lguest: check vaddr not pgd for Switcher protection.
[deliverable/linux.git] / drivers / lguest / page_tables.c
1 /*P:700
2 * The pagetable code, on the other hand, still shows the scars of
3 * previous encounters. It's functional, and as neat as it can be in the
4 * circumstances, but be wary, for these things are subtle and break easily.
5 * The Guest provides a virtual to physical mapping, but we can neither trust
6 * it nor use it: we verify and convert it here then point the CPU to the
7 * converted Guest pages when running the Guest.
8 :*/
9
10 /* Copyright (C) Rusty Russell IBM Corporation 2006.
11 * GPL v2 and any later version */
12 #include <linux/mm.h>
13 #include <linux/gfp.h>
14 #include <linux/types.h>
15 #include <linux/spinlock.h>
16 #include <linux/random.h>
17 #include <linux/percpu.h>
18 #include <asm/tlbflush.h>
19 #include <asm/uaccess.h>
20 #include "lg.h"
21
22 /*M:008
23 * We hold reference to pages, which prevents them from being swapped.
24 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
25 * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
26 * could probably consider launching Guests as non-root.
27 :*/
28
29 /*H:300
30 * The Page Table Code
31 *
32 * We use two-level page tables for the Guest, or three-level with PAE. If
33 * you're not entirely comfortable with virtual addresses, physical addresses
34 * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
35 * Table Handling" (with diagrams!).
36 *
37 * The Guest keeps page tables, but we maintain the actual ones here: these are
38 * called "shadow" page tables. Which is a very Guest-centric name: these are
39 * the real page tables the CPU uses, although we keep them up to date to
40 * reflect the Guest's. (See what I mean about weird naming? Since when do
41 * shadows reflect anything?)
42 *
43 * Anyway, this is the most complicated part of the Host code. There are seven
44 * parts to this:
45 * (i) Looking up a page table entry when the Guest faults,
46 * (ii) Making sure the Guest stack is mapped,
47 * (iii) Setting up a page table entry when the Guest tells us one has changed,
48 * (iv) Switching page tables,
49 * (v) Flushing (throwing away) page tables,
50 * (vi) Mapping the Switcher when the Guest is about to run,
51 * (vii) Setting up the page tables initially.
52 :*/
53
54 /*
55 * The Switcher uses the complete top PTE page. That's 1024 PTE entries (4MB)
56 * or 512 PTE entries with PAE (2MB).
57 */
58 #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
59
60 /*
61 * For PAE we need the PMD index as well. We use the last 2MB, so we
62 * will need the last pmd entry of the last pmd page.
63 */
64 #ifdef CONFIG_X86_PAE
65 #define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1)
66 #define RESERVE_MEM 2U
67 #define CHECK_GPGD_MASK _PAGE_PRESENT
68 #else
69 #define RESERVE_MEM 4U
70 #define CHECK_GPGD_MASK _PAGE_TABLE
71 #endif
72
73 /*
74 * We actually need a separate PTE page for each CPU. Remember that after the
75 * Switcher code itself comes two pages for each CPU, and we don't want this
76 * CPU's guest to see the pages of any other CPU.
77 */
78 static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
79 #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
80
81 /*H:320
82 * The page table code is curly enough to need helper functions to keep it
83 * clear and clean. The kernel itself provides many of them; one advantage
84 * of insisting that the Guest and Host use the same CONFIG_PAE setting.
85 *
86 * There are two functions which return pointers to the shadow (aka "real")
87 * page tables.
88 *
89 * spgd_addr() takes the virtual address and returns a pointer to the top-level
90 * page directory entry (PGD) for that address. Since we keep track of several
91 * page tables, the "i" argument tells us which one we're interested in (it's
92 * usually the current one).
93 */
94 static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
95 {
96 unsigned int index = pgd_index(vaddr);
97
98 /* Return a pointer index'th pgd entry for the i'th page table. */
99 return &cpu->lg->pgdirs[i].pgdir[index];
100 }
101
102 #ifdef CONFIG_X86_PAE
103 /*
104 * This routine then takes the PGD entry given above, which contains the
105 * address of the PMD page. It then returns a pointer to the PMD entry for the
106 * given address.
107 */
108 static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
109 {
110 unsigned int index = pmd_index(vaddr);
111 pmd_t *page;
112
113 /* You should never call this if the PGD entry wasn't valid */
114 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
115 page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
116
117 return &page[index];
118 }
119 #endif
120
121 /*
122 * This routine then takes the page directory entry returned above, which
123 * contains the address of the page table entry (PTE) page. It then returns a
124 * pointer to the PTE entry for the given address.
