Move i386 part of core.c to x86/core.c.
[deliverable/linux.git] / drivers / lguest / lg.h
1 #ifndef _LGUEST_H
2 #define _LGUEST_H
3
4 #ifndef __ASSEMBLY__
5 #include <linux/types.h>
6 #include <linux/init.h>
7 #include <linux/stringify.h>
8 #include <linux/futex.h>
9 #include <linux/lguest.h>
10 #include <linux/lguest_launcher.h>
11 #include <linux/wait.h>
12 #include <linux/err.h>
13 #include <asm/semaphore.h>
14
15 #include <asm/lguest.h>
16
17 void free_pagetables(void);
18 int init_pagetables(struct page **switcher_page, unsigned int pages);
19
20 struct lguest_dma_info
21 {
22 struct list_head list;
23 union futex_key key;
24 unsigned long dmas;
25 struct lguest *owner;
26 u16 next_dma;
27 u16 num_dmas;
28 u8 interrupt; /* 0 when not registered */
29 };
30
31 /*H:310 The page-table code owes a great debt of gratitude to Andi Kleen. He
32 * reviewed the original code which used "u32" for all page table entries, and
33 * insisted that it would be far clearer with explicit typing. I thought it
34 * was overkill, but he was right: it is much clearer than it was before.
35 *
36 * We have separate types for the Guest's ptes & pgds and the shadow ptes &
37 * pgds. There's already a Linux type for these (pte_t and pgd_t) but they
38 * change depending on kernel config options (PAE). */
39
40 /* Each entry is identical: lower 12 bits of flags and upper 20 bits for the
41 * "page frame number" (0 == first physical page, etc). They are different
42 * types so the compiler will warn us if we mix them improperly. */
43 typedef union {
44 struct { unsigned flags:12, pfn:20; };
45 struct { unsigned long val; } raw;
46 } spgd_t;
47 typedef union {
48 struct { unsigned flags:12, pfn:20; };
49 struct { unsigned long val; } raw;
50 } spte_t;
51 typedef union {
52 struct { unsigned flags:12, pfn:20; };
53 struct { unsigned long val; } raw;
54 } gpgd_t;
55 typedef union {
56 struct { unsigned flags:12, pfn:20; };
57 struct { unsigned long val; } raw;
58 } gpte_t;
59
60 /* We have two convenient macros to convert a "raw" value as handed to us by
61 * the Guest into the correct Guest PGD or PTE type. */
62 #define mkgpte(_val) ((gpte_t){.raw.val = _val})
63 #define mkgpgd(_val) ((gpgd_t){.raw.val = _val})
64 /*:*/
65
66 struct pgdir
67 {
68 unsigned long cr3;
69 spgd_t *pgdir;
70 };
71
72 /* We have two pages shared with guests, per cpu. */
73 struct lguest_pages
74 {
75 /* This is the stack page mapped rw in guest */
76 char spare[PAGE_SIZE - sizeof(struct lguest_regs)];
77 struct lguest_regs regs;
78
79 /* This is the host state & guest descriptor page, ro in guest */
80 struct lguest_ro_state state;
81 } __attribute__((aligned(PAGE_SIZE)));
82
83 #define CHANGED_IDT 1
84 #define CHANGED_GDT 2
85 #define CHANGED_GDT_TLS 4 /* Actually a subset of CHANGED_GDT */
86 #define CHANGED_ALL 3
87
88 /* The private info the thread maintains about the guest. */
89 struct lguest
90 {
91 /* At end of a page shared mapped over lguest_pages in guest. */
92 unsigned long regs_page;
93 struct lguest_regs *regs;
94 struct lguest_data __user *lguest_data;
95 struct task_struct *tsk;
96 struct mm_struct *mm; /* == tsk->mm, but that becomes NULL on exit */
97 u32 pfn_limit;
98 /* This provides the offset to the base of guest-physical
99 * memory in the Launcher. */
100 void __user *mem_base;
101 u32 page_offset;
102 u32 cr2;
103 int halted;
104 int ts;
105 u32 next_hcall;
106 u32 esp1;
107 u8 ss1;
108
109 /* Do we need to stop what we're doing and return to userspace? */
110 int break_out;
111 wait_queue_head_t break_wq;
112
113 /* Bitmap of what has changed: see CHANGED_* above. */
114 int changed;
115 struct lguest_pages *last_pages;
116
117 /* We keep a small number of these. */
118 u32 pgdidx;
119 struct pgdir pgdirs[4];
120
121 /* Cached wakeup: we hold a reference to this task. */
122 struct task_struct *wake;
123
124 unsigned long noirq_start, noirq_end;
125 int dma_is_pending;
126 unsigned long pending_dma; /* struct lguest_dma */
127 unsigned long pending_key; /* address they're sending to */
128
129 unsigned int stack_pages;
130 u32 tsc_khz;
131
132 struct lguest_dma_info dma[LGUEST_MAX_DMA];
133
134 /* Dead? */
135 const char *dead;
136
137 struct lguest_arch arch;
138
139 /* Virtual clock device */
140 struct hrtimer hrt;
141
142 /* Pending virtual interrupts */
143 DECLARE_BITMAP(irqs_pending, LGUEST_IRQS);
144 };
145
146 extern struct mutex lguest_lock;
147
148 /* core.c: */
149 u32 lgread_u32(struct lguest *lg, unsigned long addr);
150 void lgwrite_u32(struct lguest *lg, unsigned long addr, u32 val);
151 void lgread(struct lguest *lg, void *buf, unsigned long addr, unsigned len);
