endif
831
832 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
833 {
834 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
835 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
836 }
837
838 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
839 {
840 if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
841 enter_pmode(vcpu);
842
843 if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
844 enter_rmode(vcpu);
845
846 #ifdef CONFIG_X86_64
847 if (vcpu->shadow_efer & EFER_LME) {
848 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
849 enter_lmode(vcpu);
850 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
851 exit_lmode(vcpu);
852 }
853 #endif
854
855 if (!(cr0 & CR0_TS_MASK)) {
856 vcpu->fpu_active = 1;
857 vmcs_clear_bits(EXCEPTION_BITMAP, CR0_TS_MASK);
858 }
859
860 vmcs_writel(CR0_READ_SHADOW, cr0);
861 vmcs_writel(GUEST_CR0,
862 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
863 vcpu->cr0 = cr0;
864 }
865
866 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868 vmcs_writel(GUEST_CR3, cr3);
869
870 if (!(vcpu->cr0 & CR0_TS_MASK)) {
871 vcpu->fpu_active = 0;
872 vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
873 vmcs_set_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
874 }
875 }
876
877 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
878 {
879 vmcs_writel(CR4_READ_SHADOW, cr4);
880 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
881 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
882 vcpu->cr4 = cr4;
883 }
884
885 #ifdef CONFIG_X86_64
886
887 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
888 {
889 struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
890
891 vcpu->shadow_efer = efer;
892 if (efer & EFER_LMA) {
893 vmcs_write32(VM_ENTRY_CONTROLS,
894 vmcs_read32(VM_ENTRY_CONTROLS) |
895 VM_ENTRY_CONTROLS_IA32E_MASK);
896 msr->data = efer;
897
898 } else {
899 vmcs_write32(VM_ENTRY_CONTROLS,
900 vmcs_read32(VM_ENTRY_CONTROLS) &
901 ~VM_ENTRY_CONTROLS_IA32E_MASK);
902
903 msr->data = efer & ~EFER_LME;
904 }
905 setup_msrs(vcpu);
906 }
907
908 #endif
909
910 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
911 {
912 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
913
914 return vmcs_readl(sf->base);
915 }
916
917 static void vmx_get_segment(struct kvm_vcpu *vcpu,
918 struct kvm_segment *var, int seg)
919 {
920 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
921 u32 ar;
922
923 var->base = vmcs_readl(sf->base);
924 var->limit = vmcs_read32(sf->limit);
925 var->selector = vmcs_read16(sf->selector);
926 ar = vmcs_read32(sf->ar_bytes);
927 if (ar & AR_UNUSABLE_MASK)
928 ar = 0;
929 var->type = ar & 15;
930 var->s = (ar >> 4) & 1;
931 var->dpl = (ar >> 5) & 3;
932 var->present = (ar >> 7) & 1;
933 var->avl = (ar >> 12) & 1;
934 var->l = (ar >> 13) & 1;
935 var->db = (ar >> 14) & 1;
936 var->g = (ar >> 15) & 1;
937 var->unusable = (ar >> 16) & 1;
938 }
939
940 static void vmx_set_segment(struct kvm_vcpu *vcpu,
941 struct kvm_segment *var, int seg)
942 {
943 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
944 u32 ar;
945
946 vmcs_writel(sf->base, var->base);
947 vmcs_write32(sf->limit, var->limit);
948 vmcs_write16(sf->selector, var->selector);
949 if (vcpu->rmode.active && var->s) {
950 /*
951 * Hack real-mode segments into vm86 compatibility.
952 */
953 if (var->base == 0xffff0000 && var->selector == 0xf000)
954 vmcs_writel(sf->base, 0xf0000);
955 ar = 0xf3;
956 } else if (var->unusable)
957 ar = 1 << 16;
958 else {
959 ar = var->type & 15;
960 ar |= (var->s & 1) << 4;
961 ar |= (var->dpl & 3) << 5;
962 ar |= (var->present & 1) << 7;
963 ar |= (var->avl & 1) << 12;
964 ar |= (var->l & 1) << 13;
965 ar |= (var->db & 1) << 14;
966 ar |= (var->g & 1) << 15;
967 }
968 if (ar == 0) /* a 0 value means unusable */
969 ar = AR_UNUSABLE_MASK;
970 vmcs_write32(sf->ar_bytes, ar);
971 }
972
973 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
974 {
975 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
976
977 *db = (ar >> 14) & 1;
978 *l = (ar >> 13) & 1;
979 }
980
981 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
982 {
983 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
984 dt->base = vmcs_readl(GUEST_IDTR_BASE);
985 }
986
987 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
988 {
989 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
990 vmcs_writel(GUEST_IDTR_BASE, dt->base);
991 }
992
993 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
994 {
995 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
996 dt->base = vmcs_readl(GUEST_GDTR_BASE);
997 }
998
999 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1000 {
1001 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1002 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1003 }
1004
1005 static int init_rmode_tss(struct kvm* kvm)
1006 {
1007 struct page *p1, *p2, *p3;
1008 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1009 char *page;
1010
1011 p1 = gfn_to_page(kvm, fn++);
1012 p2 = gfn_to_page(kvm, fn++);
1013 p3 = gfn_to_page(kvm, fn);
1014
1015 if (!p1 || !p2 || !p3) {
1016 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1017 return 0;