125 */
126 static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
127 {
128 #ifdef CONFIG_X86_PAE
129 pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
130 pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
131
132 /* You should never call this if the PMD entry wasn't valid */
133 BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
134 #else
135 pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
136 /* You should never call this if the PGD entry wasn't valid */
137 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
138 #endif
139
140 return &page[pte_index(vaddr)];
141 }
142
143 /*
144 * These functions are just like the above, except they access the Guest
145 * page tables. Hence they return a Guest address.
146 */
147 static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
148 {
149 unsigned int index = vaddr >> (PGDIR_SHIFT);
150 return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
151 }
152
153 #ifdef CONFIG_X86_PAE
154 /* Follow the PGD to the PMD. */
155 static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
156 {
157 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
158 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
159 return gpage + pmd_index(vaddr) * sizeof(pmd_t);
160 }
161
162 /* Follow the PMD to the PTE. */
163 static unsigned long gpte_addr(struct lg_cpu *cpu,
164 pmd_t gpmd, unsigned long vaddr)
165 {
166 unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
167
168 BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
169 return gpage + pte_index(vaddr) * sizeof(pte_t);
170 }
171 #else
172 /* Follow the PGD to the PTE (no mid-level for !PAE). */
173 static unsigned long gpte_addr(struct lg_cpu *cpu,
174 pgd_t gpgd, unsigned long vaddr)
175 {
176 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
177
178 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
179 return gpage + pte_index(vaddr) * sizeof(pte_t);
180 }
181 #endif
182 /*:*/
183
184 /*M:007
185 * get_pfn is slow: we could probably try to grab batches of pages here as
186 * an optimization (ie. pre-faulting).
187 :*/
188
189 /*H:350
190 * This routine takes a page number given by the Guest and converts it to
191 * an actual, physical page number. It can fail for several reasons: the
192 * virtual address might not be mapped by the Launcher, the write flag is set
193 * and the page is read-only, or the write flag was set and the page was
194 * shared so had to be copied, but we ran out of memory.
195 *
196 * This holds a reference to the page, so release_pte() is careful to put that
197 * back.
198 */
199 static unsigned long get_pfn(unsigned long virtpfn, int write)
200 {
201 struct page *page;
202
203 /* gup me one page at this address please! */
204 if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
205 return page_to_pfn(page);
206
207 /* This value indicates failure. */
208 return -1UL;
209 }
210
211 /*H:340
212 * Converting a Guest page table entry to a shadow (ie. real) page table
213 * entry can be a little tricky. The flags are (almost) the same, but the
214 * Guest PTE contains a virtual page number: the CPU needs the real page
215 * number.
216 */
217 static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
218 {
219 unsigned long pfn, base, flags;
220
221 /*
222 * The Guest sets the global flag, because it thinks that it is using
223 * PGE. We only told it to use PGE so it would tell us whether it was
224 * flushing a kernel mapping or a userspace mapping. We don't actually
225 * use the global bit, so throw it away.
226 */
227 flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
228
229 /* The Guest's pages are offset inside the Launcher. */
230 base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
231
232 /*
233 * We need a temporary "unsigned long" variable to hold the answer from
234 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
235 * fit in spte.pfn. get_pfn() finds the real physical number of the
236 * page, given the virtual number.
237 */
238 pfn = get_pfn(base + pte_pfn(gpte), write);
239 if (pfn == -1UL) {
240 kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
241 /*
242 * When we destroy the Guest, we'll go through the shadow page
243 * tables and release_pte() them. Make sure we don't think
244 * this one is valid!
245 */
246 flags = 0;
247 }
248 /* Now we assemble our shadow PTE from the page number and flags. */
249 return pfn_pte(pfn, __pgprot(flags));
250 }
251
252 /*H:460 And to complete the chain, release_pte() looks like this: */
253 static void release_pte(pte_t pte)
254 {
255 /*
256 * Remember that get_user_pages_fast() took a reference to the page, in
257 * get_pfn()? We have to put it back now.
258 */
259 if (pte_flags(pte) & _PAGE_PRESENT)
260 put_page(pte_page(pte));
261 }
262 /*:*/
263
264 static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
265 {
266 if ((pte_flags(gpte) & _PAGE_PSE) ||
267 pte_pfn(gpte) >= cpu->lg->pfn_limit)
268 kill_guest(cpu, "bad page table entry");
269 }
270
271 static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
272 {
273 if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
274 (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
275 kill_guest(cpu, "bad page directory entry");
276 }
277
278 #ifdef CONFIG_X86_PAE
279 static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
280 {
281 if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
282 (pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
283 kill_guest(cpu, "bad page middle directory entry");
284 }
285 #endif
286
287 /*H:330
288 * (i) Looking up a page table entry when the Guest faults.
