KVM: VMX: Don't switch 64-bit msrs for 32-bit guests
[deliverable/linux.git] / drivers / kvm / vmx.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/profile.h>
26 #include <asm/io.h>
27 #include <asm/desc.h>
28
29 #include "segment_descriptor.h"
30
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
33
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
36
37 #ifdef CONFIG_X86_64
38 #define HOST_IS_64 1
39 #else
40 #define HOST_IS_64 0
41 #endif
42
43 static struct vmcs_descriptor {
44 int size;
45 int order;
46 u32 revision_id;
47 } vmcs_descriptor;
48
49 #define VMX_SEGMENT_FIELD(seg) \
50 [VCPU_SREG_##seg] = { \
51 .selector = GUEST_##seg##_SELECTOR, \
52 .base = GUEST_##seg##_BASE, \
53 .limit = GUEST_##seg##_LIMIT, \
54 .ar_bytes = GUEST_##seg##_AR_BYTES, \
55 }
56
57 static struct kvm_vmx_segment_field {
58 unsigned selector;
59 unsigned base;
60 unsigned limit;
61 unsigned ar_bytes;
62 } kvm_vmx_segment_fields[] = {
63 VMX_SEGMENT_FIELD(CS),
64 VMX_SEGMENT_FIELD(DS),
65 VMX_SEGMENT_FIELD(ES),
66 VMX_SEGMENT_FIELD(FS),
67 VMX_SEGMENT_FIELD(GS),
68 VMX_SEGMENT_FIELD(SS),
69 VMX_SEGMENT_FIELD(TR),
70 VMX_SEGMENT_FIELD(LDTR),
71 };
72
73 static const u32 vmx_msr_index[] = {
74 #ifdef CONFIG_X86_64
75 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
76 #endif
77 MSR_EFER, MSR_K6_STAR,
78 };
79 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
80
81 #ifdef CONFIG_X86_64
82 static unsigned msr_offset_kernel_gs_base;
83 #define NR_64BIT_MSRS 4
84 #else
85 #define NR_64BIT_MSRS 0
86 #endif
87
88 static inline int is_page_fault(u32 intr_info)
89 {
90 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
91 INTR_INFO_VALID_MASK)) ==
92 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
93 }
94
95 static inline int is_external_interrupt(u32 intr_info)
96 {
97 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
98 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
99 }
100
101 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
102 {
103 int i;
104
105 for (i = 0; i < vcpu->nmsrs; ++i)
106 if (vcpu->guest_msrs[i].index == msr)
107 return &vcpu->guest_msrs[i];
108 return NULL;
109 }
110
111 static void vmcs_clear(struct vmcs *vmcs)
112 {
113 u64 phys_addr = __pa(vmcs);
114 u8 error;
115
116 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
117 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
118 : "cc", "memory");
119 if (error)
120 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
121 vmcs, phys_addr);
122 }
123
124 static void __vcpu_clear(void *arg)
125 {
126 struct kvm_vcpu *vcpu = arg;
127 int cpu = raw_smp_processor_id();
128
129 if (vcpu->cpu == cpu)
130 vmcs_clear(vcpu->vmcs);
131 if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
132 per_cpu(current_vmcs, cpu) = NULL;
133 }
134
135 static void vcpu_clear(struct kvm_vcpu *vcpu)
136 {
137 if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
138 smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
139 else
140 __vcpu_clear(vcpu);
141 vcpu->launched = 0;
142 }
143
144 static unsigned long vmcs_readl(unsigned long field)
145 {
146 unsigned long value;
147
148 asm volatile (ASM_VMX_VMREAD_RDX_RAX
149 : "=a"(value) : "d"(field) : "cc");
150 return value;
151 }
152
153 static u16 vmcs_read16(unsigned long field)
154 {
155 return vmcs_readl(field);
156 }
157
158 static u32 vmcs_read32(unsigned long field)
159 {
160 return vmcs_readl(field);
161 }
162
163 static u64 vmcs_read64(unsigned long field)
164 {
165 #ifdef CONFIG_X86_64
166 return vmcs_readl(field);
167 #else
168 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
169 #endif
170 }
171
172 static noinline void vmwrite_error(unsigned long field, unsigned long value)
173 {
174 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
175 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
176 dump_stack();
177 }
178
179 static void vmcs_writel(unsigned long field, unsigned long value)
180 {
181 u8 error;
182
183 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
184 : "=q"(error) : "a"(value), "d"(field) : "cc" );
185 if (unlikely(error))
186 vmwrite_error(field, value);
187 }
188
189 static void vmcs_write16(unsigned long field, u16 value)
190 {
191 vmcs_writel(field, value);
192 }
193
194 static void vmcs_write32(unsigned long field, u32 value)
195 {
196 vmcs_writel(field, value);
197 }
198
199 static void vmcs_write64(unsigned long field, u64 value)
200 {
201 #ifdef CONFIG_X86_64
202 vmcs_writel(field, value);
203 #else
204 vmcs_writel(field, value);
205 asm volatile ("");
206 vmcs_writel(field+1, value >> 32);
207 #endif
208 }
209
210 /*
211 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
212 * vcpu mutex is already taken.
213 */
214 static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
215 {
216 u64 phys_addr = __pa(vcpu->vmcs);
217 int cpu;
218
219 cpu = get_cpu();
220
221 if (vcpu->cpu != cpu)
222 vcpu_clear(vcpu);
223
224 if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
225 u8 error;
226
227 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
228 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
229 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
230 : "cc");
231 if (error)
232 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
233 vcpu->vmcs, phys_addr);
234 }
235
236 if (vcpu->cpu != cpu) {
237 struct descriptor_table dt;
238 unsigned long sysenter_esp;
239
240 vcpu->cpu = cpu;
241 /*
242 * Linux uses per-cpu TSS and GDT, so set these when switching
243 * processors.
244 */
245 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
246 get_gdt(&dt);
247 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
248
249 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
250 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
251 }
252 }
253
254 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
255 {
256 put_cpu();
257 }
258
259 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
260 {
261 vcpu_clear(vcpu);
262 }
263
264 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
265 {
266 return vmcs_readl(GUEST_RFLAGS);
267 }
268
269 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
270 {
271 vmcs_writel(GUEST_RFLAGS, rflags);
272 }
273
274 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
275 {
276 unsigned long rip;
277 u32 interruptibility;
278
279 rip = vmcs_readl(GUEST_RIP);
280 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
281 vmcs_writel(GUEST_RIP, rip);
282
283 /*
284 * We emulated an instruction, so temporary interrupt blocking
285 * should be removed, if set.
286 */
287 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
288 if (interruptibility & 3)
289 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
290 interruptibility & ~3);
291 vcpu->interrupt_window_open = 1;
292 }
293
294 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
295 {
296 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
297 vmcs_readl(GUEST_RIP));
298 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
299 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
300 GP_VECTOR |
301 INTR_TYPE_EXCEPTION |
302 INTR_INFO_DELIEVER_CODE_MASK |
303 INTR_INFO_VALID_MASK);
304 }
305
306 /*
307 * Set up the vmcs to automatically save and restore system
308 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
309 * mode, as fiddling with msrs is very expensive.
