d86d57af282abde6bca52d369e480ca543651746
[deliverable/linux.git] / drivers / macintosh / smu.c
1 /*
2 * PowerMac G5 SMU driver
3 *
4 * Copyright 2004 J. Mayer <l_indien@magic.fr>
5 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
6 *
7 * Released under the term of the GNU GPL v2.
8 */
9
10 /*
11 * TODO:
12 * - maybe add timeout to commands ?
13 * - blocking version of time functions
14 * - polling version of i2c commands (including timer that works with
15 * interrupts off)
16 * - maybe avoid some data copies with i2c by directly using the smu cmd
17 * buffer and a lower level internal interface
18 * - understand SMU -> CPU events and implement reception of them via
19 * the userland interface
20 */
21
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/device.h>
25 #include <linux/dmapool.h>
26 #include <linux/bootmem.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/jiffies.h>
30 #include <linux/interrupt.h>
31 #include <linux/rtc.h>
32 #include <linux/completion.h>
33 #include <linux/miscdevice.h>
34 #include <linux/delay.h>
35 #include <linux/sysdev.h>
36 #include <linux/poll.h>
37 #include <linux/mutex.h>
38
39 #include <asm/byteorder.h>
40 #include <asm/io.h>
41 #include <asm/prom.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
44 #include <asm/smu.h>
45 #include <asm/sections.h>
46 #include <asm/abs_addr.h>
47 #include <asm/uaccess.h>
48 #include <asm/of_device.h>
49 #include <asm/of_platform.h>
50
51 #define VERSION "0.7"
52 #define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
53
54 #undef DEBUG_SMU
55
56 #ifdef DEBUG_SMU
57 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
58 #else
59 #define DPRINTK(fmt, args...) do { } while (0)
60 #endif
61
62 /*
63 * This is the command buffer passed to the SMU hardware
64 */
65 #define SMU_MAX_DATA 254
66
67 struct smu_cmd_buf {
68 u8 cmd;
69 u8 length;
70 u8 data[SMU_MAX_DATA];
71 };
72
73 struct smu_device {
74 spinlock_t lock;
75 struct device_node *of_node;
76 struct of_device *of_dev;
77 int doorbell; /* doorbell gpio */
78 u32 __iomem *db_buf; /* doorbell buffer */
79 struct device_node *db_node;
80 unsigned int db_irq;
81 int msg;
82 struct device_node *msg_node;
83 unsigned int msg_irq;
84 struct smu_cmd_buf *cmd_buf; /* command buffer virtual */
85 u32 cmd_buf_abs; /* command buffer absolute */
86 struct list_head cmd_list;
87 struct smu_cmd *cmd_cur; /* pending command */
88 int broken_nap;
89 struct list_head cmd_i2c_list;
90 struct smu_i2c_cmd *cmd_i2c_cur; /* pending i2c command */
91 struct timer_list i2c_timer;
92 };
93
94 /*
95 * I don't think there will ever be more than one SMU, so
96 * for now, just hard code that
97 */
98 static struct smu_device *smu;
99 static DEFINE_MUTEX(smu_part_access);
100 static int smu_irq_inited;
101
102 static void smu_i2c_retry(unsigned long data);
103
104 /*
105 * SMU driver low level stuff
106 */
107
108 static void smu_start_cmd(void)
109 {
110 unsigned long faddr, fend;
111 struct smu_cmd *cmd;
112
113 if (list_empty(&smu->cmd_list))
114 return;
115
116 /* Fetch first command in queue */
117 cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
118 smu->cmd_cur = cmd;
119 list_del(&cmd->link);
120
121 DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
122 cmd->data_len);
123 DPRINTK("SMU: data buffer: %02x %02x %02x %02x %02x %02x %02x %02x\n",
124 ((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
125 ((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3],
126 ((u8 *)cmd->data_buf)[4], ((u8 *)cmd->data_buf)[5],
127 ((u8 *)cmd->data_buf)[6], ((u8 *)cmd->data_buf)[7]);
128
129 /* Fill the SMU command buffer */
130 smu->cmd_buf->cmd = cmd->cmd;
131 smu->cmd_buf->length = cmd->data_len;
132 memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
133
134 /* Flush command and data to RAM */
135 faddr = (unsigned long)smu->cmd_buf;
136 fend = faddr + smu->cmd_buf->length + 2;
137 flush_inval_dcache_range(faddr, fend);
138
139
140 /* We also disable NAP mode for the duration of the command
141 * on U3 based machines.