289 *
290 * We saw this call in run_guest(): when we see a page fault in the Guest, we
291 * come here. That's because we only set up the shadow page tables lazily as
292 * they're needed, so we get page faults all the time and quietly fix them up
293 * and return to the Guest without it knowing.
294 *
295 * If we fixed up the fault (ie. we mapped the address), this routine returns
296 * true. Otherwise, it was a real fault and we need to tell the Guest.
297 */
298 bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
299 {
300 pgd_t gpgd;
301 pgd_t *spgd;
302 unsigned long gpte_ptr;
303 pte_t gpte;
304 pte_t *spte;
305
306 /* Mid level for PAE. */
307 #ifdef CONFIG_X86_PAE
308 pmd_t *spmd;
309 pmd_t gpmd;
310 #endif
311
312 /* We never demand page the Switcher, so trying is a mistake. */
313 if (vaddr >= switcher_addr)
314 return false;
315
316 /* First step: get the top-level Guest page table entry. */
317 if (unlikely(cpu->linear_pages)) {
318 /* Faking up a linear mapping. */
319 gpgd = __pgd(CHECK_GPGD_MASK);
320 } else {
321 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
322 /* Toplevel not present? We can't map it in. */
323 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
324 return false;
325 }
326
327 /* Now look at the matching shadow entry. */
328 spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
329 if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
330 /* No shadow entry: allocate a new shadow PTE page. */
331 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
332 /*
333 * This is not really the Guest's fault, but killing it is
334 * simple for this corner case.
335 */
336 if (!ptepage) {
337 kill_guest(cpu, "out of memory allocating pte page");
338 return false;
339 }
340 /* We check that the Guest pgd is OK. */
341 check_gpgd(cpu, gpgd);
342 /*
343 * And we copy the flags to the shadow PGD entry. The page
344 * number in the shadow PGD is the page we just allocated.
345 */
346 set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
347 }
348
349 #ifdef CONFIG_X86_PAE
350 if (unlikely(cpu->linear_pages)) {
351 /* Faking up a linear mapping. */
352 gpmd = __pmd(_PAGE_TABLE);
353 } else {
354 gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
355 /* Middle level not present? We can't map it in. */
356 if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
357 return false;
358 }
359
360 /* Now look at the matching shadow entry. */
361 spmd = spmd_addr(cpu, *spgd, vaddr);
362
363 if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
364 /* No shadow entry: allocate a new shadow PTE page. */
365 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
366
367 /*
368 * This is not really the Guest's fault, but killing it is
369 * simple for this corner case.
370 */
371 if (!ptepage) {
372 kill_guest(cpu, "out of memory allocating pte page");
373 return false;
374 }
375
376 /* We check that the Guest pmd is OK. */
377 check_gpmd(cpu, gpmd);
378
379 /*
380 * And we copy the flags to the shadow PMD entry. The page
381 * number in the shadow PMD is the page we just allocated.
382 */
383 set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
384 }
385
386 /*
387 * OK, now we look at the lower level in the Guest page table: keep its
388 * address, because we might update it later.
389 */
390 gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
391 #else
392 /*
393 * OK, now we look at the lower level in the Guest page table: keep its
394 * address, because we might update it later.
395 */
396 gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
397 #endif
398
399 if (unlikely(cpu->linear_pages)) {
400 /* Linear? Make up a PTE which points to same page. */
401 gpte = __pte((vaddr & PAGE_MASK) | _PAGE_RW | _PAGE_PRESENT);
402 } else {
403 /* Read the actual PTE value. */
404 gpte = lgread(cpu, gpte_ptr, pte_t);
405 }
406
407 /* If this page isn't in the Guest page tables, we can't page it in. */
408 if (!(pte_flags(gpte) & _PAGE_PRESENT))
409 return false;
410
411 /*
412 * Check they're not trying to write to a page the Guest wants
413 * read-only (bit 2 of errcode == write).
414 */
415 if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
416 return false;
417
418 /* User access to a kernel-only page? (bit 3 == user access) */
419 if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
420 return false;
421
422 /*
423 * Check that the Guest PTE flags are OK, and the page number is below
424 * the pfn_limit (ie. not mapping the Launcher binary).
425 */
426 check_gpte(cpu, gpte);
427
428 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
429 gpte = pte_mkyoung(gpte);
430 if (errcode & 2)
431 gpte = pte_mkdirty(gpte);
432
433 /* Get the pointer to the shadow PTE entry we're going to set. */
434 spte = spte_addr(cpu, *spgd, vaddr);
435
436 /*
437 * If there was a valid shadow PTE entry here before, we release it.
438 * This can happen with a write to a previously read-only entry.
439 */
440 release_pte(*spte);
441
442 /*
443 * If this is a write, we insist that the Guest page is writable (the
444 * final arg to gpte_to_spte()).