310 */
311 static void setup_msrs(struct kvm_vcpu *vcpu)
312 {
313 int nr_skip, nr_good_msrs;
314
315 if (is_long_mode(vcpu))
316 nr_skip = NR_BAD_MSRS;
317 else
318 nr_skip = NR_64BIT_MSRS;
319 nr_good_msrs = vcpu->nmsrs - nr_skip;
320
321 vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
322 virt_to_phys(vcpu->guest_msrs + nr_skip));
323 vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
324 virt_to_phys(vcpu->guest_msrs + nr_skip));
325 vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
326 virt_to_phys(vcpu->host_msrs + nr_skip));
327 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
328 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
329 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
330 }
331
332 /*
333 * reads and returns guest's timestamp counter "register"
334 * guest_tsc = host_tsc + tsc_offset -- 21.3
335 */
336 static u64 guest_read_tsc(void)
337 {
338 u64 host_tsc, tsc_offset;
339
340 rdtscll(host_tsc);
341 tsc_offset = vmcs_read64(TSC_OFFSET);
342 return host_tsc + tsc_offset;
343 }
344
345 /*
346 * writes 'guest_tsc' into guest's timestamp counter "register"
347 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
348 */
349 static void guest_write_tsc(u64 guest_tsc)
350 {
351 u64 host_tsc;
352
353 rdtscll(host_tsc);
354 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
355 }
356
357 static void reload_tss(void)
358 {
359 #ifndef CONFIG_X86_64
360
361 /*
362 * VT restores TR but not its size. Useless.
363 */
364 struct descriptor_table gdt;
365 struct segment_descriptor *descs;
366
367 get_gdt(&gdt);
368 descs = (void *)gdt.base;
369 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
370 load_TR_desc();
371 #endif
372 }
373
374 /*
375 * Reads an msr value (of 'msr_index') into 'pdata'.
376 * Returns 0 on success, non-0 otherwise.
377 * Assumes vcpu_load() was already called.
378 */
379 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
380 {
381 u64 data;
382 struct vmx_msr_entry *msr;
383
384 if (!pdata) {
385 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
386 return -EINVAL;
387 }
388
389 switch (msr_index) {
390 #ifdef CONFIG_X86_64
391 case MSR_FS_BASE:
392 data = vmcs_readl(GUEST_FS_BASE);
393 break;
394 case MSR_GS_BASE:
395 data = vmcs_readl(GUEST_GS_BASE);
396 break;
397 case MSR_EFER:
398 return kvm_get_msr_common(vcpu, msr_index, pdata);
399 #endif
400 case MSR_IA32_TIME_STAMP_COUNTER:
401 data = guest_read_tsc();
402 break;
403 case MSR_IA32_SYSENTER_CS:
404 data = vmcs_read32(GUEST_SYSENTER_CS);
405 break;
406 case MSR_IA32_SYSENTER_EIP:
407 data = vmcs_readl(GUEST_SYSENTER_EIP);
408 break;
409 case MSR_IA32_SYSENTER_ESP:
410 data = vmcs_readl(GUEST_SYSENTER_ESP);
411 break;
412 default:
413 msr = find_msr_entry(vcpu, msr_index);
414 if (msr) {
415 data = msr->data;
416 break;
417 }
418 return kvm_get_msr_common(vcpu, msr_index, pdata);
419 }
420
421 *pdata = data;
422 return 0;
423 }
424
425 /*
426 * Writes msr value into into the appropriate "register".
427 * Returns 0 on success, non-0 otherwise.
428 * Assumes vcpu_load() was already called.
429 */
430 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
431 {
432 struct vmx_msr_entry *msr;
433 switch (msr_index) {
434 #ifdef CONFIG_X86_64
435 case MSR_EFER:
436 return kvm_set_msr_common(vcpu, msr_index, data);
437 case MSR_FS_BASE:
438 vmcs_writel(GUEST_FS_BASE, data);
439 break;
440 case MSR_GS_BASE:
441 vmcs_writel(GUEST_GS_BASE, data);
442 break;
443 #endif
444 case MSR_IA32_SYSENTER_CS:
445 vmcs_write32(GUEST_SYSENTER_CS, data);
446 break;
447 case MSR_IA32_SYSENTER_EIP:
448 vmcs_writel(GUEST_SYSENTER_EIP, data);
449 break;
450 case MSR_IA32_SYSENTER_ESP:
451 vmcs_writel(GUEST_SYSENTER_ESP, data);
452 break;
453 case MSR_IA32_TIME_STAMP_COUNTER:
454 guest_write_tsc(data);
455 break;
456 default:
457 msr = find_msr_entry(vcpu, msr_index);
458 if (msr) {
459 msr->data = data;
460 break;
461 }
462 return kvm_set_msr_common(vcpu, msr_index, data);
463 msr->data = data;
464 break;
465 }
466
467 return 0;
468 }
469
470 /*
471 * Sync the rsp and rip registers into the vcpu structure. This allows
472 * registers to be accessed by indexing vcpu->regs.
473 */
474 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
475 {
476 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
477 vcpu->rip = vmcs_readl(GUEST_RIP);
478 }
479
480 /*
481 * Syncs rsp and rip back into the vmcs. Should be called after possible
482 * modification.
483 */
484 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
485 {
486 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
487 vmcs_writel(GUEST_RIP, vcpu->rip);
488 }
489
490 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
491 {
492 unsigned long dr7 = 0x400;
493 u32 exception_bitmap;
494 int old_singlestep;
495
496 exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
497 old_singlestep = vcpu->guest_debug.singlestep;
498
499 vcpu->guest_debug.enabled = dbg->enabled;
500 if (vcpu->guest_debug.enabled) {
501 int i;
502
503 dr7 |= 0x200; /* exact */
504 for (i = 0; i < 4; ++i) {
505 if (!dbg->breakpoints[i].enabled)
506 continue;
507 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
508 dr7 |= 2 << (i*2); /* global enable */
509 dr7 |= 0 << (i*4+16); /* execution breakpoint */
510 }
511
512 exception_bitmap |= (1u << 1); /* Trap debug exceptions */
513
514 vcpu->guest_debug.singlestep = dbg->singlestep;
515 } else {
516 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
517 vcpu->guest_debug.singlestep = 0;
518 }
519
520 if (old_singlestep && !vcpu->guest_debug.singlestep) {
521 unsigned long flags;
522
523 flags = vmcs_readl(GUEST_RFLAGS);
524 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
525 vmcs_writel(GUEST_RFLAGS, flags);
526 }
527
528 vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
529 vmcs_writel(GUEST_DR7, dr7);
530
531 return 0;
532 }
533
534 static __init int cpu_has_kvm_support(void)
535 {
536 unsigned long ecx = cpuid_ecx(1);
537 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
538 }
539
540 static __init int vmx_disabled_by_bios(void)
541 {
542 u64 msr;
543
544 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
545 return (msr & 5) == 1; /* locked but not enabled */
546 }
547
548 static void hardware_enable(void *garbage)
549 {
550 int cpu = raw_smp_processor_id();
551 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
552 u64 old;
553
554 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
555 if ((old & 5) != 5)
556 /* enable and lock */
557 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
558 write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
559 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
560 : "memory", "cc");
561 }
562
563 static void hardware_disable(void *garbage)
564 {
565 asm volatile (ASM_VMX_VMXOFF : : : "cc");
566 }
567
568 static __init void setup_vmcs_descriptor(void)
569 {
570 u32 vmx_msr_low, vmx_msr_high;
571
572 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
573 vmcs_descriptor.size = vmx_msr_high & 0x1fff;
574 vmcs_descriptor.order = get_order(vmcs_descriptor.size);
575 vmcs_descriptor.revision_id = vmx_msr_low;
576 }
577
578 static struct vmcs *alloc_vmcs_cpu(int cpu)
579 {
580 int node = cpu_to_node(cpu);
581 struct page *pages;
582 struct vmcs *vmcs;
583
584 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
585 if (!pages)
586 return NULL;
587 vmcs = page_address(pages);
588 memset(vmcs, 0, vmcs_descriptor.size);
589 vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
590 return vmcs;
591 }
592
593 static struct vmcs *alloc_vmcs(void)
594 {
595 return alloc_vmcs_cpu(raw_smp_processor_id());
596 }
597
598 static void free_vmcs(struct vmcs *vmcs)
599 {
600 free_pages((unsigned long)vmcs, vmcs_descriptor.order);
601 }
602
603 static __exit void free_kvm_area(void)
604 {
605 int cpu;
606
607 for_each_online_cpu(cpu)
608 free_vmcs(per_cpu(vmxarea, cpu));
609 }
610
611 extern struct vmcs *alloc_vmcs_cpu(int cpu);
612
613 static __init int alloc_kvm_area(void)
614 {
615 int cpu;
616
617 for_each_online_cpu(cpu) {
618 struct vmcs *vmcs;
619
620 vmcs = alloc_vmcs_cpu(cpu);
621 if (!vmcs) {
622 free_kvm_area();
623 return -ENOMEM;
624 }
625