142 * This is slightly racy as it can be written back to 1 by a sysctl
143 * but that never happens in practice. There seem to be an issue with
144 * U3 based machines such as the iMac G5 where napping for the
145 * whole duration of the command prevents the SMU from fetching it
146 * from memory. This might be related to the strange i2c based
147 * mechanism the SMU uses to access memory.
148 */
149 if (smu->broken_nap)
150 powersave_nap = 0;
151
152 /* This isn't exactly a DMA mapping here, I suspect
153 * the SMU is actually communicating with us via i2c to the
154 * northbridge or the CPU to access RAM.
155 */
156 writel(smu->cmd_buf_abs, smu->db_buf);
157
158 /* Ring the SMU doorbell */
159 pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
160 }
161
162
163 static irqreturn_t smu_db_intr(int irq, void *arg)
164 {
165 unsigned long flags;
166 struct smu_cmd *cmd;
167 void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
168 void *misc = NULL;
169 u8 gpio;
170 int rc = 0;
171
172 /* SMU completed the command, well, we hope, let's make sure
173 * of it
174 */
175 spin_lock_irqsave(&smu->lock, flags);
176
177 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
178 if ((gpio & 7) != 7) {
179 spin_unlock_irqrestore(&smu->lock, flags);
180 return IRQ_HANDLED;
181 }
182
183 cmd = smu->cmd_cur;
184 smu->cmd_cur = NULL;
185 if (cmd == NULL)
186 goto bail;
187
188 if (rc == 0) {
189 unsigned long faddr;
190 int reply_len;
191 u8 ack;
192
193 /* CPU might have brought back the cache line, so we need
194 * to flush again before peeking at the SMU response. We
195 * flush the entire buffer for now as we haven't read the
196 * reply length (it's only 2 cache lines anyway)
197 */
198 faddr = (unsigned long)smu->cmd_buf;
199 flush_inval_dcache_range(faddr, faddr + 256);
200
201 /* Now check ack */
202 ack = (~cmd->cmd) & 0xff;
203 if (ack != smu->cmd_buf->cmd) {
204 DPRINTK("SMU: incorrect ack, want %x got %x\n",
205 ack, smu->cmd_buf->cmd);
206 rc = -EIO;
207 }
208 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
209 DPRINTK("SMU: reply len: %d\n", reply_len);
210 if (reply_len > cmd->reply_len) {
211 printk(KERN_WARNING "SMU: reply buffer too small,"
212 "got %d bytes for a %d bytes buffer\n",
213 reply_len, cmd->reply_len);
214 reply_len = cmd->reply_len;
215 }
216 cmd->reply_len = reply_len;
217 if (cmd->reply_buf && reply_len)
218 memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
219 }
220
221 /* Now complete the command. Write status last in order as we lost
222 * ownership of the command structure as soon as it's no longer -1
223 */
224 done = cmd->done;
225 misc = cmd->misc;
226 mb();
227 cmd->status = rc;
228
229 /* Re-enable NAP mode */
230 if (smu->broken_nap)
231 powersave_nap = 1;
232 bail:
233 /* Start next command if any */
234 smu_start_cmd();
235 spin_unlock_irqrestore(&smu->lock, flags);
236
237 /* Call command completion handler if any */
238 if (done)
239 done(cmd, misc);
240
241 /* It's an edge interrupt, nothing to do */
242 return IRQ_HANDLED;
243 }
244
245
246 static irqreturn_t smu_msg_intr(int irq, void *arg)
247 {
248 /* I don't quite know what to do with this one, we seem to never
249 * receive it, so I suspect we have to arm it someway in the SMU
250 * to start getting events that way.