445 */
446 if (pte_dirty(gpte))
447 *spte = gpte_to_spte(cpu, gpte, 1);
448 else
449 /*
450 * If this is a read, don't set the "writable" bit in the page
451 * table entry, even if the Guest says it's writable. That way
452 * we will come back here when a write does actually occur, so
453 * we can update the Guest's _PAGE_DIRTY flag.
454 */
455 set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
456
457 /*
458 * Finally, we write the Guest PTE entry back: we've set the
459 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
460 */
461 if (likely(!cpu->linear_pages))
462 lgwrite(cpu, gpte_ptr, pte_t, gpte);
463
464 /*
465 * The fault is fixed, the page table is populated, the mapping
466 * manipulated, the result returned and the code complete. A small
467 * delay and a trace of alliteration are the only indications the Guest
468 * has that a page fault occurred at all.
469 */
470 return true;
471 }
472
473 /*H:360
474 * (ii) Making sure the Guest stack is mapped.
475 *
476 * Remember that direct traps into the Guest need a mapped Guest kernel stack.
477 * pin_stack_pages() calls us here: we could simply call demand_page(), but as
478 * we've seen that logic is quite long, and usually the stack pages are already
479 * mapped, so it's overkill.
480 *
481 * This is a quick version which answers the question: is this virtual address
482 * mapped by the shadow page tables, and is it writable?
483 */
484 static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
485 {
486 pgd_t *spgd;
487 unsigned long flags;
488 #ifdef CONFIG_X86_PAE
489 pmd_t *spmd;
490 #endif
491
492 /* You can't put your stack in the Switcher! */
493 if (vaddr >= switcher_addr)
494 return false;
495
496 /* Look at the current top level entry: is it present? */
497 spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
498 if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
499 return false;
500
501 #ifdef CONFIG_X86_PAE
502 spmd = spmd_addr(cpu, *spgd, vaddr);
503 if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
504 return false;
505 #endif
506
507 /*
508 * Check the flags on the pte entry itself: it must be present and
509 * writable.
510 */
511 flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
512
513 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
514 }
515
516 /*
517 * So, when pin_stack_pages() asks us to pin a page, we check if it's already
518 * in the page tables, and if not, we call demand_page() with error code 2
519 * (meaning "write").
520 */
521 void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
522 {
523 if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
524 kill_guest(cpu, "bad stack page %#lx", vaddr);
525 }
526 /*:*/
527
528 #ifdef CONFIG_X86_PAE
529 static void release_pmd(pmd_t *spmd)
530 {
531 /* If the entry's not present, there's nothing to release. */
532 if (pmd_flags(*spmd) & _PAGE_PRESENT) {
533 unsigned int i;
534 pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
535 /* For each entry in the page, we might need to release it. */
536 for (i = 0; i < PTRS_PER_PTE; i++)
537 release_pte(ptepage[i]);
538 /* Now we can free the page of PTEs */
539 free_page((long)ptepage);
540 /* And zero out the PMD entry so we never release it twice. */
541 set_pmd(spmd, __pmd(0));
542 }
543 }
544
545 static void release_pgd(pgd_t *spgd)
546 {
547 /* If the entry's not present, there's nothing to release. */
548 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
549 unsigned int i;
550 pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
551
552 for (i = 0; i < PTRS_PER_PMD; i++)
553 release_pmd(&pmdpage[i]);
554
555 /* Now we can free the page of PMDs */
556 free_page((long)pmdpage);
557 /* And zero out the PGD entry so we never release it twice. */
558 set_pgd(spgd, __pgd(0));
559 }
560 }
561
562 #else /* !CONFIG_X86_PAE */
563 /*H:450
564 * If we chase down the release_pgd() code, the non-PAE version looks like
565 * this. The PAE version is almost identical, but instead of calling
566 * release_pte it calls release_pmd(), which looks much like this.
567 */
568 static void release_pgd(pgd_t *spgd)
569 {
570 /* If the entry's not present, there's nothing to release. */
571 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
572 unsigned int i;
573 /*
574 * Converting the pfn to find the actual PTE page is easy: turn
575 * the page number into a physical address, then convert to a
576 * virtual address (easy for kernel pages like this one).
577 */
578 pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
579 /* For each entry in the page, we might need to release it. */
580 for (i = 0; i < PTRS_PER_PTE; i++)
581 release_pte(ptepage[i]);
582 /* Now we can free the page of PTEs */
583 free_page((long)ptepage);
584 /* And zero out the PGD entry so we never release it twice. */
585 *spgd = __pgd(0);
586 }
587 }
588 #endif
589
590 /*H:445
591 * We saw flush_user_mappings() twice: once from the flush_user_mappings()
592 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
593 * It simply releases every PTE page from 0 up to the Guest's kernel address.