626 per_cpu(vmxarea, cpu) = vmcs;
627 }
628 return 0;
629 }
630
631 static __init int hardware_setup(void)
632 {
633 setup_vmcs_descriptor();
634 return alloc_kvm_area();
635 }
636
637 static __exit void hardware_unsetup(void)
638 {
639 free_kvm_area();
640 }
641
642 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
643 {
644 if (vcpu->rmode.active)
645 vmcs_write32(EXCEPTION_BITMAP, ~0);
646 else
647 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
648 }
649
650 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
651 {
652 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653
654 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
655 vmcs_write16(sf->selector, save->selector);
656 vmcs_writel(sf->base, save->base);
657 vmcs_write32(sf->limit, save->limit);
658 vmcs_write32(sf->ar_bytes, save->ar);
659 } else {
660 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
661 << AR_DPL_SHIFT;
662 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
663 }
664 }
665
666 static void enter_pmode(struct kvm_vcpu *vcpu)
667 {
668 unsigned long flags;
669
670 vcpu->rmode.active = 0;
671
672 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
673 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
674 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
675
676 flags = vmcs_readl(GUEST_RFLAGS);
677 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
678 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
679 vmcs_writel(GUEST_RFLAGS, flags);
680
681 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
682 (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
683
684 update_exception_bitmap(vcpu);
685
686 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
687 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
688 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
689 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
690
691 vmcs_write16(GUEST_SS_SELECTOR, 0);
692 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
693
694 vmcs_write16(GUEST_CS_SELECTOR,
695 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
696 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
697 }
698
699 static int rmode_tss_base(struct kvm* kvm)
700 {
701 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
702 return base_gfn << PAGE_SHIFT;
703 }
704
705 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
706 {
707 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
708
709 save->selector = vmcs_read16(sf->selector);
710 save->base = vmcs_readl(sf->base);
711 save->limit = vmcs_read32(sf->limit);
712 save->ar = vmcs_read32(sf->ar_bytes);
713 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
714 vmcs_write32(sf->limit, 0xffff);
715 vmcs_write32(sf->ar_bytes, 0xf3);
716 }
717
718 static void enter_rmode(struct kvm_vcpu *vcpu)
719 {
720 unsigned long flags;
721
722 vcpu->rmode.active = 1;
723
724 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
725 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
726
727 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
728 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
729
730 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
731 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
732
733 flags = vmcs_readl(GUEST_RFLAGS);
734 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
735
736 flags |= IOPL_MASK | X86_EFLAGS_VM;
737
738 vmcs_writel(GUEST_RFLAGS, flags);
739 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
740 update_exception_bitmap(vcpu);
741
742 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
743 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
744 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
745
746 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
747 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
748 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
749 vmcs_writel(GUEST_CS_BASE, 0xf0000);
750 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
751
752 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
753 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
754 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
755 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
756 }
757
758 #ifdef CONFIG_X86_64
759
760 static void enter_lmode(struct kvm_vcpu *vcpu)
761 {
762 u32 guest_tr_ar;
763
764 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
765 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
766 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
767 __FUNCTION__);
768 vmcs_write32(GUEST_TR_AR_BYTES,
769 (guest_tr_ar & ~AR_TYPE_MASK)
770 | AR_TYPE_BUSY_64_TSS);
771 }
772
773 vcpu->shadow_efer |= EFER_LMA;
774
775 find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
776 vmcs_write32(VM_ENTRY_CONTROLS,
777 vmcs_read32(VM_ENTRY_CONTROLS)
778 | VM_ENTRY_CONTROLS_IA32E_MASK);
779 }
780
781 static void exit_lmode(struct kvm_vcpu *vcpu)
782 {
783 vcpu->shadow_efer &= ~EFER_LMA;
784
785 vmcs_write32(VM_ENTRY_CONTROLS,
786 vmcs_read32(VM_ENTRY_CONTROLS)
787 & ~VM_ENTRY_CONTROLS_IA32E_MASK);
788 }
789
790 #endif
791
792 static void vmx_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
793 {
794 vcpu->cr0 &= KVM_GUEST_CR0_MASK;
795 vcpu->cr0 |= vmcs_readl(GUEST_CR0) & ~KVM_GUEST_CR0_MASK;
796
797 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
798 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
799 }
800
801 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
802 {
803 if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
804 enter_pmode(vcpu);
805
806 if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
807 enter_rmode(vcpu);
808
809 #ifdef CONFIG_X86_64
810 if (vcpu->shadow_efer & EFER_LME) {
811 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
812 enter_lmode(vcpu);
813 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
814 exit_lmode(vcpu);
815 }
816 #endif
817
818 vmcs_writel(CR0_READ_SHADOW, cr0);
819 vmcs_writel(GUEST_CR0,
820 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
821 vcpu->cr0 = cr0;
822 }
823
824 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
825 {
826 vmcs_writel(GUEST_CR3, cr3);
827 }
828
829 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
830 {
831 vmcs_writel(CR4_READ_SHADOW, cr4);
832 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
833 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
834 vcpu->cr4 = cr4;
835 }
836
837 #ifdef CONFIG_X86_64
838
839 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
840 {
841 struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
842
843 vcpu->shadow_efer = efer;
844 if (efer & EFER_LMA) {
845 vmcs_write32(VM_ENTRY_CONTROLS,
846 vmcs_read32(VM_ENTRY_CONTROLS) |
847 VM_ENTRY_CONTROLS_IA32E_MASK);
848 msr->data = efer;
849
850 } else {
851 vmcs_write32(VM_ENTRY_CONTROLS,
852 vmcs_read32(VM_ENTRY_CONTROLS) &
853 ~VM_ENTRY_CONTROLS_IA32E_MASK);
854
855 msr->data = efer & ~EFER_LME;
856 }
857 setup_msrs(vcpu);
858 }
859
860 #endif
861
862 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
863 {
864 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
865
866 return vmcs_readl(sf->base);
867 }
868
869 static void vmx_get_segment(struct kvm_vcpu *vcpu,
870 struct kvm_segment *var, int seg)
871 {
872 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
873 u32 ar;
874
875 var->base = vmcs_readl(sf->base);
876 var->limit = vmcs_read32(sf->limit);
877 var->selector = vmcs_read16(sf->selector);
878 ar = vmcs_read32(sf->ar_bytes);
879 if (ar & AR_UNUSABLE_MASK)
880 ar = 0;
881 var->type = ar & 15;
882 var->s = (ar >> 4) & 1;
883 var->dpl = (ar >> 5) & 3;
884 var->present = (ar >> 7) & 1;
885 var->avl = (ar >> 12) & 1;
886 var->l = (ar >> 13) & 1;
887 var->db = (ar >> 14) & 1;
888 var->g = (ar >> 15) & 1;
889 var->unusable = (ar >> 16) & 1;
890 }
891
892 static void vmx_set_segment(struct kvm_vcpu *vcpu,
893 struct kvm_segment *var, int seg)
894 {
895 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
896 u32 ar;
897
898 vmcs_writel(sf->base, var->base);
899 vmcs_write32(sf->limit, var->limit);
900 vmcs_write16(sf->selector, var->selector);
901 if (vcpu->rmode.active && var->s) {
902 /*
903 * Hack real-mode segments into vm86 compatibility.
