lguest: fix comment style
[deliverable/linux.git] / drivers / lguest / lguest_user.c
1 /*P:200
2 * This contains all the /dev/lguest code, whereby the userspace launcher
3 * controls and communicates with the Guest. For example, the first write will
4 * tell us the Guest's memory layout, pagetable, entry point and kernel address
5 * offset. A read will run the Guest until something happens, such as a signal
6 * or the Guest doing a NOTIFY out to the Launcher.
7 :*/
8 #include <linux/uaccess.h>
9 #include <linux/miscdevice.h>
10 #include <linux/fs.h>
11 #include <linux/sched.h>
12 #include <linux/eventfd.h>
13 #include <linux/file.h>
14 #include "lg.h"
15
16 bool send_notify_to_eventfd(struct lg_cpu *cpu)
17 {
18 unsigned int i;
19 struct lg_eventfd_map *map;
20
21 /* lg->eventfds is RCU-protected */
22 rcu_read_lock();
23 map = rcu_dereference(cpu->lg->eventfds);
24 for (i = 0; i < map->num; i++) {
25 if (map->map[i].addr == cpu->pending_notify) {
26 eventfd_signal(map->map[i].event, 1);
27 cpu->pending_notify = 0;
28 break;
29 }
30 }
31 rcu_read_unlock();
32 return cpu->pending_notify == 0;
33 }
34
35 static int add_eventfd(struct lguest *lg, unsigned long addr, int fd)
36 {
37 struct lg_eventfd_map *new, *old = lg->eventfds;
38
39 if (!addr)
40 return -EINVAL;
41
42 /*
43 * Replace the old array with the new one, carefully: others can
44 * be accessing it at the same time.
45 */
46 new = kmalloc(sizeof(*new) + sizeof(new->map[0]) * (old->num + 1),
47 GFP_KERNEL);
48 if (!new)
49 return -ENOMEM;
50
51 /* First make identical copy. */
52 memcpy(new->map, old->map, sizeof(old->map[0]) * old->num);
53 new->num = old->num;
54
55 /* Now append new entry. */
56 new->map[new->num].addr = addr;
57 new->map[new->num].event = eventfd_ctx_fdget(fd);
58 if (IS_ERR(new->map[new->num].event)) {
59 int err = PTR_ERR(new->map[new->num].event);
60 kfree(new);
61 return err;
62 }
63 new->num++;
64
65 /* Now put new one in place. */
66 rcu_assign_pointer(lg->eventfds, new);
67
68 /*
69 * We're not in a big hurry. Wait until noone's looking at old
70 * version, then delete it.
71 */
72 synchronize_rcu();
73 kfree(old);
74
75 return 0;
76 }
77
78 static int attach_eventfd(struct lguest *lg, const unsigned long __user *input)
79 {
80 unsigned long addr, fd;
81 int err;
82
83 if (get_user(addr, input) != 0)
84 return -EFAULT;
85 input++;
86 if (get_user(fd, input) != 0)
87 return -EFAULT;
88
89 mutex_lock(&lguest_lock);
90 err = add_eventfd(lg, addr, fd);
91 mutex_unlock(&lguest_lock);
92
93 return err;
94 }
95
96 /*L:050
97 * Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
98 * number to /dev/lguest.
99 */
100 static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
101 {
102 unsigned long irq;
103
104 if (get_user(irq, input) != 0)
105 return -EFAULT;
106 if (irq >= LGUEST_IRQS)
107 return -EINVAL;
108
109 set_interrupt(cpu, irq);
110 return 0;
111 }
112
113 /*L:040
114 * Once our Guest is initialized, the Launcher makes it run by reading
115 * from /dev/lguest.
116 */
117 static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
118 {
119 struct lguest *lg = file->private_data;
120 struct lg_cpu *cpu;
121 unsigned int cpu_id = *o;
122
123 /* You must write LHREQ_INITIALIZE first! */
124 if (!lg)
125 return -EINVAL;
126
127 /* Watch out for arbitrary vcpu indexes! */
128 if (cpu_id >= lg->nr_cpus)
129 return -EINVAL;
130
131 cpu = &lg->cpus[cpu_id];
132
133 /* If you're not the task which owns the Guest, go away. */
134 if (current != cpu->tsk)
135 return -EPERM;
136
137 /* If the Guest is already dead, we indicate why */
138 if (lg->dead) {
139 size_t len;
140
141 /* lg->dead either contains an error code, or a string. */
142 if (IS_ERR(lg->dead))
143 return PTR_ERR(lg->dead);
144
145 /* We can only return as much as the buffer they read with. */
146 len = min(size, strlen(lg->dead)+1);
147 if (copy_to_user(user, lg->dead, len) != 0)
148 return -EFAULT;
149 return len;
150 }
151
152 /*
153 * If we returned from read() last time because the Guest sent I/O,
154 * clear the flag.