251 */
252
253 printk(KERN_INFO "SMU: message interrupt !\n");
254
255 /* It's an edge interrupt, nothing to do */
256 return IRQ_HANDLED;
257 }
258
259
260 /*
261 * Queued command management.
262 *
263 */
264
265 int smu_queue_cmd(struct smu_cmd *cmd)
266 {
267 unsigned long flags;
268
269 if (smu == NULL)
270 return -ENODEV;
271 if (cmd->data_len > SMU_MAX_DATA ||
272 cmd->reply_len > SMU_MAX_DATA)
273 return -EINVAL;
274
275 cmd->status = 1;
276 spin_lock_irqsave(&smu->lock, flags);
277 list_add_tail(&cmd->link, &smu->cmd_list);
278 if (smu->cmd_cur == NULL)
279 smu_start_cmd();
280 spin_unlock_irqrestore(&smu->lock, flags);
281
282 /* Workaround for early calls when irq isn't available */
283 if (!smu_irq_inited || smu->db_irq == NO_IRQ)
284 smu_spinwait_cmd(cmd);
285
286 return 0;
287 }
288 EXPORT_SYMBOL(smu_queue_cmd);
289
290
291 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
292 unsigned int data_len,
293 void (*done)(struct smu_cmd *cmd, void *misc),
294 void *misc, ...)
295 {
296 struct smu_cmd *cmd = &scmd->cmd;
297 va_list list;
298 int i;
299
300 if (data_len > sizeof(scmd->buffer))
301 return -EINVAL;
302
303 memset(scmd, 0, sizeof(*scmd));
304 cmd->cmd = command;
305 cmd->data_len = data_len;
306 cmd->data_buf = scmd->buffer;
307 cmd->reply_len = sizeof(scmd->buffer);
308 cmd->reply_buf = scmd->buffer;
309 cmd->done = done;
310 cmd->misc = misc;
311
312 va_start(list, misc);
313 for (i = 0; i < data_len; ++i)
314 scmd->buffer[i] = (u8)va_arg(list, int);
315 va_end(list);
316
317 return smu_queue_cmd(cmd);
318 }
319 EXPORT_SYMBOL(smu_queue_simple);
320
321
322 void smu_poll(void)
323 {
324 u8 gpio;
325
326 if (smu == NULL)
327 return;
328
329 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
330 if ((gpio & 7) == 7)
331 smu_db_intr(smu->db_irq, smu);
332 }
333 EXPORT_SYMBOL(smu_poll);
334
335
336 void smu_done_complete(struct smu_cmd *cmd, void *misc)
337 {
338 struct completion *comp = misc;
339
340 complete(comp);
341 }
342 EXPORT_SYMBOL(smu_done_complete);
343
344
345 void smu_spinwait_cmd(struct smu_cmd *cmd)
346 {
347 while(cmd->status == 1)
348 smu_poll();
349 }
350 EXPORT_SYMBOL(smu_spinwait_cmd);
351
352
353 /* RTC low level commands */
354 static inline int bcd2hex (int n)
355 {
356 return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
357 }
358
359
360 static inline int hex2bcd (int n)
361 {
362 return ((n / 10) << 4) + (n % 10);
363 }
364
365
366 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
367 struct rtc_time *time)
368 {
369 cmd_buf->cmd = 0x8e;
370 cmd_buf->length = 8;
371 cmd_buf->data[0] = 0x80;
372 cmd_buf->data[1] = hex2bcd(time->tm_sec);
373 cmd_buf->data[2] = hex2bcd(time->tm_min);
374 cmd_buf->data[3] = hex2bcd(time->tm_hour);
375 cmd_buf->data[4] = time->tm_wday;
376 cmd_buf->data[5] = hex2bcd(time->tm_mday);
377 cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
378 cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
379 }
380
381
382 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
383 {
384 struct smu_simple_cmd cmd;
385 int rc;
386
387 if (smu == NULL)
388 return -ENODEV;
389
390 memset(time, 0, sizeof(struct rtc_time));
391 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