904 */
905 if (var->base == 0xffff0000 && var->selector == 0xf000)
906 vmcs_writel(sf->base, 0xf0000);
907 ar = 0xf3;
908 } else if (var->unusable)
909 ar = 1 << 16;
910 else {
911 ar = var->type & 15;
912 ar |= (var->s & 1) << 4;
913 ar |= (var->dpl & 3) << 5;
914 ar |= (var->present & 1) << 7;
915 ar |= (var->avl & 1) << 12;
916 ar |= (var->l & 1) << 13;
917 ar |= (var->db & 1) << 14;
918 ar |= (var->g & 1) << 15;
919 }
920 if (ar == 0) /* a 0 value means unusable */
921 ar = AR_UNUSABLE_MASK;
922 vmcs_write32(sf->ar_bytes, ar);
923 }
924
925 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
926 {
927 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
928
929 *db = (ar >> 14) & 1;
930 *l = (ar >> 13) & 1;
931 }
932
933 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
934 {
935 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
936 dt->base = vmcs_readl(GUEST_IDTR_BASE);
937 }
938
939 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
940 {
941 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
942 vmcs_writel(GUEST_IDTR_BASE, dt->base);
943 }
944
945 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
946 {
947 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
948 dt->base = vmcs_readl(GUEST_GDTR_BASE);
949 }
950
951 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
952 {
953 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
954 vmcs_writel(GUEST_GDTR_BASE, dt->base);
955 }
956
957 static int init_rmode_tss(struct kvm* kvm)
958 {
959 struct page *p1, *p2, *p3;
960 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
961 char *page;
962
963 p1 = gfn_to_page(kvm, fn++);
964 p2 = gfn_to_page(kvm, fn++);
965 p3 = gfn_to_page(kvm, fn);
966
967 if (!p1 || !p2 || !p3) {
968 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
969 return 0;
970 }
971
972 page = kmap_atomic(p1, KM_USER0);
973 memset(page, 0, PAGE_SIZE);
974 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
975 kunmap_atomic(page, KM_USER0);
976
977 page = kmap_atomic(p2, KM_USER0);
978 memset(page, 0, PAGE_SIZE);
979 kunmap_atomic(page, KM_USER0);
980
981 page = kmap_atomic(p3, KM_USER0);
982 memset(page, 0, PAGE_SIZE);
983 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
984 kunmap_atomic(page, KM_USER0);
985
986 return 1;
987 }
988
989 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
990 {
991 u32 msr_high, msr_low;
992
993 rdmsr(msr, msr_low, msr_high);
994
995 val &= msr_high;
996 val |= msr_low;
997 vmcs_write32(vmcs_field, val);
998 }
999
1000 static void seg_setup(int seg)
1001 {
1002 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1003
1004 vmcs_write16(sf->selector, 0);
1005 vmcs_writel(sf->base, 0);
1006 vmcs_write32(sf->limit, 0xffff);
1007 vmcs_write32(sf->ar_bytes, 0x93);
1008 }
1009
1010 /*
1011 * Sets up the vmcs for emulated real mode.
1012 */
1013 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
1014 {
1015 u32 host_sysenter_cs;
1016 u32 junk;
1017 unsigned long a;
1018 struct descriptor_table dt;
1019 int i;
1020 int ret = 0;
1021 extern asmlinkage void kvm_vmx_return(void);
1022
1023 if (!init_rmode_tss(vcpu->kvm)) {
1024 ret = -ENOMEM;
1025 goto out;
1026 }
1027
1028 memset(vcpu->regs, 0, sizeof(vcpu->regs));
1029 vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1030 vcpu->cr8 = 0;
1031 vcpu->apic_base = 0xfee00000 |
1032 /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1033 MSR_IA32_APICBASE_ENABLE;
1034
1035 fx_init(vcpu);
1036
1037 /*
1038 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1039 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1040 */
1041 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1042 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1043 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1044 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1045
1046 seg_setup(VCPU_SREG_DS);
1047 seg_setup(VCPU_SREG_ES);
1048 seg_setup(VCPU_SREG_FS);
1049 seg_setup(VCPU_SREG_GS);
1050 seg_setup(VCPU_SREG_SS);
1051
1052 vmcs_write16(GUEST_TR_SELECTOR, 0);
1053 vmcs_writel(GUEST_TR_BASE, 0);
1054 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1055 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1056
1057 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1058 vmcs_writel(GUEST_LDTR_BASE, 0);
1059 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1060 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1061
1062 vmcs_write32(GUEST_SYSENTER_CS, 0);
1063 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1064 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1065
1066 vmcs_writel(GUEST_RFLAGS, 0x02);
1067 vmcs_writel(GUEST_RIP, 0xfff0);
1068 vmcs_writel(GUEST_RSP, 0);
1069
1070 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1071 vmcs_writel(GUEST_DR7, 0x400);
1072
1073 vmcs_writel(GUEST_GDTR_BASE, 0);
1074 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1075
1076 vmcs_writel(GUEST_IDTR_BASE, 0);
1077 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1078
1079 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1080 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1081 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1082
1083 /* I/O */
1084 vmcs_write64(IO_BITMAP_A, 0);
1085 vmcs_write64(IO_BITMAP_B, 0);
1086
1087 guest_write_tsc(0);
1088
1089 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1090
1091 /* Special registers */
1092 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1093
1094 /* Control */
1095 vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1096 PIN_BASED_VM_EXEC_CONTROL,
1097 PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
1098 | PIN_BASED_NMI_EXITING /* 20.6.1 */
1099 );
1100 vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1101 CPU_BASED_VM_EXEC_CONTROL,
1102 CPU_BASED_HLT_EXITING /* 20.6.2 */
1103 | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
1104 | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
1105 | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
1106 | CPU_BASED_MOV_DR_EXITING
1107 | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
1108 );
1109
1110 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1111 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1112 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1113 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1114
1115 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1116 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1117 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1118
1119 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1120 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1121 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1122 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1123 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1124 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1125 #ifdef CONFIG_X86_64
1126 rdmsrl(MSR_FS_BASE, a);
1127 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1128 rdmsrl(MSR_GS_BASE, a);
1129 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1130 #else
1131 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1132 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1133 #endif
1134
1135 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1136
1137 get_idt(&dt);
1138 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1139
1140
1141 vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1142
1143 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1144 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1145 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1146 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1147 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1148 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1149
1150 for (i = 0; i < NR_VMX_MSR; ++i) {
1151 u32 index = vmx_msr_index[i];
1152 u32 data_low, data_high;