1018 }
1019
1020 page = kmap_atomic(p1, KM_USER0);
1021 memset(page, 0, PAGE_SIZE);
1022 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1023 kunmap_atomic(page, KM_USER0);
1024
1025 page = kmap_atomic(p2, KM_USER0);
1026 memset(page, 0, PAGE_SIZE);
1027 kunmap_atomic(page, KM_USER0);
1028
1029 page = kmap_atomic(p3, KM_USER0);
1030 memset(page, 0, PAGE_SIZE);
1031 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1032 kunmap_atomic(page, KM_USER0);
1033
1034 return 1;
1035 }
1036
1037 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
1038 {
1039 u32 msr_high, msr_low;
1040
1041 rdmsr(msr, msr_low, msr_high);
1042
1043 val &= msr_high;
1044 val |= msr_low;
1045 vmcs_write32(vmcs_field, val);
1046 }
1047
1048 static void seg_setup(int seg)
1049 {
1050 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1051
1052 vmcs_write16(sf->selector, 0);
1053 vmcs_writel(sf->base, 0);
1054 vmcs_write32(sf->limit, 0xffff);
1055 vmcs_write32(sf->ar_bytes, 0x93);
1056 }
1057
1058 /*
1059 * Sets up the vmcs for emulated real mode.
1060 */
1061 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
1062 {
1063 u32 host_sysenter_cs;
1064 u32 junk;
1065 unsigned long a;
1066 struct descriptor_table dt;
1067 int i;
1068 int ret = 0;
1069 extern asmlinkage void kvm_vmx_return(void);
1070
1071 if (!init_rmode_tss(vcpu->kvm)) {
1072 ret = -ENOMEM;
1073 goto out;
1074 }
1075
1076 memset(vcpu->regs, 0, sizeof(vcpu->regs));
1077 vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1078 vcpu->cr8 = 0;
1079 vcpu->apic_base = 0xfee00000 |
1080 /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1081 MSR_IA32_APICBASE_ENABLE;
1082
1083 fx_init(vcpu);
1084
1085 /*
1086 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1087 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1088 */
1089 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1090 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1091 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1092 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1093
1094 seg_setup(VCPU_SREG_DS);
1095 seg_setup(VCPU_SREG_ES);
1096 seg_setup(VCPU_SREG_FS);
1097 seg_setup(VCPU_SREG_GS);
1098 seg_setup(VCPU_SREG_SS);
1099
1100 vmcs_write16(GUEST_TR_SELECTOR, 0);
1101 vmcs_writel(GUEST_TR_BASE, 0);
1102 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1103 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1104
1105 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1106 vmcs_writel(GUEST_LDTR_BASE, 0);
1107 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1108 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1109
1110 vmcs_write32(GUEST_SYSENTER_CS, 0);
1111 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1112 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1113
1114 vmcs_writel(GUEST_RFLAGS, 0x02);
1115 vmcs_writel(GUEST_RIP, 0xfff0);
1116 vmcs_writel(GUEST_RSP, 0);
1117
1118 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1119 vmcs_writel(GUEST_DR7, 0x400);
1120
1121 vmcs_writel(GUEST_GDTR_BASE, 0);
1122 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1123
1124 vmcs_writel(GUEST_IDTR_BASE, 0);
1125 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1126
1127 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1128 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1129 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1130
1131 /* I/O */
1132 vmcs_write64(IO_BITMAP_A, 0);
1133 vmcs_write64(IO_BITMAP_B, 0);
1134
1135 guest_write_tsc(0);
1136
1137 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1138
1139 /* Special registers */
1140 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1141
1142 /* Control */
1143 vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1144 PIN_BASED_VM_EXEC_CONTROL,
1145 PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
1146 | PIN_BASED_NMI_EXITING /* 20.6.1 */
1147 );
1148 vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1149 CPU_BASED_VM_EXEC_CONTROL,
1150 CPU_BASED_HLT_EXITING /* 20.6.2 */
1151 | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
1152 | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
1153 | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
1154 | CPU_BASED_MOV_DR_EXITING
1155 | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
1156 );
1157
1158 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1159 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1160 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1161 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1162
1163 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1164 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1165 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1166
1167 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1168 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1169 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1170 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1171 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1172 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1173 #ifdef CONFIG_X86_64