392 SMU_CMD_RTC_GET_DATETIME);
393 if (rc)
394 return rc;
395 smu_spinwait_simple(&cmd);
396
397 time->tm_sec = bcd2hex(cmd.buffer[0]);
398 time->tm_min = bcd2hex(cmd.buffer[1]);
399 time->tm_hour = bcd2hex(cmd.buffer[2]);
400 time->tm_wday = bcd2hex(cmd.buffer[3]);
401 time->tm_mday = bcd2hex(cmd.buffer[4]);
402 time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
403 time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
404
405 return 0;
406 }
407
408
409 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
410 {
411 struct smu_simple_cmd cmd;
412 int rc;
413
414 if (smu == NULL)
415 return -ENODEV;
416
417 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
418 SMU_CMD_RTC_SET_DATETIME,
419 hex2bcd(time->tm_sec),
420 hex2bcd(time->tm_min),
421 hex2bcd(time->tm_hour),
422 time->tm_wday,
423 hex2bcd(time->tm_mday),
424 hex2bcd(time->tm_mon) + 1,
425 hex2bcd(time->tm_year - 100));
426 if (rc)
427 return rc;
428 smu_spinwait_simple(&cmd);
429
430 return 0;
431 }
432
433
434 void smu_shutdown(void)
435 {
436 struct smu_simple_cmd cmd;
437
438 if (smu == NULL)
439 return;
440
441 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
442 'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
443 return;
444 smu_spinwait_simple(&cmd);
445 for (;;)
446 ;
447 }
448
449
450 void smu_restart(void)
451 {
452 struct smu_simple_cmd cmd;
453
454 if (smu == NULL)
455 return;
456
457 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
458 'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
459 return;
460 smu_spinwait_simple(&cmd);
461 for (;;)
462 ;
463 }
464
465
466 int smu_present(void)
467 {
468 return smu != NULL;
469 }
470 EXPORT_SYMBOL(smu_present);
471
472
473 int __init smu_init (void)
474 {
475 struct device_node *np;
476 const u32 *data;
477
478 np = of_find_node_by_type(NULL, "smu");
479 if (np == NULL)
480 return -ENODEV;
481
482 printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
483
484 if (smu_cmdbuf_abs == 0) {
485 printk(KERN_ERR "SMU: Command buffer not allocated !\n");
486 of_node_put(np);
487 return -EINVAL;
488 }
489
490 smu = alloc_bootmem(sizeof(struct smu_device));
491 if (smu == NULL) {
492 of_node_put(np);
493 return -ENOMEM;
494 }
495 memset(smu, 0, sizeof(*smu));
496
497 spin_lock_init(&smu->lock);
498 INIT_LIST_HEAD(&smu->cmd_list);
499 INIT_LIST_HEAD(&smu->cmd_i2c_list);
500 smu->of_node = np;
501 smu->db_irq = NO_IRQ;
502 smu->msg_irq = NO_IRQ;
503
504 /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
505 * 32 bits value safely
506 */
507 smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
508 smu->cmd_buf = (struct smu_cmd_buf *)abs_to_virt(smu_cmdbuf_abs);
509
510 smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
511 if (smu->db_node == NULL) {
512 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
513 goto fail;
514 }
515 data = of_get_property(smu->db_node, "reg", NULL);
516 if (data == NULL) {
517 of_node_put(smu->db_node);
518 smu->db_node = NULL;
519 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
520 goto fail;
521 }
522
523 /* Current setup has one doorbell GPIO that does both doorbell
524 * and ack. GPIOs are at 0x50, best would be to find that out
525 * in the device-tree though.