1153 u64 data;
1154 int j = vcpu->nmsrs;
1155
1156 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1157 continue;
1158 if (wrmsr_safe(index, data_low, data_high) < 0)
1159 continue;
1160 data = data_low | ((u64)data_high << 32);
1161 vcpu->host_msrs[j].index = index;
1162 vcpu->host_msrs[j].reserved = 0;
1163 vcpu->host_msrs[j].data = data;
1164 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1165 #ifdef CONFIG_X86_64
1166 if (index == MSR_KERNEL_GS_BASE)
1167 msr_offset_kernel_gs_base = j;
1168 #endif
1169 ++vcpu->nmsrs;
1170 }
1171
1172 setup_msrs(vcpu);
1173
1174 vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1175 (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
1176
1177 /* 22.2.1, 20.8.1 */
1178 vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1179 VM_ENTRY_CONTROLS, 0);
1180 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1181
1182 #ifdef CONFIG_X86_64
1183 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1184 vmcs_writel(TPR_THRESHOLD, 0);
1185 #endif
1186
1187 vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1188 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1189
1190 vcpu->cr0 = 0x60000010;
1191 vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1192 vmx_set_cr4(vcpu, 0);
1193 #ifdef CONFIG_X86_64
1194 vmx_set_efer(vcpu, 0);
1195 #endif
1196
1197 return 0;
1198
1199 out:
1200 return ret;
1201 }
1202
1203 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1204 {
1205 u16 ent[2];
1206 u16 cs;
1207 u16 ip;
1208 unsigned long flags;
1209 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1210 u16 sp = vmcs_readl(GUEST_RSP);
1211 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1212
1213 if (sp > ss_limit || sp < 6 ) {
1214 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1215 __FUNCTION__,
1216 vmcs_readl(GUEST_RSP),
1217 vmcs_readl(GUEST_SS_BASE),
1218 vmcs_read32(GUEST_SS_LIMIT));
1219 return;
1220 }
1221
1222 if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1223 sizeof(ent)) {
1224 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1225 return;
1226 }
1227
1228 flags = vmcs_readl(GUEST_RFLAGS);
1229 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1230 ip = vmcs_readl(GUEST_RIP);
1231
1232
1233 if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1234 kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1235 kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1236 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1237 return;
1238 }
1239
1240 vmcs_writel(GUEST_RFLAGS, flags &
1241 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1242 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1243 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1244 vmcs_writel(GUEST_RIP, ent[0]);
1245 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1246 }
1247
1248 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1249 {
1250 int word_index = __ffs(vcpu->irq_summary);
1251 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1252 int irq = word_index * BITS_PER_LONG + bit_index;
1253
1254 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1255 if (!vcpu->irq_pending[word_index])
1256 clear_bit(word_index, &vcpu->irq_summary);
1257
1258 if (vcpu->rmode.active) {
1259 inject_rmode_irq(vcpu, irq);
1260 return;
1261 }
1262 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1263 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1264 }
1265
1266
1267 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1268 struct kvm_run *kvm_run)
1269 {
1270 u32 cpu_based_vm_exec_control;
1271
1272 vcpu->interrupt_window_open =
1273 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1274 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1275
1276 if (vcpu->interrupt_window_open &&
1277 vcpu->irq_summary &&
1278 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1279 /*
1280 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1281 */
1282 kvm_do_inject_irq(vcpu);
1283
1284 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1285 if (!vcpu->interrupt_window_open &&
1286 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1287 /*
1288 * Interrupts blocked. Wait for unblock.
1289 */
1290 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1291 else
1292 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1293 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1294 }
1295
1296 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1297 {
1298 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1299
1300 set_debugreg(dbg->bp[0], 0);
1301 set_debugreg(dbg->bp[1], 1);
1302 set_debugreg(dbg->bp[2], 2);
1303 set_debugreg(dbg->bp[3], 3);
1304
1305 if (dbg->singlestep) {
1306 unsigned long flags;
1307
1308 flags = vmcs_readl(GUEST_RFLAGS);
1309 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1310 vmcs_writel(GUEST_RFLAGS, flags);
1311 }
1312 }
1313
1314 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1315 int vec, u32 err_code)
1316 {
1317 if (!vcpu->rmode.active)
1318 return 0;
1319
1320 if (vec == GP_VECTOR && err_code == 0)
1321 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1322 return 1;
1323 return 0;
1324 }
1325
1326 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1327 {
1328 u32 intr_info, error_code;
1329 unsigned long cr2, rip;
1330 u32 vect_info;
1331 enum emulation_result er;
1332 int r;
1333
1334 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1335 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1336
1337 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1338 !is_page_fault(intr_info)) {
1339 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1340 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1341 }
1342
1343 if (is_external_interrupt(vect_info)) {
1344 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1345 set_bit(irq, vcpu->irq_pending);
1346 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1347 }
1348
1349 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1350 asm ("int $2");
1351 return 1;
1352 }
1353 error_code = 0;
1354 rip = vmcs_readl(GUEST_RIP);
1355 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1356 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1357 if (is_page_fault(intr_info)) {
1358 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1359
1360 spin_lock(&vcpu->kvm->lock);
1361 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1362 if (r < 0) {
1363 spin_unlock(&vcpu->kvm->lock);
1364 return r;
1365 }
1366 if (!r) {
1367 spin_unlock(&vcpu->kvm->lock);
1368 return 1;
1369 }
1370
1371 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1372 spin_unlock(&vcpu->kvm->lock);
1373
1374 switch (er) {
1375 case EMULATE_DONE:
1376 return 1;
1377 case EMULATE_DO_MMIO:
1378 ++kvm_stat.mmio_exits;
1379 kvm_run->exit_reason = KVM_EXIT_MMIO;
1380 return 0;
1381 case EMULATE_FAIL:
1382 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1383 break;
1384 default:
1385 BUG();
1386 }
1387 }
1388
1389 if (vcpu->rmode.active &&
1390 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1391 error_code))
1392 return 1;
1393
1394 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1395 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1396 return 0;
1397 }
1398 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1399 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1400 kvm_run->ex.error_code = error_code;
1401 return 0;
1402 }
1403
1404 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1405 struct kvm_run *kvm_run)
1406 {
1407 ++kvm_stat.irq_exits;
1408 return 1;
1409 }
1410
1411 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1412 {
1413 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1414 return 0;
1415 }
1416
1417 static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
1418 {
1419 u64 inst;
1420 gva_t rip;
1421 int countr_size;
1422 int i, n;
1423
1424 if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1425 countr_size = 2;