1174 rdmsrl(MSR_FS_BASE, a);
1175 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1176 rdmsrl(MSR_GS_BASE, a);
1177 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1178 #else
1179 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1180 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1181 #endif
1182
1183 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1184
1185 get_idt(&dt);
1186 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1187
1188
1189 vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1190
1191 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1192 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1193 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1194 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1195 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1196 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1197
1198 for (i = 0; i < NR_VMX_MSR; ++i) {
1199 u32 index = vmx_msr_index[i];
1200 u32 data_low, data_high;
1201 u64 data;
1202 int j = vcpu->nmsrs;
1203
1204 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1205 continue;
1206 if (wrmsr_safe(index, data_low, data_high) < 0)
1207 continue;
1208 data = data_low | ((u64)data_high << 32);
1209 vcpu->host_msrs[j].index = index;
1210 vcpu->host_msrs[j].reserved = 0;
1211 vcpu->host_msrs[j].data = data;
1212 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1213 #ifdef CONFIG_X86_64
1214 if (index == MSR_KERNEL_GS_BASE)
1215 msr_offset_kernel_gs_base = j;
1216 #endif
1217 ++vcpu->nmsrs;
1218 }
1219
1220 setup_msrs(vcpu);
1221
1222 vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1223 (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
1224
1225 /* 22.2.1, 20.8.1 */
1226 vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1227 VM_ENTRY_CONTROLS, 0);
1228 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1229
1230 #ifdef CONFIG_X86_64
1231 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1232 vmcs_writel(TPR_THRESHOLD, 0);
1233 #endif
1234
1235 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1236 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1237
1238 vcpu->cr0 = 0x60000010;
1239 vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1240 vmx_set_cr4(vcpu, 0);
1241 #ifdef CONFIG_X86_64
1242 vmx_set_efer(vcpu, 0);
1243 #endif
1244
1245 return 0;
1246
1247 out:
1248 return ret;
1249 }
1250
1251 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1252 {
1253 u16 ent[2];
1254 u16 cs;
1255 u16 ip;
1256 unsigned long flags;
1257 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1258 u16 sp = vmcs_readl(GUEST_RSP);
1259 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1260
1261 if (sp > ss_limit || sp < 6 ) {
1262 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1263 __FUNCTION__,
1264 vmcs_readl(GUEST_RSP),
1265 vmcs_readl(GUEST_SS_BASE),
1266 vmcs_read32(GUEST_SS_LIMIT));
1267 return;
1268 }
1269
1270 if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1271 sizeof(ent)) {
1272 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1273 return;
1274 }
1275
1276 flags = vmcs_readl(GUEST_RFLAGS);
1277 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1278 ip = vmcs_readl(GUEST_RIP);
1279
1280
1281 if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1282 kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1283 kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1284 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1285 return;
1286 }
1287
1288 vmcs_writel(GUEST_RFLAGS, flags &
1289 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1290 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1291 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1292 vmcs_writel(GUEST_RIP, ent[0]);
1293 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1294 }
1295
1296 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1297 {
1298 int word_index = __ffs(vcpu->irq_summary);
1299 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1300 int irq = word_index * BITS_PER_LONG + bit_index;
1301
1302 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1303 if (!vcpu->irq_pending[word_index])
1304 clear_bit(word_index, &vcpu->irq_summary);
1305
1306 if (vcpu->rmode.active) {
1307 inject_rmode_irq(vcpu, irq);
1308 return;
1309 }
1310 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1311 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1312 }
1313
1314
1315 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1316 struct kvm_run *kvm_run)
1317 {
1318 u32 cpu_based_vm_exec_control;
1319
1320 vcpu->interrupt_window_open =
1321 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1322 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1323
1324 if (vcpu->interrupt_window_open &&
1325 vcpu->irq_summary &&
1326 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1327 /*
1328 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1329 */
1330 kvm_do_inject_irq(vcpu);
1331
1332 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1333 if (!vcpu->interrupt_window_open &&
1334 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1335 /*
1336 * Interrupts blocked. Wait for unblock.