152 void lgwrite(struct lguest *lg, unsigned long, const void *buf, unsigned len);
153 int lguest_address_ok(const struct lguest *lg,
154 unsigned long addr, unsigned long len);
155 int run_guest(struct lguest *lg, unsigned long __user *user);
156
157
158 /* interrupts_and_traps.c: */
159 void maybe_do_interrupt(struct lguest *lg);
160 int deliver_trap(struct lguest *lg, unsigned int num);
161 void load_guest_idt_entry(struct lguest *lg, unsigned int i, u32 low, u32 hi);
162 void guest_set_stack(struct lguest *lg, u32 seg, u32 esp, unsigned int pages);
163 void pin_stack_pages(struct lguest *lg);
164 void setup_default_idt_entries(struct lguest_ro_state *state,
165 const unsigned long *def);
166 void copy_traps(const struct lguest *lg, struct desc_struct *idt,
167 const unsigned long *def);
168 void guest_set_clockevent(struct lguest *lg, unsigned long delta);
169 void init_clockdev(struct lguest *lg);
170
171 /* segments.c: */
172 void setup_default_gdt_entries(struct lguest_ro_state *state);
173 void setup_guest_gdt(struct lguest *lg);
174 void load_guest_gdt(struct lguest *lg, unsigned long table, u32 num);
175 void guest_load_tls(struct lguest *lg, unsigned long tls_array);
176 void copy_gdt(const struct lguest *lg, struct desc_struct *gdt);
177 void copy_gdt_tls(const struct lguest *lg, struct desc_struct *gdt);
178
179 /* page_tables.c: */
180 int init_guest_pagetable(struct lguest *lg, unsigned long pgtable);
181 void free_guest_pagetable(struct lguest *lg);
182 void guest_new_pagetable(struct lguest *lg, unsigned long pgtable);
183 void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 i);
184 void guest_pagetable_clear_all(struct lguest *lg);
185 void guest_pagetable_flush_user(struct lguest *lg);
186 void guest_set_pte(struct lguest *lg, unsigned long cr3,
187 unsigned long vaddr, gpte_t val);
188 void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages);
189 int demand_page(struct lguest *info, unsigned long cr2, int errcode);
190 void pin_page(struct lguest *lg, unsigned long vaddr);
191
192 /* <arch>/core.c: */
193 void lguest_arch_host_init(void);
194 void lguest_arch_host_fini(void);
195 void lguest_arch_run_guest(struct lguest *lg);
196 void lguest_arch_handle_trap(struct lguest *lg);
197
198 /* <arch>/switcher.S: */
199 extern char start_switcher_text[], end_switcher_text[], switch_to_guest[];
200
201 /* lguest_user.c: */
202 int lguest_device_init(void);
203 void lguest_device_remove(void);
204
205 /* io.c: */
206 void lguest_io_init(void);
207 int bind_dma(struct lguest *lg,
208 unsigned long key, unsigned long udma, u16 numdmas, u8 interrupt);
209 void send_dma(struct lguest *info, unsigned long key, unsigned long udma);
210 void release_all_dma(struct lguest *lg);
211 unsigned long get_dma_buffer(struct lguest *lg, unsigned long key,
212 unsigned long *interrupt);
213
214 /* hypercalls.c: */
215 void do_hypercalls(struct lguest *lg);
216 void write_timestamp(struct lguest *lg);
217
218 /*L:035
219 * Let's step aside for the moment, to study one important routine that's used
220 * widely in the Host code.
221 *
222 * There are many cases where the Guest does something invalid, like pass crap
223 * to a hypercall. Since only the Guest kernel can make hypercalls, it's quite
224 * acceptable to simply terminate the Guest and give the Launcher a nicely
225 * formatted reason. It's also simpler for the Guest itself, which doesn't
226 * need to check most hypercalls for "success"; if you're still running, it
227 * succeeded.
228 *
229 * Once this is called, the Guest will never run again, so most Host code can
230 * call this then continue as if nothing had happened. This means many
231 * functions don't have to explicitly return an error code, which keeps the
232 * code simple.
233 *
234 * It also means that this can be called more than once: only the first one is
235 * remembered. The only trick is that we still need to kill the Guest even if
236 * we can't allocate memory to store the reason. Linux has a neat way of
237 * packing error codes into invalid pointers, so we use that here.
238 *
239 * Like any macro which uses an "if", it is safely wrapped in a run-once "do {
240 * } while(0)".
241 */
242 #define kill_guest(lg, fmt...) \
243 do { \
244 if (!(lg)->dead) { \
245 (lg)->dead = kasprintf(GFP_ATOMIC, fmt); \
246 if (!(lg)->dead) \
247 (lg)->dead = ERR_PTR(-ENOMEM); \
248 } \
249 } while(0)
250 /* (End of aside) :*/
251
252 static inline unsigned long guest_pa(struct lguest *lg, unsigned long vaddr)
253 {
254 return vaddr - lg->page_offset;
255 }
256 #endif /* __ASSEMBLY__ */
257 #endif /* _LGUEST_H */
This page took 0.05193 seconds and 6 git commands to generate.