594 */
595 static void flush_user_mappings(struct lguest *lg, int idx)
596 {
597 unsigned int i;
598 /* Release every pgd entry up to the kernel's address. */
599 for (i = 0; i < pgd_index(lg->kernel_address); i++)
600 release_pgd(lg->pgdirs[idx].pgdir + i);
601 }
602
603 /*H:440
604 * (v) Flushing (throwing away) page tables,
605 *
606 * The Guest has a hypercall to throw away the page tables: it's used when a
607 * large number of mappings have been changed.
608 */
609 void guest_pagetable_flush_user(struct lg_cpu *cpu)
610 {
611 /* Drop the userspace part of the current page table. */
612 flush_user_mappings(cpu->lg, cpu->cpu_pgd);
613 }
614 /*:*/
615
616 /* We walk down the guest page tables to get a guest-physical address */
617 unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
618 {
619 pgd_t gpgd;
620 pte_t gpte;
621 #ifdef CONFIG_X86_PAE
622 pmd_t gpmd;
623 #endif
624
625 /* Still not set up? Just map 1:1. */
626 if (unlikely(cpu->linear_pages))
627 return vaddr;
628
629 /* First step: get the top-level Guest page table entry. */
630 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
631 /* Toplevel not present? We can't map it in. */
632 if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
633 kill_guest(cpu, "Bad address %#lx", vaddr);
634 return -1UL;
635 }
636
637 #ifdef CONFIG_X86_PAE
638 gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
639 if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
640 kill_guest(cpu, "Bad address %#lx", vaddr);
641 gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
642 #else
643 gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
644 #endif
645 if (!(pte_flags(gpte) & _PAGE_PRESENT))
646 kill_guest(cpu, "Bad address %#lx", vaddr);
647
648 return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
649 }
650
651 /*
652 * We keep several page tables. This is a simple routine to find the page
653 * table (if any) corresponding to this top-level address the Guest has given
654 * us.
655 */
656 static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
657 {
658 unsigned int i;
659 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
660 if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
661 break;
662 return i;
663 }
664
665 /*H:435
666 * And this is us, creating the new page directory. If we really do
667 * allocate a new one (and so the kernel parts are not there), we set
668 * blank_pgdir.
669 */
670 static unsigned int new_pgdir(struct lg_cpu *cpu,
671 unsigned long gpgdir,
672 int *blank_pgdir)
673 {
674 unsigned int next;
675 #ifdef CONFIG_X86_PAE
676 pmd_t *pmd_table;
677 #endif
678
679 /*
680 * We pick one entry at random to throw out. Choosing the Least
681 * Recently Used might be better, but this is easy.
682 */
683 next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
684 /* If it's never been allocated at all before, try now. */
685 if (!cpu->lg->pgdirs[next].pgdir) {
686 cpu->lg->pgdirs[next].pgdir =
687 (pgd_t *)get_zeroed_page(GFP_KERNEL);
688 /* If the allocation fails, just keep using the one we have */
689 if (!cpu->lg->pgdirs[next].pgdir)
690 next = cpu->cpu_pgd;
691 else {
692 #ifdef CONFIG_X86_PAE
693 /*
694 * In PAE mode, allocate a pmd page and populate the
695 * last pgd entry.
696 */
697 pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
698 if (!pmd_table) {
699 free_page((long)cpu->lg->pgdirs[next].pgdir);
700 set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
701 next = cpu->cpu_pgd;
702 } else {
703 set_pgd(cpu->lg->pgdirs[next].pgdir +
704 SWITCHER_PGD_INDEX,
705 __pgd(__pa(pmd_table) | _PAGE_PRESENT));
706 /*
707 * This is a blank page, so there are no kernel
708 * mappings: caller must map the stack!
709 */
710 *blank_pgdir = 1;
711 }
712 #else
713 *blank_pgdir = 1;
714 #endif
715 }
716 }
717 /* Record which Guest toplevel this shadows. */
718 cpu->lg->pgdirs[next].gpgdir = gpgdir;
719 /* Release all the non-kernel mappings. */
720 flush_user_mappings(cpu->lg, next);
721
722 return next;
723 }
724
725 /*H:470
726 * Finally, a routine which throws away everything: all PGD entries in all
727 * the shadow page tables, including the Guest's kernel mappings. This is used
728 * when we destroy the Guest.
729 */
730 static void release_all_pagetables(struct lguest *lg)
731 {
732 unsigned int i, j;
733
734 /* Every shadow pagetable this Guest has */
735 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
736 if (lg->pgdirs[i].pgdir) {
737 #ifdef CONFIG_X86_PAE
738 pgd_t *spgd;
739 pmd_t *pmdpage;
740 unsigned int k;
741
742 /* Get the last pmd page. */
743 spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
744 pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
745
746 /*
747 * And release the pmd entries of that pmd page,
748 * except for the switcher pmd.