526 */
527 smu->doorbell = *data;
528 if (smu->doorbell < 0x50)
529 smu->doorbell += 0x50;
530
531 /* Now look for the smu-interrupt GPIO */
532 do {
533 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
534 if (smu->msg_node == NULL)
535 break;
536 data = of_get_property(smu->msg_node, "reg", NULL);
537 if (data == NULL) {
538 of_node_put(smu->msg_node);
539 smu->msg_node = NULL;
540 break;
541 }
542 smu->msg = *data;
543 if (smu->msg < 0x50)
544 smu->msg += 0x50;
545 } while(0);
546
547 /* Doorbell buffer is currently hard-coded, I didn't find a proper
548 * device-tree entry giving the address. Best would probably to use
549 * an offset for K2 base though, but let's do it that way for now.
550 */
551 smu->db_buf = ioremap(0x8000860c, 0x1000);
552 if (smu->db_buf == NULL) {
553 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
554 goto fail;
555 }
556
557 /* U3 has an issue with NAP mode when issuing SMU commands */
558 smu->broken_nap = pmac_get_uninorth_variant() < 4;
559 if (smu->broken_nap)
560 printk(KERN_INFO "SMU: using NAP mode workaround\n");
561
562 sys_ctrler = SYS_CTRLER_SMU;
563 return 0;
564
565 fail:
566 smu = NULL;
567 return -ENXIO;
568
569 }
570
571
572 static int smu_late_init(void)
573 {
574 if (!smu)
575 return 0;
576
577 init_timer(&smu->i2c_timer);
578 smu->i2c_timer.function = smu_i2c_retry;
579 smu->i2c_timer.data = (unsigned long)smu;
580
581 if (smu->db_node) {
582 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
583 if (smu->db_irq == NO_IRQ)
584 printk(KERN_ERR "smu: failed to map irq for node %s\n",
585 smu->db_node->full_name);
586 }
587 if (smu->msg_node) {
588 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
589 if (smu->msg_irq == NO_IRQ)
590 printk(KERN_ERR "smu: failed to map irq for node %s\n",
591 smu->msg_node->full_name);
592 }
593
594 /*
595 * Try to request the interrupts
596 */
597
598 if (smu->db_irq != NO_IRQ) {
599 if (request_irq(smu->db_irq, smu_db_intr,
600 IRQF_SHARED, "SMU doorbell", smu) < 0) {
601 printk(KERN_WARNING "SMU: can't "
602 "request interrupt %d\n",
603 smu->db_irq);
604 smu->db_irq = NO_IRQ;
605 }
606 }
607
608 if (smu->msg_irq != NO_IRQ) {
609 if (request_irq(smu->msg_irq, smu_msg_intr,
610 IRQF_SHARED, "SMU message", smu) < 0) {
611 printk(KERN_WARNING "SMU: can't "
612 "request interrupt %d\n",
613 smu->msg_irq);
614 smu->msg_irq = NO_IRQ;
615 }
616 }
617
618 smu_irq_inited = 1;
619 return 0;
620 }
621 /* This has to be before arch_initcall as the low i2c stuff relies on the
622 * above having been done before we reach arch_initcalls
623 */
624 core_initcall(smu_late_init);
625
626 /*
627 * sysfs visibility
628 */
629
630 static void smu_expose_childs(struct work_struct *unused)
631 {
632 struct device_node *np;
633
634 for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
635 if (of_device_is_compatible(np, "smu-sensors"))
636 of_platform_device_create(np, "smu-sensors",
637 &smu->of_dev->dev);
638 }
639
640 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
641
642 static int smu_platform_probe(struct of_device* dev,
643 const struct of_device_id *match)
644 {
645 if (!smu)
646 return -ENODEV;
647 smu->of_dev = dev;
648
649 /*
650 * Ok, we are matched, now expose all i2c busses. We have to defer
651 * that unfortunately or it would deadlock inside the device model
652 */
653 schedule_work(&smu_expose_childs_work);
654
655 return 0;
656 }
657
658 static struct of_device_id smu_platform_match[] =
659 {
660 {
661 .type = "smu",
662 },
663 {},
664 };
665
666 static struct of_platform_driver smu_of_platform_driver =
667 {
668 .name = "smu",
669 .match_table = smu_platform_match,
670 .probe = smu_platform_probe,
671 };
672
673 static int __init smu_init_sysfs(void)
674 {
675 /*
676 * Due to sysfs bogosity, a sysdev is not a real device, so
677 * we should in fact create both if we want sysdev semantics
678 * for power management.