155 */
156 if (cpu->pending_notify)
157 cpu->pending_notify = 0;
158
159 /* Run the Guest until something interesting happens. */
160 return run_guest(cpu, (unsigned long __user *)user);
161 }
162
163 /*L:025
164 * This actually initializes a CPU. For the moment, a Guest is only
165 * uniprocessor, so "id" is always 0.
166 */
167 static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
168 {
169 /* We have a limited number the number of CPUs in the lguest struct. */
170 if (id >= ARRAY_SIZE(cpu->lg->cpus))
171 return -EINVAL;
172
173 /* Set up this CPU's id, and pointer back to the lguest struct. */
174 cpu->id = id;
175 cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
176 cpu->lg->nr_cpus++;
177
178 /* Each CPU has a timer it can set. */
179 init_clockdev(cpu);
180
181 /*
182 * We need a complete page for the Guest registers: they are accessible
183 * to the Guest and we can only grant it access to whole pages.
184 */
185 cpu->regs_page = get_zeroed_page(GFP_KERNEL);
186 if (!cpu->regs_page)
187 return -ENOMEM;
188
189 /* We actually put the registers at the bottom of the page. */
190 cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
191
192 /*
193 * Now we initialize the Guest's registers, handing it the start
194 * address.
195 */
196 lguest_arch_setup_regs(cpu, start_ip);
197
198 /*
199 * We keep a pointer to the Launcher task (ie. current task) for when
200 * other Guests want to wake this one (eg. console input).
201 */
202 cpu->tsk = current;
203
204 /*
205 * We need to keep a pointer to the Launcher's memory map, because if
206 * the Launcher dies we need to clean it up. If we don't keep a
207 * reference, it is destroyed before close() is called.
208 */
209 cpu->mm = get_task_mm(cpu->tsk);
210
211 /*
212 * We remember which CPU's pages this Guest used last, for optimization
213 * when the same Guest runs on the same CPU twice.
214 */
215 cpu->last_pages = NULL;
216
217 /* No error == success. */
218 return 0;
219 }
220
221 /*L:020
222 * The initialization write supplies 3 pointer sized (32 or 64 bit) values (in
223 * addition to the LHREQ_INITIALIZE value). These are:
224 *
225 * base: The start of the Guest-physical memory inside the Launcher memory.
226 *
227 * pfnlimit: The highest (Guest-physical) page number the Guest should be
228 * allowed to access. The Guest memory lives inside the Launcher, so it sets
229 * this to ensure the Guest can only reach its own memory.
230 *
231 * start: The first instruction to execute ("eip" in x86-speak).
232 */
233 static int initialize(struct file *file, const unsigned long __user *input)
234 {
235 /* "struct lguest" contains all we (the Host) know about a Guest. */
236 struct lguest *lg;
237 int err;
238 unsigned long args[3];
239
240 /*
241 * We grab the Big Lguest lock, which protects against multiple
242 * simultaneous initializations.
243 */
244 mutex_lock(&lguest_lock);
245 /* You can't initialize twice! Close the device and start again... */
246 if (file->private_data) {
247 err = -EBUSY;
248 goto unlock;
249 }
250
251 if (copy_from_user(args, input, sizeof(args)) != 0) {
252 err = -EFAULT;
253 goto unlock;
254 }
255
256 lg = kzalloc(sizeof(*lg), GFP_KERNEL);
257 if (!lg) {
258 err = -ENOMEM;
259 goto unlock;
260 }
261
262 lg->eventfds = kmalloc(sizeof(*lg->eventfds), GFP_KERNEL);
263 if (!lg->eventfds) {
264 err = -ENOMEM;
265 goto free_lg;
266 }
267 lg->eventfds->num = 0;
268
269 /* Populate the easy fields of our "struct lguest" */
270 lg->mem_base = (void __user *)args[0];
271 lg->pfn_limit = args[1];
272
273 /* This is the first cpu (cpu 0) and it will start booting at args[2] */
274 err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
275 if (err)
276 goto free_eventfds;
277
278 /*
279 * Initialize the Guest's shadow page tables, using the toplevel
280 * address the Launcher gave us. This allocates memory, so can fail.
281 */
282 err = init_guest_pagetable(lg);
283 if (err)
284 goto free_regs;
285
286 /* We keep our "struct lguest" in the file's private_data. */
287 file->private_data = lg;
288
289 mutex_unlock(&lguest_lock);
290
291 /* And because this is a write() call, we return the length used. */
292 return sizeof(args);
293
294 free_regs:
295 /* FIXME: This should be in free_vcpu */
296 free_page(lg->cpus[0].regs_page);
297 free_eventfds:
298 kfree(lg->eventfds);
299 free_lg:
300 kfree(lg);
301 unlock:
302 mutex_unlock(&lguest_lock);
303 return err;
304 }
305
306 /*L:010
307 * The first operation the Launcher does must be a write. All writes
308 * start with an unsigned long number: for the first write this must be
309 * LHREQ_INITIALIZE to set up the Guest. After that the Launcher can use
310 * writes of other values to send interrupts.