1426 } else {
1427 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1428
1429 countr_size = (cs_ar & AR_L_MASK) ? 8:
1430 (cs_ar & AR_DB_MASK) ? 4: 2;
1431 }
1432
1433 rip = vmcs_readl(GUEST_RIP);
1434 if (countr_size != 8)
1435 rip += vmcs_readl(GUEST_CS_BASE);
1436
1437 n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1438
1439 for (i = 0; i < n; i++) {
1440 switch (((u8*)&inst)[i]) {
1441 case 0xf0:
1442 case 0xf2:
1443 case 0xf3:
1444 case 0x2e:
1445 case 0x36:
1446 case 0x3e:
1447 case 0x26:
1448 case 0x64:
1449 case 0x65:
1450 case 0x66:
1451 break;
1452 case 0x67:
1453 countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1454 default:
1455 goto done;
1456 }
1457 }
1458 return 0;
1459 done:
1460 countr_size *= 8;
1461 *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1462 //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
1463 return 1;
1464 }
1465
1466 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1467 {
1468 u64 exit_qualification;
1469 int size, down, in, string, rep;
1470 unsigned port;
1471 unsigned long count;
1472 gva_t address;
1473
1474 ++kvm_stat.io_exits;
1475 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1476 in = (exit_qualification & 8) != 0;
1477 size = (exit_qualification & 7) + 1;
1478 string = (exit_qualification & 16) != 0;
1479 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1480 count = 1;
1481 rep = (exit_qualification & 32) != 0;
1482 port = exit_qualification >> 16;
1483 address = 0;
1484 if (string) {
1485 if (rep && !get_io_count(vcpu, &count))
1486 return 1;
1487 address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1488 }
1489 return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1490 address, rep, port);
1491 }
1492
1493 static void
1494 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1495 {
1496 /*
1497 * Patch in the VMCALL instruction:
1498 */
1499 hypercall[0] = 0x0f;
1500 hypercall[1] = 0x01;
1501 hypercall[2] = 0xc1;
1502 hypercall[3] = 0xc3;
1503 }
1504
1505 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1506 {
1507 u64 exit_qualification;
1508 int cr;
1509 int reg;
1510
1511 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1512 cr = exit_qualification & 15;
1513 reg = (exit_qualification >> 8) & 15;
1514 switch ((exit_qualification >> 4) & 3) {
1515 case 0: /* mov to cr */
1516 switch (cr) {
1517 case 0:
1518 vcpu_load_rsp_rip(vcpu);
1519 set_cr0(vcpu, vcpu->regs[reg]);
1520 skip_emulated_instruction(vcpu);
1521 return 1;
1522 case 3:
1523 vcpu_load_rsp_rip(vcpu);
1524 set_cr3(vcpu, vcpu->regs[reg]);
1525 skip_emulated_instruction(vcpu);
1526 return 1;
1527 case 4:
1528 vcpu_load_rsp_rip(vcpu);
1529 set_cr4(vcpu, vcpu->regs[reg]);
1530 skip_emulated_instruction(vcpu);
1531 return 1;
1532 case 8:
1533 vcpu_load_rsp_rip(vcpu);
1534 set_cr8(vcpu, vcpu->regs[reg]);
1535 skip_emulated_instruction(vcpu);
1536 return 1;
1537 };
1538 break;
1539 case 1: /*mov from cr*/
1540 switch (cr) {
1541 case 3:
1542 vcpu_load_rsp_rip(vcpu);
1543 vcpu->regs[reg] = vcpu->cr3;
1544 vcpu_put_rsp_rip(vcpu);
1545 skip_emulated_instruction(vcpu);
1546 return 1;
1547 case 8:
1548 printk(KERN_DEBUG "handle_cr: read CR8 "
1549 "cpu erratum AA15\n");
1550 vcpu_load_rsp_rip(vcpu);
1551 vcpu->regs[reg] = vcpu->cr8;
1552 vcpu_put_rsp_rip(vcpu);
1553 skip_emulated_instruction(vcpu);
1554 return 1;
1555 }
1556 break;
1557 case 3: /* lmsw */
1558 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1559
1560 skip_emulated_instruction(vcpu);
1561 return 1;
1562 default:
1563 break;
1564 }
1565 kvm_run->exit_reason = 0;
1566 printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1567 (int)(exit_qualification >> 4) & 3, cr);
1568 return 0;
1569 }
1570
1571 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1572 {
1573 u64 exit_qualification;
1574 unsigned long val;
1575 int dr, reg;
1576
1577 /*
1578 * FIXME: this code assumes the host is debugging the guest.
1579 * need to deal with guest debugging itself too.
1580 */
1581 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1582 dr = exit_qualification & 7;
1583 reg = (exit_qualification >> 8) & 15;
1584 vcpu_load_rsp_rip(vcpu);
1585 if (exit_qualification & 16) {
1586 /* mov from dr */
1587 switch (dr) {
1588 case 6:
1589 val = 0xffff0ff0;
1590 break;
1591 case 7:
1592 val = 0x400;
1593 break;
1594 default:
1595 val = 0;
1596 }
1597 vcpu->regs[reg] = val;
1598 } else {
1599 /* mov to dr */
1600 }
1601 vcpu_put_rsp_rip(vcpu);
1602 skip_emulated_instruction(vcpu);
1603 return 1;
1604 }
1605
1606 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1607 {
1608 kvm_emulate_cpuid(vcpu);
1609 return 1;
1610 }
1611
1612 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1613 {
1614 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1615 u64 data;
1616
1617 if (vmx_get_msr(vcpu, ecx, &data)) {
1618 vmx_inject_gp(vcpu, 0);
1619 return 1;
1620 }
1621
1622 /* FIXME: handling of bits 32:63 of rax, rdx */
1623 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1624 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1625 skip_emulated_instruction(vcpu);
1626 return 1;
1627 }
1628
1629 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1630 {
1631 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1632 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1633 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1634
1635 if (vmx_set_msr(vcpu, ecx, data) != 0) {
1636 vmx_inject_gp(vcpu, 0);
1637 return 1;
1638 }
1639
1640 skip_emulated_instruction(vcpu);
1641 return 1;
1642 }
1643
1644 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1645 struct kvm_run *kvm_run)
1646 {
1647 kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1648 kvm_run->cr8 = vcpu->cr8;
1649 kvm_run->apic_base = vcpu->apic_base;
1650 kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1651 vcpu->irq_summary == 0);
1652 }
1653
1654 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1655 struct kvm_run *kvm_run)
1656 {
1657 /*
1658 * If the user space waits to inject interrupts, exit as soon as
1659 * possible
1660 */
1661 if (kvm_run->request_interrupt_window &&
1662 !vcpu->irq_summary) {
1663 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1664 ++kvm_stat.irq_window_exits;
1665 return 0;
1666 }
1667 return 1;
1668 }
1669
1670 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1671 {
1672 skip_emulated_instruction(vcpu);
1673 if (vcpu->irq_summary)
1674 return 1;
1675
1676 kvm_run->exit_reason = KVM_EXIT_HLT;
1677 ++kvm_stat.halt_exits;
1678 return 0;
1679 }
1680
1681 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1682 {
1683 skip_emulated_instruction(vcpu);
1684 return kvm_hypercall(vcpu, kvm_run);
1685 }
1686
1687 /*
1688 * The exit handlers return 1 if the exit was handled fully and guest execution
1689 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
1690 * to be done to userspace and return 0.
1691 */
1692 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1693 struct kvm_run *kvm_run) = {
1694 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
1695 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
1696 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
1697 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
1698 [EXIT_REASON_CR_ACCESS] = handle_cr,
1699 [EXIT_REASON_DR_ACCESS] = handle_dr,
1700 [EXIT_REASON_CPUID] = handle_cpuid,
1701 [EXIT_REASON_MSR_READ] = handle_rdmsr,
1702 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
1703 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
1704 [EXIT_REASON_HLT] = handle_halt,
1705 [EXIT_REASON_VMCALL] = handle_vmcall,
1706 };
1707
1708 static const int kvm_vmx_max_exit_handlers =
1709 sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1710
1711 /*
1712 * The guest has exited. See if we can fix it or if we need userspace
1713 * assistance.