1337 */
1338 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1339 else
1340 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1341 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1342 }
1343
1344 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1345 {
1346 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1347
1348 set_debugreg(dbg->bp[0], 0);
1349 set_debugreg(dbg->bp[1], 1);
1350 set_debugreg(dbg->bp[2], 2);
1351 set_debugreg(dbg->bp[3], 3);
1352
1353 if (dbg->singlestep) {
1354 unsigned long flags;
1355
1356 flags = vmcs_readl(GUEST_RFLAGS);
1357 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1358 vmcs_writel(GUEST_RFLAGS, flags);
1359 }
1360 }
1361
1362 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1363 int vec, u32 err_code)
1364 {
1365 if (!vcpu->rmode.active)
1366 return 0;
1367
1368 if (vec == GP_VECTOR && err_code == 0)
1369 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1370 return 1;
1371 return 0;
1372 }
1373
1374 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1375 {
1376 u32 intr_info, error_code;
1377 unsigned long cr2, rip;
1378 u32 vect_info;
1379 enum emulation_result er;
1380 int r;
1381
1382 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1383 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1384
1385 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1386 !is_page_fault(intr_info)) {
1387 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1388 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1389 }
1390
1391 if (is_external_interrupt(vect_info)) {
1392 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1393 set_bit(irq, vcpu->irq_pending);
1394 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1395 }
1396
1397 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1398 asm ("int $2");
1399 return 1;
1400 }
1401
1402 if (is_no_device(intr_info)) {
1403 vcpu->fpu_active = 1;
1404 vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
1405 if (!(vcpu->cr0 & CR0_TS_MASK))
1406 vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
1407 return 1;
1408 }
1409
1410 error_code = 0;
1411 rip = vmcs_readl(GUEST_RIP);
1412 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1413 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1414 if (is_page_fault(intr_info)) {
1415 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1416
1417 spin_lock(&vcpu->kvm->lock);
1418 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1419 if (r < 0) {
1420 spin_unlock(&vcpu->kvm->lock);
1421 return r;
1422 }
1423 if (!r) {
1424 spin_unlock(&vcpu->kvm->lock);
1425 return 1;
1426 }
1427
1428 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1429 spin_unlock(&vcpu->kvm->lock);
1430
1431 switch (er) {
1432 case EMULATE_DONE:
1433 return 1;
1434 case EMULATE_DO_MMIO:
1435 ++vcpu->stat.mmio_exits;
1436 kvm_run->exit_reason = KVM_EXIT_MMIO;
1437 return 0;
1438 case EMULATE_FAIL:
1439 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1440 break;
1441 default:
1442 BUG();
1443 }
1444 }
1445
1446 if (vcpu->rmode.active &&
1447 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1448 error_code))
1449 return 1;
1450
1451 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1452 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1453 return 0;
1454 }
1455 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1456 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1457 kvm_run->ex.error_code = error_code;
1458 return 0;
1459 }
1460
1461 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1462 struct kvm_run *kvm_run)
1463 {
1464 ++vcpu->stat.irq_exits;
1465 return 1;
1466 }
1467
1468 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1469 {
1470 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1471 return 0;
1472 }
1473
1474 static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
1475 {
1476 u64 inst;
1477 gva_t rip;
1478 int countr_size;
1479 int i, n;
1480
1481 if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1482 countr_size = 2;
1483 } else {
1484 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1485
1486 countr_size = (cs_ar & AR_L_MASK) ? 8:
1487 (cs_ar & AR_DB_MASK) ? 4: 2;
1488 }
1489
1490 rip = vmcs_readl(GUEST_RIP);
1491 if (countr_size != 8)
1492 rip += vmcs_readl(GUEST_CS_BASE);
1493
1494 n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1495
1496 for (i = 0; i < n; i++) {
1497 switch (((u8*)&inst)[i]) {
1498 case 0xf0:
1499 case 0xf2:
1500 case 0xf3:
1501 case 0x2e:
1502 case 0x36:
1503 case 0x3e:
1504 case 0x26:
1505 case 0x64:
1506 case 0x65:
1507 case 0x66:
1508 break;
1509 case 0x67:
1510 countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1511 default:
1512 goto done;
1513 }
1514 }
1515 return 0;
1516 done:
1517 countr_size *= 8;
1518 *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1519 //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
1520 return 1;
1521 }
1522
1523 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1524 {
1525 u64 exit_qualification;
1526 int size, down, in, string, rep;
1527 unsigned port;
1528 unsigned long count;
1529 gva_t address;
1530
1531 ++vcpu->stat.io_exits;
1532 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1533 in = (exit_qualification & 8) != 0;
1534 size = (exit_qualification & 7) + 1;
1535 string = (exit_qualification & 16) != 0;
1536 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1537 count = 1;
1538 rep = (exit_qualification & 32) != 0;
1539 port = exit_qualification >> 16;
1540 address = 0;
1541 if (string) {
1542 if (rep && !get_io_count(vcpu, &count))
1543 return 1;
1544 address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1545 }
1546 return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1547 address, rep, port);
1548 }
1549
1550 static void
1551 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1552 {
1553 /*
1554 * Patch in the VMCALL instruction:
1555 */
1556 hypercall[0] = 0x0f;
1557 hypercall[1] = 0x01;
1558 hypercall[2] = 0xc1;
1559 hypercall[3] = 0xc3;
1560 }
1561
1562 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1563 {