679 * For now, we don't power manage machines with an SMU chip,
680 * I'm a bit too far from figuring out how that works with those
681 * new chipsets, but that will come back and bite us
682 */
683 of_register_platform_driver(&smu_of_platform_driver);
684 return 0;
685 }
686
687 device_initcall(smu_init_sysfs);
688
689 struct of_device *smu_get_ofdev(void)
690 {
691 if (!smu)
692 return NULL;
693 return smu->of_dev;
694 }
695
696 EXPORT_SYMBOL_GPL(smu_get_ofdev);
697
698 /*
699 * i2c interface
700 */
701
702 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
703 {
704 void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
705 void *misc = cmd->misc;
706 unsigned long flags;
707
708 /* Check for read case */
709 if (!fail && cmd->read) {
710 if (cmd->pdata[0] < 1)
711 fail = 1;
712 else
713 memcpy(cmd->info.data, &cmd->pdata[1],
714 cmd->info.datalen);
715 }
716
717 DPRINTK("SMU: completing, success: %d\n", !fail);
718
719 /* Update status and mark no pending i2c command with lock
720 * held so nobody comes in while we dequeue an eventual
721 * pending next i2c command
722 */
723 spin_lock_irqsave(&smu->lock, flags);
724 smu->cmd_i2c_cur = NULL;
725 wmb();
726 cmd->status = fail ? -EIO : 0;
727
728 /* Is there another i2c command waiting ? */
729 if (!list_empty(&smu->cmd_i2c_list)) {
730 struct smu_i2c_cmd *newcmd;
731
732 /* Fetch it, new current, remove from list */
733 newcmd = list_entry(smu->cmd_i2c_list.next,
734 struct smu_i2c_cmd, link);
735 smu->cmd_i2c_cur = newcmd;
736 list_del(&cmd->link);
737
738 /* Queue with low level smu */
739 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
740 if (smu->cmd_cur == NULL)
741 smu_start_cmd();
742 }
743 spin_unlock_irqrestore(&smu->lock, flags);
744
745 /* Call command completion handler if any */
746 if (done)
747 done(cmd, misc);
748
749 }
750
751
752 static void smu_i2c_retry(unsigned long data)
753 {
754 struct smu_i2c_cmd *cmd = smu->cmd_i2c_cur;
755
756 DPRINTK("SMU: i2c failure, requeuing...\n");
757
758 /* requeue command simply by resetting reply_len */
759 cmd->pdata[0] = 0xff;
760 cmd->scmd.reply_len = sizeof(cmd->pdata);
761 smu_queue_cmd(&cmd->scmd);
762 }
763
764
765 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
766 {
767 struct smu_i2c_cmd *cmd = misc;
768 int fail = 0;
769
770 DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
771 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
772
773 /* Check for possible status */
774 if (scmd->status < 0)
775 fail = 1;
776 else if (cmd->read) {
777 if (cmd->stage == 0)
778 fail = cmd->pdata[0] != 0;
779 else
780 fail = cmd->pdata[0] >= 0x80;
781 } else {
782 fail = cmd->pdata[0] != 0;
783 }
784
785 /* Handle failures by requeuing command, after 5ms interval
786 */
787 if (fail && --cmd->retries > 0) {
788 DPRINTK("SMU: i2c failure, starting timer...\n");
789 BUG_ON(cmd != smu->cmd_i2c_cur);
790 if (!smu_irq_inited) {
791 mdelay(5);
792 smu_i2c_retry(0);
793 return;
794 }
795 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
796 return;
797 }
798
799 /* If failure or stage 1, command is complete */
800 if (fail || cmd->stage != 0) {
801 smu_i2c_complete_command(cmd, fail);
802 return;
803 }
804
805 DPRINTK("SMU: going to stage 1\n");
806
807 /* Ok, initial command complete, now poll status */
808 scmd->reply_buf = cmd->pdata;