749 */
750 for (k = 0; k < SWITCHER_PMD_INDEX; k++)
751 release_pmd(&pmdpage[k]);
752 #endif
753 /* Every PGD entry except the Switcher at the top */
754 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
755 release_pgd(lg->pgdirs[i].pgdir + j);
756 }
757 }
758
759 /*
760 * We also throw away everything when a Guest tells us it's changed a kernel
761 * mapping. Since kernel mappings are in every page table, it's easiest to
762 * throw them all away. This traps the Guest in amber for a while as
763 * everything faults back in, but it's rare.
764 */
765 void guest_pagetable_clear_all(struct lg_cpu *cpu)
766 {
767 release_all_pagetables(cpu->lg);
768 /* We need the Guest kernel stack mapped again. */
769 pin_stack_pages(cpu);
770 }
771
772 /*H:430
773 * (iv) Switching page tables
774 *
775 * Now we've seen all the page table setting and manipulation, let's see
776 * what happens when the Guest changes page tables (ie. changes the top-level
777 * pgdir). This occurs on almost every context switch.
778 */
779 void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
780 {
781 int newpgdir, repin = 0;
782
783 /*
784 * The very first time they call this, we're actually running without
785 * any page tables; we've been making it up. Throw them away now.
786 */
787 if (unlikely(cpu->linear_pages)) {
788 release_all_pagetables(cpu->lg);
789 cpu->linear_pages = false;
790 /* Force allocation of a new pgdir. */
791 newpgdir = ARRAY_SIZE(cpu->lg->pgdirs);
792 } else {
793 /* Look to see if we have this one already. */
794 newpgdir = find_pgdir(cpu->lg, pgtable);
795 }
796
797 /*
798 * If not, we allocate or mug an existing one: if it's a fresh one,
799 * repin gets set to 1.
800 */
801 if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
802 newpgdir = new_pgdir(cpu, pgtable, &repin);
803 /* Change the current pgd index to the new one. */
804 cpu->cpu_pgd = newpgdir;
805 /* If it was completely blank, we map in the Guest kernel stack */
806 if (repin)
807 pin_stack_pages(cpu);
808 }
809 /*:*/
810
811 /*M:009
812 * Since we throw away all mappings when a kernel mapping changes, our
813 * performance sucks for guests using highmem. In fact, a guest with
814 * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
815 * usually slower than a Guest with less memory.
816 *
817 * This, of course, cannot be fixed. It would take some kind of... well, I
818 * don't know, but the term "puissant code-fu" comes to mind.
819 :*/
820
821 /*H:420
822 * This is the routine which actually sets the page table entry for then
823 * "idx"'th shadow page table.
824 *
825 * Normally, we can just throw out the old entry and replace it with 0: if they
826 * use it demand_page() will put the new entry in. We need to do this anyway:
827 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
828 * is read from, and _PAGE_DIRTY when it's written to.
829 *
830 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
831 * these bits on PTEs immediately anyway. This is done to save the CPU from
832 * having to update them, but it helps us the same way: if they set
833 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
834 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
835 */
836 static void do_set_pte(struct lg_cpu *cpu, int idx,
837 unsigned long vaddr, pte_t gpte)
838 {
839 /* Look up the matching shadow page directory entry. */
840 pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
841 #ifdef CONFIG_X86_PAE
842 pmd_t *spmd;
843 #endif
844
845 /* If the top level isn't present, there's no entry to update. */
846 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
847 #ifdef CONFIG_X86_PAE
848 spmd = spmd_addr(cpu, *spgd, vaddr);
849 if (pmd_flags(*spmd) & _PAGE_PRESENT) {
850 #endif
851 /* Otherwise, start by releasing the existing entry. */
852 pte_t *spte = spte_addr(cpu, *spgd, vaddr);
853 release_pte(*spte);
854
855 /*
856 * If they're setting this entry as dirty or accessed,
857 * we might as well put that entry they've given us in
858 * now. This shaves 10% off a copy-on-write
859 * micro-benchmark.
860 */
861 if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
862 check_gpte(cpu, gpte);
863 set_pte(spte,
864 gpte_to_spte(cpu, gpte,
865 pte_flags(gpte) & _PAGE_DIRTY));
866 } else {
867 /*
868 * Otherwise kill it and we can demand_page()
869 * it in later.
870 */
871 set_pte(spte, __pte(0));
872 }
873 #ifdef CONFIG_X86_PAE
874 }
875 #endif
876 }
877 }
878
879 /*H:410
880 * Updating a PTE entry is a little trickier.