1564 u64 exit_qualification;
1565 int cr;
1566 int reg;
1567
1568 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1569 cr = exit_qualification & 15;
1570 reg = (exit_qualification >> 8) & 15;
1571 switch ((exit_qualification >> 4) & 3) {
1572 case 0: /* mov to cr */
1573 switch (cr) {
1574 case 0:
1575 vcpu_load_rsp_rip(vcpu);
1576 set_cr0(vcpu, vcpu->regs[reg]);
1577 skip_emulated_instruction(vcpu);
1578 return 1;
1579 case 3:
1580 vcpu_load_rsp_rip(vcpu);
1581 set_cr3(vcpu, vcpu->regs[reg]);
1582 skip_emulated_instruction(vcpu);
1583 return 1;
1584 case 4:
1585 vcpu_load_rsp_rip(vcpu);
1586 set_cr4(vcpu, vcpu->regs[reg]);
1587 skip_emulated_instruction(vcpu);
1588 return 1;
1589 case 8:
1590 vcpu_load_rsp_rip(vcpu);
1591 set_cr8(vcpu, vcpu->regs[reg]);
1592 skip_emulated_instruction(vcpu);
1593 return 1;
1594 };
1595 break;
1596 case 2: /* clts */
1597 vcpu_load_rsp_rip(vcpu);
1598 vcpu->fpu_active = 1;
1599 vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
1600 vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
1601 vcpu->cr0 &= ~CR0_TS_MASK;
1602 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1603 skip_emulated_instruction(vcpu);
1604 return 1;
1605 case 1: /*mov from cr*/
1606 switch (cr) {
1607 case 3:
1608 vcpu_load_rsp_rip(vcpu);
1609 vcpu->regs[reg] = vcpu->cr3;
1610 vcpu_put_rsp_rip(vcpu);
1611 skip_emulated_instruction(vcpu);
1612 return 1;
1613 case 8:
1614 vcpu_load_rsp_rip(vcpu);
1615 vcpu->regs[reg] = vcpu->cr8;
1616 vcpu_put_rsp_rip(vcpu);
1617 skip_emulated_instruction(vcpu);
1618 return 1;
1619 }
1620 break;
1621 case 3: /* lmsw */
1622 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1623
1624 skip_emulated_instruction(vcpu);
1625 return 1;
1626 default:
1627 break;
1628 }
1629 kvm_run->exit_reason = 0;
1630 printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1631 (int)(exit_qualification >> 4) & 3, cr);
1632 return 0;
1633 }
1634
1635 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1636 {
1637 u64 exit_qualification;
1638 unsigned long val;
1639 int dr, reg;
1640
1641 /*
1642 * FIXME: this code assumes the host is debugging the guest.
1643 * need to deal with guest debugging itself too.
1644 */
1645 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1646 dr = exit_qualification & 7;
1647 reg = (exit_qualification >> 8) & 15;
1648 vcpu_load_rsp_rip(vcpu);
1649 if (exit_qualification & 16) {
1650 /* mov from dr */
1651 switch (dr) {
1652 case 6:
1653 val = 0xffff0ff0;
1654 break;
1655 case 7:
1656 val = 0x400;
1657 break;
1658 default:
1659 val = 0;
1660 }
1661 vcpu->regs[reg] = val;
1662 } else {
1663 /* mov to dr */
1664 }
1665 vcpu_put_rsp_rip(vcpu);
1666 skip_emulated_instruction(vcpu);
1667 return 1;
1668 }
1669
1670 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1671 {
1672 kvm_emulate_cpuid(vcpu);
1673 return 1;
1674 }
1675
1676 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1677 {
1678 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1679 u64 data;
1680
1681 if (vmx_get_msr(vcpu, ecx, &data)) {
1682 vmx_inject_gp(vcpu, 0);
1683 return 1;
1684 }
1685
1686 /* FIXME: handling of bits 32:63 of rax, rdx */
1687 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1688 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1689 skip_emulated_instruction(vcpu);
1690 return 1;
1691 }
1692
1693 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1694 {
1695 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1696 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1697 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1698
1699 if (vmx_set_msr(vcpu, ecx, data) != 0) {
1700 vmx_inject_gp(vcpu, 0);
1701 return 1;
1702 }
1703
1704 skip_emulated_instruction(vcpu);
1705 return 1;
1706 }
1707
1708 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1709 struct kvm_run *kvm_run)
1710 {
1711 kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1712 kvm_run->cr8 = vcpu->cr8;
1713 kvm_run->apic_base = vcpu->apic_base;
1714 kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1715 vcpu->irq_summary == 0);
1716 }
1717
1718 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1719 struct kvm_run *kvm_run)
1720 {
1721 /*
1722 * If the user space waits to inject interrupts, exit as soon as
1723 * possible
1724 */
1725 if (kvm_run->request_interrupt_window &&
1726 !vcpu->irq_summary) {
1727 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1728 ++vcpu->stat.irq_window_exits;
1729 return 0;
1730 }
1731 return 1;
1732 }
1733
1734 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1735 {
1736 skip_emulated_instruction(vcpu);
1737 if (vcpu->irq_summary)
1738 return 1;
1739
1740 kvm_run->exit_reason = KVM_EXIT_HLT;
1741 ++vcpu->stat.halt_exits;
1742 return 0;
1743 }
1744
1745 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1746 {
1747 skip_emulated_instruction(vcpu);
1748 return kvm_hypercall(vcpu, kvm_run);
1749 }
1750
1751 /*
1752 * The exit handlers return 1 if the exit was handled fully and guest execution
1753 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
1754 * to be done to userspace and return 0.
1755 */
1756 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1757 struct kvm_run *kvm_run) = {
1758 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
1759 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
1760 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
1761 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
1762 [EXIT_REASON_CR_ACCESS] = handle_cr,
1763 [EXIT_REASON_DR_ACCESS] = handle_dr,
1764 [EXIT_REASON_CPUID] = handle_cpuid,
1765 [EXIT_REASON_MSR_READ] = handle_rdmsr,
1766 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
1767 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
1768 [EXIT_REASON_HLT] = handle_halt,
1769 [EXIT_REASON_VMCALL] = handle_vmcall,
1770 };
1771
1772 static const int kvm_vmx_max_exit_handlers =
1773 sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1774
1775 /*
1776 * The guest has exited. See if we can fix it or if we need userspace
1777 * assistance.