1714 */
1715 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1716 {
1717 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1718 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1719
1720 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1721 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1722 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1723 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1724 kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1725 if (exit_reason < kvm_vmx_max_exit_handlers
1726 && kvm_vmx_exit_handlers[exit_reason])
1727 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1728 else {
1729 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1730 kvm_run->hw.hardware_exit_reason = exit_reason;
1731 }
1732 return 0;
1733 }
1734
1735 /*
1736 * Check if userspace requested an interrupt window, and that the
1737 * interrupt window is open.
1738 *
1739 * No need to exit to userspace if we already have an interrupt queued.
1740 */
1741 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1742 struct kvm_run *kvm_run)
1743 {
1744 return (!vcpu->irq_summary &&
1745 kvm_run->request_interrupt_window &&
1746 vcpu->interrupt_window_open &&
1747 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1748 }
1749
1750 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1751 {
1752 u8 fail;
1753 u16 fs_sel, gs_sel, ldt_sel;
1754 int fs_gs_ldt_reload_needed;
1755 int r;
1756
1757 again:
1758 /*
1759 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1760 * allow segment selectors with cpl > 0 or ti == 1.
1761 */
1762 fs_sel = read_fs();
1763 gs_sel = read_gs();
1764 ldt_sel = read_ldt();
1765 fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1766 if (!fs_gs_ldt_reload_needed) {
1767 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1768 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1769 } else {
1770 vmcs_write16(HOST_FS_SELECTOR, 0);
1771 vmcs_write16(HOST_GS_SELECTOR, 0);
1772 }
1773
1774 #ifdef CONFIG_X86_64
1775 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1776 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1777 #else
1778 vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1779 vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1780 #endif
1781
1782 if (!vcpu->mmio_read_completed)
1783 do_interrupt_requests(vcpu, kvm_run);
1784
1785 if (vcpu->guest_debug.enabled)
1786 kvm_guest_debug_pre(vcpu);
1787
1788 fx_save(vcpu->host_fx_image);
1789 fx_restore(vcpu->guest_fx_image);
1790
1791 #ifdef CONFIG_X86_64
1792 if (is_long_mode(vcpu)) {
1793 save_msrs(vcpu->host_msrs + msr_offset_kernel_gs_base, 1);
1794 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1795 }
1796 #endif
1797
1798 asm (
1799 /* Store host registers */
1800 "pushf \n\t"
1801 #ifdef CONFIG_X86_64
1802 "push %%rax; push %%rbx; push %%rdx;"
1803 "push %%rsi; push %%rdi; push %%rbp;"
1804 "push %%r8; push %%r9; push %%r10; push %%r11;"
1805 "push %%r12; push %%r13; push %%r14; push %%r15;"
1806 "push %%rcx \n\t"
1807 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1808 #else
1809 "pusha; push %%ecx \n\t"
1810 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1811 #endif
1812 /* Check if vmlaunch of vmresume is needed */
1813 "cmp $0, %1 \n\t"
1814 /* Load guest registers. Don't clobber flags. */
1815 #ifdef CONFIG_X86_64
1816 "mov %c[cr2](%3), %%rax \n\t"
1817 "mov %%rax, %%cr2 \n\t"
1818 "mov %c[rax](%3), %%rax \n\t"
1819 "mov %c[rbx](%3), %%rbx \n\t"
1820 "mov %c[rdx](%3), %%rdx \n\t"
1821 "mov %c[rsi](%3), %%rsi \n\t"
1822 "mov %c[rdi](%3), %%rdi \n\t"
1823 "mov %c[rbp](%3), %%rbp \n\t"
1824 "mov %c[r8](%3), %%r8 \n\t"
1825 "mov %c[r9](%3), %%r9 \n\t"
1826 "mov %c[r10](%3), %%r10 \n\t"
1827 "mov %c[r11](%3), %%r11 \n\t"
1828 "mov %c[r12](%3), %%r12 \n\t"
1829 "mov %c[r13](%3), %%r13 \n\t"
1830 "mov %c[r14](%3), %%r14 \n\t"
1831 "mov %c[r15](%3), %%r15 \n\t"
1832 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1833 #else
1834 "mov %c[cr2](%3), %%eax \n\t"
1835 "mov %%eax, %%cr2 \n\t"
1836 "mov %c[rax](%3), %%eax \n\t"
1837 "mov %c[rbx](%3), %%ebx \n\t"
1838 "mov %c[rdx](%3), %%edx \n\t"
1839 "mov %c[rsi](%3), %%esi \n\t"
1840 "mov %c[rdi](%3), %%edi \n\t"
1841 "mov %c[rbp](%3), %%ebp \n\t"
1842 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1843 #endif
1844 /* Enter guest mode */
1845 "jne launched \n\t"
1846 ASM_VMX_VMLAUNCH "\n\t"
1847 "jmp kvm_vmx_return \n\t"
1848 "launched: " ASM_VMX_VMRESUME "\n\t"
1849 ".globl kvm_vmx_return \n\t"
1850 "kvm_vmx_return: "
1851 /* Save guest registers, load host registers, keep flags */
1852 #ifdef CONFIG_X86_64
1853 "xchg %3, (%%rsp) \n\t"
1854 "mov %%rax, %c[rax](%3) \n\t"
1855 "mov %%rbx, %c[rbx](%3) \n\t"
1856 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
1857 "mov %%rdx, %c[rdx](%3) \n\t"
1858 "mov %%rsi, %c[rsi](%3) \n\t"
1859 "mov %%rdi, %c[rdi](%3) \n\t"
1860 "mov %%rbp, %c[rbp](%3) \n\t"
1861 "mov %%r8, %c[r8](%3) \n\t"
1862 "mov %%r9, %c[r9](%3) \n\t"
1863 "mov %%r10, %c[r10](%3) \n\t"
1864 "mov %%r11, %c[r11](%3) \n\t"
1865 "mov %%r12, %c[r12](%3) \n\t"
1866 "mov %%r13, %c[r13](%3) \n\t"
1867 "mov %%r14, %c[r14](%3) \n\t"
1868 "mov %%r15, %c[r15](%3) \n\t"
1869 "mov %%cr2, %%rax \n\t"
1870 "mov %%rax, %c[cr2](%3) \n\t"
1871 "mov (%%rsp), %3 \n\t"
1872
1873 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1874 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1875 "pop %%rbp; pop %%rdi; pop %%rsi;"
1876 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
1877 #else
1878 "xchg %3, (%%esp) \n\t"
1879 "mov %%eax, %c[rax](%3) \n\t"
1880 "mov %%ebx, %c[rbx](%3) \n\t"
1881 "pushl (%%esp); popl %c[rcx](%3) \n\t"
1882 "mov %%edx, %c[rdx](%3) \n\t"
1883 "mov %%esi, %c[rsi](%3) \n\t"
1884 "mov %%edi, %c[rdi](%3) \n\t"
1885 "mov %%ebp, %c[rbp](%3) \n\t"
1886 "mov %%cr2, %%eax \n\t"
1887 "mov %%eax, %c[cr2](%3) \n\t"
1888 "mov (%%esp), %3 \n\t"
1889
1890 "pop %%ecx; popa \n\t"
1891 #endif
1892 "setbe %0 \n\t"
1893 "popf \n\t"
1894 : "=q" (fail)
1895 : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1896 "c"(vcpu),
1897 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1898 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1899 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1900 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1901 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1902 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1903 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1904 #ifdef CONFIG_X86_64
1905 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1906 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1907 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1908 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1909 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1910 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1911 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1912 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1913 #endif
1914 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1915 : "cc", "memory" );
1916
1917 /*
1918 * Reload segment selectors ASAP. (it's needed for a functional
1919 * kernel: x86 relies on having __KERNEL_PDA in %fs and x86_64
1920 * relies on having 0 in %gs for the CPU PDA to work.)