809 scmd->reply_len = sizeof(cmd->pdata);
810 scmd->data_buf = cmd->pdata;
811 scmd->data_len = 1;
812 cmd->pdata[0] = 0;
813 cmd->stage = 1;
814 cmd->retries = 20;
815 smu_queue_cmd(scmd);
816 }
817
818
819 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
820 {
821 unsigned long flags;
822
823 if (smu == NULL)
824 return -ENODEV;
825
826 /* Fill most fields of scmd */
827 cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
828 cmd->scmd.done = smu_i2c_low_completion;
829 cmd->scmd.misc = cmd;
830 cmd->scmd.reply_buf = cmd->pdata;
831 cmd->scmd.reply_len = sizeof(cmd->pdata);
832 cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
833 cmd->scmd.status = 1;
834 cmd->stage = 0;
835 cmd->pdata[0] = 0xff;
836 cmd->retries = 20;
837 cmd->status = 1;
838
839 /* Check transfer type, sanitize some "info" fields
840 * based on transfer type and do more checking
841 */
842 cmd->info.caddr = cmd->info.devaddr;
843 cmd->read = cmd->info.devaddr & 0x01;
844 switch(cmd->info.type) {
845 case SMU_I2C_TRANSFER_SIMPLE:
846 memset(&cmd->info.sublen, 0, 4);
847 break;
848 case SMU_I2C_TRANSFER_COMBINED:
849 cmd->info.devaddr &= 0xfe;
850 case SMU_I2C_TRANSFER_STDSUB:
851 if (cmd->info.sublen > 3)
852 return -EINVAL;
853 break;
854 default:
855 return -EINVAL;
856 }
857
858 /* Finish setting up command based on transfer direction
859 */
860 if (cmd->read) {
861 if (cmd->info.datalen > SMU_I2C_READ_MAX)
862 return -EINVAL;
863 memset(cmd->info.data, 0xff, cmd->info.datalen);
864 cmd->scmd.data_len = 9;
865 } else {
866 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
867 return -EINVAL;
868 cmd->scmd.data_len = 9 + cmd->info.datalen;
869 }
870
871 DPRINTK("SMU: i2c enqueuing command\n");
872 DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
873 cmd->read ? "read" : "write", cmd->info.datalen,
874 cmd->info.bus, cmd->info.caddr,
875 cmd->info.subaddr[0], cmd->info.type);
876
877
878 /* Enqueue command in i2c list, and if empty, enqueue also in
879 * main command list
880 */
881 spin_lock_irqsave(&smu->lock, flags);
882 if (smu->cmd_i2c_cur == NULL) {
883 smu->cmd_i2c_cur = cmd;
884 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
885 if (smu->cmd_cur == NULL)
886 smu_start_cmd();
887 } else
888 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
889 spin_unlock_irqrestore(&smu->lock, flags);
890
891 return 0;
892 }
893
894 /*
895 * Handling of "partitions"
896 */
897
898 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
899 {
900 DECLARE_COMPLETION_ONSTACK(comp);
901 unsigned int chunk;
902 struct smu_cmd cmd;
903 int rc;
904 u8 params[8];
905
906 /* We currently use a chunk size of 0xe. We could check the
907 * SMU firmware version and use bigger sizes though
908 */
909 chunk = 0xe;
910
911 while (len) {
912 unsigned int clen = min(len, chunk);
913
914 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
915 cmd.data_len = 7;
916 cmd.data_buf = params;
917 cmd.reply_len = chunk;
918 cmd.reply_buf = dest;
919 cmd.done = smu_done_complete;
920 cmd.misc = &comp;
921 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
922 params[1] = 0x4;
923 *((u32 *)&params[2]) = addr;
924 params[6] = clen;
925
926 rc = smu_queue_cmd(&cmd);
927 if (rc)
928 return rc;
929 wait_for_completion(&comp);
930 if (cmd.status != 0)
931 return rc;
932 if (cmd.reply_len != clen) {
933 printk(KERN_DEBUG "SMU: short read in "