1778 */
1779 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1780 {
1781 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1782 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1783
1784 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1785 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1786 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1787 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1788 if (exit_reason < kvm_vmx_max_exit_handlers
1789 && kvm_vmx_exit_handlers[exit_reason])
1790 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1791 else {
1792 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1793 kvm_run->hw.hardware_exit_reason = exit_reason;
1794 }
1795 return 0;
1796 }
1797
1798 /*
1799 * Check if userspace requested an interrupt window, and that the
1800 * interrupt window is open.
1801 *
1802 * No need to exit to userspace if we already have an interrupt queued.
1803 */
1804 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1805 struct kvm_run *kvm_run)
1806 {
1807 return (!vcpu->irq_summary &&
1808 kvm_run->request_interrupt_window &&
1809 vcpu->interrupt_window_open &&
1810 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1811 }
1812
1813 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1814 {
1815 u8 fail;
1816 u16 fs_sel, gs_sel, ldt_sel;
1817 int fs_gs_ldt_reload_needed;
1818 int r;
1819
1820 again:
1821 /*
1822 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1823 * allow segment selectors with cpl > 0 or ti == 1.
1824 */
1825 fs_sel = read_fs();
1826 gs_sel = read_gs();
1827 ldt_sel = read_ldt();
1828 fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1829 if (!fs_gs_ldt_reload_needed) {
1830 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1831 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1832 } else {
1833 vmcs_write16(HOST_FS_SELECTOR, 0);
1834 vmcs_write16(HOST_GS_SELECTOR, 0);
1835 }
1836
1837 #ifdef CONFIG_X86_64
1838 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1839 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1840 #else
1841 vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1842 vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1843 #endif
1844
1845 if (!vcpu->mmio_read_completed)
1846 do_interrupt_requests(vcpu, kvm_run);
1847
1848 if (vcpu->guest_debug.enabled)
1849 kvm_guest_debug_pre(vcpu);
1850
1851 kvm_load_guest_fpu(vcpu);
1852
1853 /*
1854 * Loading guest fpu may have cleared host cr0.ts
1855 */
1856 vmcs_writel(HOST_CR0, read_cr0());
1857
1858 #ifdef CONFIG_X86_64
1859 if (is_long_mode(vcpu)) {
1860 save_msrs(vcpu->host_msrs + msr_offset_kernel_gs_base, 1);
1861 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1862 }
1863 #endif
1864
1865 asm (
1866 /* Store host registers */
1867 "pushf \n\t"
1868 #ifdef CONFIG_X86_64
1869 "push %%rax; push %%rbx; push %%rdx;"
1870 "push %%rsi; push %%rdi; push %%rbp;"
1871 "push %%r8; push %%r9; push %%r10; push %%r11;"
1872 "push %%r12; push %%r13; push %%r14; push %%r15;"
1873 "push %%rcx \n\t"
1874 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1875 #else
1876 "pusha; push %%ecx \n\t"
1877 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1878 #endif
1879 /* Check if vmlaunch of vmresume is needed */
1880 "cmp $0, %1 \n\t"
1881 /* Load guest registers. Don't clobber flags. */
1882 #ifdef CONFIG_X86_64
1883 "mov %c[cr2](%3), %%rax \n\t"
1884 "mov %%rax, %%cr2 \n\t"
1885 "mov %c[rax](%3), %%rax \n\t"
1886 "mov %c[rbx](%3), %%rbx \n\t"
1887 "mov %c[rdx](%3), %%rdx \n\t"
1888 "mov %c[rsi](%3), %%rsi \n\t"
1889 "mov %c[rdi](%3), %%rdi \n\t"
1890 "mov %c[rbp](%3), %%rbp \n\t"
1891 "mov %c[r8](%3), %%r8 \n\t"
1892 "mov %c[r9](%3), %%r9 \n\t"
1893 "mov %c[r10](%3), %%r10 \n\t"
1894 "mov %c[r11](%3), %%r11 \n\t"
1895 "mov %c[r12](%3), %%r12 \n\t"
1896 "mov %c[r13](%3), %%r13 \n\t"
1897 "mov %c[r14](%3), %%r14 \n\t"
1898 "mov %c[r15](%3), %%r15 \n\t"
1899 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1900 #else
1901 "mov %c[cr2](%3), %%eax \n\t"
1902 "mov %%eax, %%cr2 \n\t"
1903 "mov %c[rax](%3), %%eax \n\t"
1904 "mov %c[rbx](%3), %%ebx \n\t"
1905 "mov %c[rdx](%3), %%edx \n\t"
1906 "mov %c[rsi](%3), %%esi \n\t"
1907 "mov %c[rdi](%3), %%edi \n\t"
1908 "mov %c[rbp](%3), %%ebp \n\t"
1909 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1910 #endif