881 *
882 * We keep track of several different page tables (the Guest uses one for each
883 * process, so it makes sense to cache at least a few). Each of these have
884 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
885 * all processes. So when the page table above that address changes, we update
886 * all the page tables, not just the current one. This is rare.
887 *
888 * The benefit is that when we have to track a new page table, we can keep all
889 * the kernel mappings. This speeds up context switch immensely.
890 */
891 void guest_set_pte(struct lg_cpu *cpu,
892 unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
893 {
894 /* We don't let you remap the Switcher; we need it to get back! */
895 if (vaddr >= switcher_addr) {
896 kill_guest(cpu, "attempt to set pte into Switcher pages");
897 return;
898 }
899
900 /*
901 * Kernel mappings must be changed on all top levels. Slow, but doesn't
902 * happen often.
903 */
904 if (vaddr >= cpu->lg->kernel_address) {
905 unsigned int i;
906 for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
907 if (cpu->lg->pgdirs[i].pgdir)
908 do_set_pte(cpu, i, vaddr, gpte);
909 } else {
910 /* Is this page table one we have a shadow for? */
911 int pgdir = find_pgdir(cpu->lg, gpgdir);
912 if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
913 /* If so, do the update. */
914 do_set_pte(cpu, pgdir, vaddr, gpte);
915 }
916 }
917
918 /*H:400
919 * (iii) Setting up a page table entry when the Guest tells us one has changed.
920 *
921 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
922 * with the other side of page tables while we're here: what happens when the
923 * Guest asks for a page table to be updated?
924 *
925 * We already saw that demand_page() will fill in the shadow page tables when
926 * needed, so we can simply remove shadow page table entries whenever the Guest
927 * tells us they've changed. When the Guest tries to use the new entry it will
928 * fault and demand_page() will fix it up.
929 *
930 * So with that in mind here's our code to update a (top-level) PGD entry:
931 */
932 void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
933 {
934 int pgdir;
935
936 if (idx >= SWITCHER_PGD_INDEX)
937 return;
938
939 /* If they're talking about a page table we have a shadow for... */
940 pgdir = find_pgdir(lg, gpgdir);
941 if (pgdir < ARRAY_SIZE(lg->pgdirs))
942 /* ... throw it away. */
943 release_pgd(lg->pgdirs[pgdir].pgdir + idx);
944 }
945
946 #ifdef CONFIG_X86_PAE
947 /* For setting a mid-level, we just throw everything away. It's easy. */
948 void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
949 {
950 guest_pagetable_clear_all(&lg->cpus[0]);
951 }
952 #endif
953
954 /*H:500
955 * (vii) Setting up the page tables initially.
956 *
957 * When a Guest is first created, set initialize a shadow page table which
958 * we will populate on future faults. The Guest doesn't have any actual
959 * pagetables yet, so we set linear_pages to tell demand_page() to fake it
960 * for the moment.
961 */
962 int init_guest_pagetable(struct lguest *lg)
963 {
964 struct lg_cpu *cpu = &lg->cpus[0];
965 int allocated = 0;
966
967 /* lg (and lg->cpus[]) starts zeroed: this allocates a new pgdir */
968 cpu->cpu_pgd = new_pgdir(cpu, 0, &allocated);
969 if (!allocated)
970 return -ENOMEM;
971
972 /* We start with a linear mapping until the initialize. */
973 cpu->linear_pages = true;
974 return 0;
975 }
976
977 /*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
978 void page_table_guest_data_init(struct lg_cpu *cpu)
979 {
980 /* We get the kernel address: above this is all kernel memory. */
981 if (get_user(cpu->lg->kernel_address,
982 &cpu->lg->lguest_data->kernel_address)
983 /*
984 * We tell the Guest that it can't use the top 2 or 4 MB
985 * of virtual addresses used by the Switcher.
986 */
987 || put_user(RESERVE_MEM * 1024 * 1024,
988 &cpu->lg->lguest_data->reserve_mem)) {
989 kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
990 return;
991 }
992
993 /*
994 * In flush_user_mappings() we loop from 0 to
995 * "pgd_index(lg->kernel_address)". This assumes it won't hit the
996 * Switcher mappings, so check that now.
997 */
998 if (cpu->lg->kernel_address >= switcher_addr)
999 kill_guest(cpu, "bad kernel address %#lx",
1000 cpu->lg->kernel_address);
1001 }
1002
1003 /* When a Guest dies, our cleanup is fairly simple. */
1004 void free_guest_pagetable(struct lguest *lg)
1005 {
1006 unsigned int i;
1007
1008 /* Throw away all page table pages. */
1009 release_all_pagetables(lg);
1010 /* Now free the top levels: free_page() can handle 0 just fine. */
1011 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
1012 free_page((long)lg->pgdirs[i].pgdir);
1013 }
1014
1015 /*H:480
1016 * (vi) Mapping the Switcher when the Guest is about to run.