1921 */
1922 if (fs_gs_ldt_reload_needed) {
1923 load_ldt(ldt_sel);
1924 load_fs(fs_sel);
1925 /*
1926 * If we have to reload gs, we must take care to
1927 * preserve our gs base.
1928 */
1929 local_irq_disable();
1930 load_gs(gs_sel);
1931 #ifdef CONFIG_X86_64
1932 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1933 #endif
1934 local_irq_enable();
1935
1936 reload_tss();
1937 }
1938 ++kvm_stat.exits;
1939
1940 #ifdef CONFIG_X86_64
1941 if (is_long_mode(vcpu)) {
1942 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1943 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1944 }
1945 #endif
1946
1947 fx_save(vcpu->guest_fx_image);
1948 fx_restore(vcpu->host_fx_image);
1949 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
1950
1951 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1952
1953 if (fail) {
1954 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1955 kvm_run->fail_entry.hardware_entry_failure_reason
1956 = vmcs_read32(VM_INSTRUCTION_ERROR);
1957 r = 0;
1958 } else {
1959 /*
1960 * Profile KVM exit RIPs:
1961 */
1962 if (unlikely(prof_on == KVM_PROFILING))
1963 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
1964
1965 vcpu->launched = 1;
1966 r = kvm_handle_exit(kvm_run, vcpu);
1967 if (r > 0) {
1968 /* Give scheduler a change to reschedule. */
1969 if (signal_pending(current)) {
1970 ++kvm_stat.signal_exits;
1971 post_kvm_run_save(vcpu, kvm_run);
1972 kvm_run->exit_reason = KVM_EXIT_INTR;
1973 return -EINTR;
1974 }
1975
1976 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1977 ++kvm_stat.request_irq_exits;
1978 post_kvm_run_save(vcpu, kvm_run);
1979 kvm_run->exit_reason = KVM_EXIT_INTR;
1980 return -EINTR;
1981 }
1982
1983 kvm_resched(vcpu);
1984 goto again;
1985 }
1986 }
1987
1988 post_kvm_run_save(vcpu, kvm_run);
1989 return r;
1990 }
1991
1992 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1993 {
1994 vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1995 }
1996
1997 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1998 unsigned long addr,
1999 u32 err_code)
2000 {
2001 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2002
2003 ++kvm_stat.pf_guest;
2004
2005 if (is_page_fault(vect_info)) {
2006 printk(KERN_DEBUG "inject_page_fault: "
2007 "double fault 0x%lx @ 0x%lx\n",
2008 addr, vmcs_readl(GUEST_RIP));
2009 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2010 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2011 DF_VECTOR |
2012 INTR_TYPE_EXCEPTION |
2013 INTR_INFO_DELIEVER_CODE_MASK |
2014 INTR_INFO_VALID_MASK);
2015 return;
2016 }
2017 vcpu->cr2 = addr;
2018 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2019 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2020 PF_VECTOR |
2021 INTR_TYPE_EXCEPTION |
2022 INTR_INFO_DELIEVER_CODE_MASK |
2023 INTR_INFO_VALID_MASK);
2024
2025 }
2026
2027 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2028 {
2029 if (vcpu->vmcs) {
2030 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
2031 free_vmcs(vcpu->vmcs);
2032 vcpu->vmcs = NULL;
2033 }
2034 }
2035
2036 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2037 {
2038 vmx_free_vmcs(vcpu);
2039 }
2040
2041 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
2042 {
2043 struct vmcs *vmcs;
2044
2045 vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2046 if (!vcpu->guest_msrs)
2047 return -ENOMEM;
2048
2049 vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2050 if (!vcpu->host_msrs)
2051 goto out_free_guest_msrs;
2052
2053 vmcs = alloc_vmcs();
2054 if (!vmcs)
2055 goto out_free_msrs;
2056
2057 vmcs_clear(vmcs);
2058 vcpu->vmcs = vmcs;
2059 vcpu->launched = 0;
2060
2061 return 0;
2062
2063 out_free_msrs:
2064 kfree(vcpu->host_msrs);
2065 vcpu->host_msrs = NULL;
2066
2067 out_free_guest_msrs:
2068 kfree(vcpu->guest_msrs);
2069 vcpu->guest_msrs = NULL;
2070
2071 return -ENOMEM;
2072 }
2073
2074 static struct kvm_arch_ops vmx_arch_ops = {
2075 .cpu_has_kvm_support = cpu_has_kvm_support,
2076 .disabled_by_bios = vmx_disabled_by_bios,
2077 .hardware_setup = hardware_setup,
2078 .hardware_unsetup = hardware_unsetup,
2079 .hardware_enable = hardware_enable,
2080 .hardware_disable = hardware_disable,
2081
2082 .vcpu_create = vmx_create_vcpu,
2083 .vcpu_free = vmx_free_vcpu,
2084
2085 .vcpu_load = vmx_vcpu_load,
2086 .vcpu_put = vmx_vcpu_put,
2087 .vcpu_decache = vmx_vcpu_decache,
2088
2089 .set_guest_debug = set_guest_debug,
2090 .get_msr = vmx_get_msr,
2091 .set_msr = vmx_set_msr,
2092 .get_segment_base = vmx_get_segment_base,
2093 .get_segment = vmx_get_segment,
2094 .set_segment = vmx_set_segment,
2095 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2096 .decache_cr0_cr4_guest_bits = vmx_decache_cr0_cr4_guest_bits,
2097 .set_cr0 = vmx_set_cr0,
2098 .set_cr3 = vmx_set_cr3,
2099 .set_cr4 = vmx_set_cr4,
2100 #ifdef CONFIG_X86_64
2101 .set_efer = vmx_set_efer,
2102 #endif
2103 .get_idt = vmx_get_idt,
2104 .set_idt = vmx_set_idt,
2105 .get_gdt = vmx_get_gdt,
2106 .set_gdt = vmx_set_gdt,
2107 .cache_regs = vcpu_load_rsp_rip,
2108 .decache_regs = vcpu_put_rsp_rip,
2109 .get_rflags = vmx_get_rflags,
2110 .set_rflags = vmx_set_rflags,
2111
2112 .tlb_flush = vmx_flush_tlb,
2113 .inject_page_fault = vmx_inject_page_fault,
2114
2115 .inject_gp = vmx_inject_gp,
2116
2117 .run = vmx_vcpu_run,
2118 .skip_emulated_instruction = skip_emulated_instruction,
2119 .vcpu_setup = vmx_vcpu_setup,
2120 .patch_hypercall = vmx_patch_hypercall,
2121 };
2122
2123 static int __init vmx_init(void)
2124 {
2125 return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2126 }
2127
2128 static void __exit vmx_exit(void)
2129 {
2130 kvm_exit_arch();
2131 }
2132
2133 module_init(vmx_init)
2134 module_exit(vmx_exit)
This page took 0.11129 seconds and 6 git commands to generate.