1911 /* Enter guest mode */
1912 "jne launched \n\t"
1913 ASM_VMX_VMLAUNCH "\n\t"
1914 "jmp kvm_vmx_return \n\t"
1915 "launched: " ASM_VMX_VMRESUME "\n\t"
1916 ".globl kvm_vmx_return \n\t"
1917 "kvm_vmx_return: "
1918 /* Save guest registers, load host registers, keep flags */
1919 #ifdef CONFIG_X86_64
1920 "xchg %3, (%%rsp) \n\t"
1921 "mov %%rax, %c[rax](%3) \n\t"
1922 "mov %%rbx, %c[rbx](%3) \n\t"
1923 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
1924 "mov %%rdx, %c[rdx](%3) \n\t"
1925 "mov %%rsi, %c[rsi](%3) \n\t"
1926 "mov %%rdi, %c[rdi](%3) \n\t"
1927 "mov %%rbp, %c[rbp](%3) \n\t"
1928 "mov %%r8, %c[r8](%3) \n\t"
1929 "mov %%r9, %c[r9](%3) \n\t"
1930 "mov %%r10, %c[r10](%3) \n\t"
1931 "mov %%r11, %c[r11](%3) \n\t"
1932 "mov %%r12, %c[r12](%3) \n\t"
1933 "mov %%r13, %c[r13](%3) \n\t"
1934 "mov %%r14, %c[r14](%3) \n\t"
1935 "mov %%r15, %c[r15](%3) \n\t"
1936 "mov %%cr2, %%rax \n\t"
1937 "mov %%rax, %c[cr2](%3) \n\t"
1938 "mov (%%rsp), %3 \n\t"
1939
1940 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1941 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1942 "pop %%rbp; pop %%rdi; pop %%rsi;"
1943 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
1944 #else
1945 "xchg %3, (%%esp) \n\t"
1946 "mov %%eax, %c[rax](%3) \n\t"
1947 "mov %%ebx, %c[rbx](%3) \n\t"
1948 "pushl (%%esp); popl %c[rcx](%3) \n\t"
1949 "mov %%edx, %c[rdx](%3) \n\t"
1950 "mov %%esi, %c[rsi](%3) \n\t"
1951 "mov %%edi, %c[rdi](%3) \n\t"
1952 "mov %%ebp, %c[rbp](%3) \n\t"
1953 "mov %%cr2, %%eax \n\t"
1954 "mov %%eax, %c[cr2](%3) \n\t"
1955 "mov (%%esp), %3 \n\t"
1956
1957 "pop %%ecx; popa \n\t"
1958 #endif
1959 "setbe %0 \n\t"
1960 "popf \n\t"
1961 : "=q" (fail)
1962 : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1963 "c"(vcpu),
1964 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1965 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1966 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1967 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1968 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1969 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1970 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1971 #ifdef CONFIG_X86_64
1972 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1973 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1974 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1975 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1976 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1977 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1978 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1979 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1980 #endif
1981 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1982 : "cc", "memory" );
1983
1984 /*
1985 * Reload segment selectors ASAP. (it's needed for a functional
1986 * kernel: x86 relies on having __KERNEL_PDA in %fs and x86_64
1987 * relies on having 0 in %gs for the CPU PDA to work.)
1988 */
1989 if (fs_gs_ldt_reload_needed) {
1990 load_ldt(ldt_sel);
1991 load_fs(fs_sel);
1992 /*
1993 * If we have to reload gs, we must take care to
1994 * preserve our gs base.
1995 */
1996 local_irq_disable();
1997 load_gs(gs_sel);
1998 #ifdef CONFIG_X86_64
1999 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
2000 #endif
2001 local_irq_enable();
2002
2003 reload_tss();
2004 }
2005 ++vcpu->stat.exits;
2006
2007 #ifdef CONFIG_X86_64
2008 if (is_long_mode(vcpu)) {
2009 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
2010 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
2011 }
2012 #endif
2013
2014 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2015
2016 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2017
2018 if (fail) {
2019 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2020 kvm_run->fail_entry.hardware_entry_failure_reason
2021 = vmcs_read32(VM_INSTRUCTION_ERROR);
2022 r = 0;
2023 } else {
2024 /*
2025 * Profile KVM exit RIPs:
2026 */
2027 if (unlikely(prof_on == KVM_PROFILING))
2028 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
2029
2030 vcpu->launched = 1;
2031 r = kvm_handle_exit(kvm_run, vcpu);
2032 if (r > 0) {
2033 /* Give scheduler a change to reschedule. */
2034 if (signal_pending(current)) {
2035 ++vcpu->stat.signal_exits;
2036 post_kvm_run_save(vcpu, kvm_run);
2037 kvm_run->exit_reason = KVM_EXIT_INTR;