1017 *
1018 * The Switcher and the two pages for this CPU need to be visible in the
1019 * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
1020 * for each CPU already set up, we just need to hook them in now we know which
1021 * Guest is about to run on this CPU.
1022 */
1023 void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
1024 {
1025 pte_t *switcher_pte_page = __this_cpu_read(switcher_pte_pages);
1026 pte_t regs_pte;
1027
1028 #ifdef CONFIG_X86_PAE
1029 pmd_t switcher_pmd;
1030 pmd_t *pmd_table;
1031
1032 switcher_pmd = pfn_pmd(__pa(switcher_pte_page) >> PAGE_SHIFT,
1033 PAGE_KERNEL_EXEC);
1034
1035 /* Figure out where the pmd page is, by reading the PGD, and converting
1036 * it to a virtual address. */
1037 pmd_table = __va(pgd_pfn(cpu->lg->
1038 pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
1039 << PAGE_SHIFT);
1040 /* Now write it into the shadow page table. */
1041 set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
1042 #else
1043 pgd_t switcher_pgd;
1044
1045 /*
1046 * Make the last PGD entry for this Guest point to the Switcher's PTE
1047 * page for this CPU (with appropriate flags).
1048 */
1049 switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
1050
1051 cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
1052
1053 #endif
1054 /*
1055 * We also change the Switcher PTE page. When we're running the Guest,
1056 * we want the Guest's "regs" page to appear where the first Switcher
1057 * page for this CPU is. This is an optimization: when the Switcher
1058 * saves the Guest registers, it saves them into the first page of this
1059 * CPU's "struct lguest_pages": if we make sure the Guest's register
1060 * page is already mapped there, we don't have to copy them out
1061 * again.
1062 */
1063 regs_pte = pfn_pte(__pa(cpu->regs_page) >> PAGE_SHIFT, PAGE_KERNEL);
1064 set_pte(&switcher_pte_page[pte_index((unsigned long)pages)], regs_pte);
1065 }
1066 /*:*/
1067
1068 static void free_switcher_pte_pages(void)
1069 {
1070 unsigned int i;
1071
1072 for_each_possible_cpu(i)
1073 free_page((long)switcher_pte_page(i));
1074 }
1075
1076 /*H:520
1077 * Setting up the Switcher PTE page for given CPU is fairly easy, given
1078 * the CPU number and the "struct page"s for the Switcher code itself.
1079 *
1080 * Currently the Switcher is less than a page long, so "pages" is always 1.
1081 */
1082 static __init void populate_switcher_pte_page(unsigned int cpu,
1083 struct page *switcher_page[],
1084 unsigned int pages)
1085 {
1086 unsigned int i;
1087 pte_t *pte = switcher_pte_page(cpu);
1088
1089 /* The first entries are easy: they map the Switcher code. */
1090 for (i = 0; i < pages; i++) {
1091 set_pte(&pte[i], mk_pte(switcher_page[i],
1092 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
1093 }
1094
1095 /* The only other thing we map is this CPU's pair of pages. */
1096 i = pages + cpu*2;
1097
1098 /* First page (Guest registers) is writable from the Guest */
1099 set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
1100 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
1101
1102 /*
1103 * The second page contains the "struct lguest_ro_state", and is
1104 * read-only.
1105 */
1106 set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
1107 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
1108 }
1109
1110 /*
1111 * We've made it through the page table code. Perhaps our tired brains are
1112 * still processing the details, or perhaps we're simply glad it's over.
1113 *
1114 * If nothing else, note that all this complexity in juggling shadow page tables
1115 * in sync with the Guest's page tables is for one reason: for most Guests this
1116 * page table dance determines how bad performance will be. This is why Xen
1117 * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
1118 * have implemented shadow page table support directly into hardware.
1119 *
1120 * There is just one file remaining in the Host.
1121 */
1122
1123 /*H:510
1124 * At boot or module load time, init_pagetables() allocates and populates
1125 * the Switcher PTE page for each CPU.
1126 */
1127 __init int init_pagetables(struct page **switcher_page, unsigned int pages)
1128 {
1129 unsigned int i;
1130
1131 for_each_possible_cpu(i) {
1132 switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
1133 if (!switcher_pte_page(i)) {
1134 free_switcher_pte_pages();
1135 return -ENOMEM;
1136 }
1137 populate_switcher_pte_page(i, switcher_page, pages);
1138 }
1139 return 0;
1140 }
1141 /*:*/
1142
1143 /* Cleaning up simply involves freeing the PTE page for each CPU. */
1144 void free_pagetables(void)
1145 {
1146 free_switcher_pte_pages();
1147 }
This page took 0.211695 seconds and 6 git commands to generate.