311 *
312 * Note that we overload the "offset" in the /dev/lguest file to indicate what
313 * CPU number we're dealing with. Currently this is always 0, since we only
314 * support uniprocessor Guests, but you can see the beginnings of SMP support
315 * here.
316 */
317 static ssize_t write(struct file *file, const char __user *in,
318 size_t size, loff_t *off)
319 {
320 /*
321 * Once the Guest is initialized, we hold the "struct lguest" in the
322 * file private data.
323 */
324 struct lguest *lg = file->private_data;
325 const unsigned long __user *input = (const unsigned long __user *)in;
326 unsigned long req;
327 struct lg_cpu *uninitialized_var(cpu);
328 unsigned int cpu_id = *off;
329
330 /* The first value tells us what this request is. */
331 if (get_user(req, input) != 0)
332 return -EFAULT;
333 input++;
334
335 /* If you haven't initialized, you must do that first. */
336 if (req != LHREQ_INITIALIZE) {
337 if (!lg || (cpu_id >= lg->nr_cpus))
338 return -EINVAL;
339 cpu = &lg->cpus[cpu_id];
340
341 /* Once the Guest is dead, you can only read() why it died. */
342 if (lg->dead)
343 return -ENOENT;
344 }
345
346 switch (req) {
347 case LHREQ_INITIALIZE:
348 return initialize(file, input);
349 case LHREQ_IRQ:
350 return user_send_irq(cpu, input);
351 case LHREQ_EVENTFD:
352 return attach_eventfd(lg, input);
353 default:
354 return -EINVAL;
355 }
356 }
357
358 /*L:060
359 * The final piece of interface code is the close() routine. It reverses
360 * everything done in initialize(). This is usually called because the
361 * Launcher exited.
362 *
363 * Note that the close routine returns 0 or a negative error number: it can't
364 * really fail, but it can whine. I blame Sun for this wart, and K&R C for
365 * letting them do it.
366 :*/
367 static int close(struct inode *inode, struct file *file)
368 {
369 struct lguest *lg = file->private_data;
370 unsigned int i;
371
372 /* If we never successfully initialized, there's nothing to clean up */
373 if (!lg)
374 return 0;
375
376 /*
377 * We need the big lock, to protect from inter-guest I/O and other
378 * Launchers initializing guests.
379 */
380 mutex_lock(&lguest_lock);
381
382 /* Free up the shadow page tables for the Guest. */
383 free_guest_pagetable(lg);
384
385 for (i = 0; i < lg->nr_cpus; i++) {
386 /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
387 hrtimer_cancel(&lg->cpus[i].hrt);
388 /* We can free up the register page we allocated. */
389 free_page(lg->cpus[i].regs_page);
390 /*
391 * Now all the memory cleanups are done, it's safe to release
392 * the Launcher's memory management structure.
393 */
394 mmput(lg->cpus[i].mm);
395 }
396
397 /* Release any eventfds they registered. */
398 for (i = 0; i < lg->eventfds->num; i++)
399 eventfd_ctx_put(lg->eventfds->map[i].event);
400 kfree(lg->eventfds);
401
402 /*
403 * If lg->dead doesn't contain an error code it will be NULL or a
404 * kmalloc()ed string, either of which is ok to hand to kfree().
405 */
406 if (!IS_ERR(lg->dead))
407 kfree(lg->dead);
408 /* Free the memory allocated to the lguest_struct */
409 kfree(lg);
410 /* Release lock and exit. */
411 mutex_unlock(&lguest_lock);
412
413 return 0;
414 }
415
416 /*L:000
417 * Welcome to our journey through the Launcher!
418 *
419 * The Launcher is the Host userspace program which sets up, runs and services
420 * the Guest. In fact, many comments in the Drivers which refer to "the Host"
421 * doing things are inaccurate: the Launcher does all the device handling for
422 * the Guest, but the Guest can't know that.
423 *
424 * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
425 * shall see more of that later.
426 *
427 * We begin our understanding with the Host kernel interface which the Launcher
428 * uses: reading and writing a character device called /dev/lguest. All the
429 * work happens in the read(), write() and close() routines:
430 */
431 static struct file_operations lguest_fops = {
432 .owner = THIS_MODULE,
433 .release = close,
434 .write = write,
435 .read = read,
436 };
437
438 /*
439 * This is a textbook example of a "misc" character device. Populate a "struct
440 * miscdevice" and register it with misc_register().
441 */
442 static struct miscdevice lguest_dev = {
443 .minor = MISC_DYNAMIC_MINOR,
444 .name = "lguest",
445 .fops = &lguest_fops,
446 };
447
448 int __init lguest_device_init(void)
449 {
450 return misc_register(&lguest_dev);
451 }
452
453 void __exit lguest_device_remove(void)
454 {
455 misc_deregister(&lguest_dev);
456 }
This page took 0.041544 seconds and 6 git commands to generate.