2038 return -EINTR;
2039 }
2040
2041 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2042 ++vcpu->stat.request_irq_exits;
2043 post_kvm_run_save(vcpu, kvm_run);
2044 kvm_run->exit_reason = KVM_EXIT_INTR;
2045 return -EINTR;
2046 }
2047
2048 kvm_resched(vcpu);
2049 goto again;
2050 }
2051 }
2052
2053 post_kvm_run_save(vcpu, kvm_run);
2054 return r;
2055 }
2056
2057 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2058 {
2059 vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
2060 }
2061
2062 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2063 unsigned long addr,
2064 u32 err_code)
2065 {
2066 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2067
2068 ++vcpu->stat.pf_guest;
2069
2070 if (is_page_fault(vect_info)) {
2071 printk(KERN_DEBUG "inject_page_fault: "
2072 "double fault 0x%lx @ 0x%lx\n",
2073 addr, vmcs_readl(GUEST_RIP));
2074 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2075 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2076 DF_VECTOR |
2077 INTR_TYPE_EXCEPTION |
2078 INTR_INFO_DELIEVER_CODE_MASK |
2079 INTR_INFO_VALID_MASK);
2080 return;
2081 }
2082 vcpu->cr2 = addr;
2083 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2084 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2085 PF_VECTOR |
2086 INTR_TYPE_EXCEPTION |
2087 INTR_INFO_DELIEVER_CODE_MASK |
2088 INTR_INFO_VALID_MASK);
2089
2090 }
2091
2092 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2093 {
2094 if (vcpu->vmcs) {
2095 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
2096 free_vmcs(vcpu->vmcs);
2097 vcpu->vmcs = NULL;
2098 }
2099 }
2100
2101 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2102 {
2103 vmx_free_vmcs(vcpu);
2104 }
2105
2106 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
2107 {
2108 struct vmcs *vmcs;
2109
2110 vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2111 if (!vcpu->guest_msrs)
2112 return -ENOMEM;
2113
2114 vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2115 if (!vcpu->host_msrs)
2116 goto out_free_guest_msrs;
2117
2118 vmcs = alloc_vmcs();
2119 if (!vmcs)
2120 goto out_free_msrs;
2121
2122 vmcs_clear(vmcs);
2123 vcpu->vmcs = vmcs;
2124 vcpu->launched = 0;
2125 vcpu->fpu_active = 1;
2126
2127 return 0;
2128
2129 out_free_msrs:
2130 kfree(vcpu->host_msrs);
2131 vcpu->host_msrs = NULL;
2132
2133 out_free_guest_msrs:
2134 kfree(vcpu->guest_msrs);
2135 vcpu->guest_msrs = NULL;
2136
2137 return -ENOMEM;
2138 }
2139
2140 static struct kvm_arch_ops vmx_arch_ops = {
2141 .cpu_has_kvm_support = cpu_has_kvm_support,
2142 .disabled_by_bios = vmx_disabled_by_bios,
2143 .hardware_setup = hardware_setup,
2144 .hardware_unsetup = hardware_unsetup,
2145 .hardware_enable = hardware_enable,
2146 .hardware_disable = hardware_disable,
2147
2148 .vcpu_create = vmx_create_vcpu,
2149 .vcpu_free = vmx_free_vcpu,
2150
2151 .vcpu_load = vmx_vcpu_load,
2152 .vcpu_put = vmx_vcpu_put,
2153 .vcpu_decache = vmx_vcpu_decache,
2154
2155 .set_guest_debug = set_guest_debug,
2156 .get_msr = vmx_get_msr,
2157 .set_msr = vmx_set_msr,
2158 .get_segment_base = vmx_get_segment_base,
2159 .get_segment = vmx_get_segment,
2160 .set_segment = vmx_set_segment,
2161 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2162 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2163 .set_cr0 = vmx_set_cr0,
2164 .set_cr3 = vmx_set_cr3,
2165 .set_cr4 = vmx_set_cr4,
2166 #ifdef CONFIG_X86_64
2167 .set_efer = vmx_set_efer,
2168 #endif
2169 .get_idt = vmx_get_idt,
2170 .set_idt = vmx_set_idt,
2171 .get_gdt = vmx_get_gdt,
2172 .set_gdt = vmx_set_gdt,
2173 .cache_regs = vcpu_load_rsp_rip,
2174 .decache_regs = vcpu_put_rsp_rip,
2175 .get_rflags = vmx_get_rflags,
2176 .set_rflags = vmx_set_rflags,
2177
2178 .tlb_flush = vmx_flush_tlb,
2179 .inject_page_fault = vmx_inject_page_fault,
2180
2181 .inject_gp = vmx_inject_gp,
2182
2183 .run = vmx_vcpu_run,
2184 .skip_emulated_instruction = skip_emulated_instruction,
2185 .vcpu_setup = vmx_vcpu_setup,
2186 .patch_hypercall = vmx_patch_hypercall,
2187 };
2188
2189 static int __init vmx_init(void)
2190 {
2191 return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2192 }
2193
2194 static void __exit vmx_exit(void)
2195 {
2196 kvm_exit_arch();
2197 }
2198
2199 module_init(vmx_init)
2200 module_exit(vmx_exit)
This page took 0.450335 seconds and 6 git commands to generate.