934 "smu_read_datablock, got: %d, want: %d\n",
935 cmd.reply_len, clen);
936 return -EIO;
937 }
938 len -= clen;
939 addr += clen;
940 dest += clen;
941 }
942 return 0;
943 }
944
945 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
946 {
947 DECLARE_COMPLETION_ONSTACK(comp);
948 struct smu_simple_cmd cmd;
949 unsigned int addr, len, tlen;
950 struct smu_sdbp_header *hdr;
951 struct property *prop;
952
953 /* First query the partition info */
954 DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
955 smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
956 smu_done_complete, &comp,
957 SMU_CMD_PARTITION_LATEST, id);
958 wait_for_completion(&comp);
959 DPRINTK("SMU: done, status: %d, reply_len: %d\n",
960 cmd.cmd.status, cmd.cmd.reply_len);
961
962 /* Partition doesn't exist (or other error) */
963 if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
964 return NULL;
965
966 /* Fetch address and length from reply */
967 addr = *((u16 *)cmd.buffer);
968 len = cmd.buffer[3] << 2;
969 /* Calucluate total length to allocate, including the 17 bytes
970 * for "sdb-partition-XX" that we append at the end of the buffer
971 */
972 tlen = sizeof(struct property) + len + 18;
973
974 prop = kzalloc(tlen, GFP_KERNEL);
975 if (prop == NULL)
976 return NULL;
977 hdr = (struct smu_sdbp_header *)(prop + 1);
978 prop->name = ((char *)prop) + tlen - 18;
979 sprintf(prop->name, "sdb-partition-%02x", id);
980 prop->length = len;
981 prop->value = hdr;
982 prop->next = NULL;
983
984 /* Read the datablock */
985 if (smu_read_datablock((u8 *)hdr, addr, len)) {
986 printk(KERN_DEBUG "SMU: datablock read failed while reading "
987 "partition %02x !\n", id);
988 goto failure;
989 }
990
991 /* Got it, check a few things and create the property */
992 if (hdr->id != id) {
993 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
994 "%02x !\n", id, hdr->id);
995 goto failure;
996 }
997 if (prom_add_property(smu->of_node, prop)) {
998 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
999 "property !\n", id);
1000 goto failure;
1001 }
1002
1003 return hdr;
1004 failure:
1005 kfree(prop);
1006 return NULL;
1007 }
1008
1009 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1010 * when interruptible is 1
1011 */
1012 const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1013 unsigned int *size, int interruptible)
1014 {
1015 char pname[32];
1016 const struct smu_sdbp_header *part;
1017
1018 if (!smu)
1019 return NULL;
1020
1021 sprintf(pname, "sdb-partition-%02x", id);
1022
1023 DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1024
1025 if (interruptible) {
1026 int rc;
1027 rc = mutex_lock_interruptible(&smu_part_access);
1028 if (rc)
1029 return ERR_PTR(rc);
1030 } else
1031 mutex_lock(&smu_part_access);
1032
1033 part = of_get_property(smu->of_node, pname, size);
1034 if (part == NULL) {
1035 DPRINTK("trying to extract from SMU ...\n");
1036 part = smu_create_sdb_partition(id);
1037 if (part != NULL && size)
1038 *size = part->len << 2;
1039 }
1040 mutex_unlock(&smu_part_access);
1041 return part;
1042 }
1043
1044 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1045 {
1046 return __smu_get_sdb_partition(id, size, 0);
1047 }
1048 EXPORT_SYMBOL(smu_get_sdb_partition);
1049
1050
1051 /*
1052 * Userland driver interface
1053 */
1054
1055
1056 static LIST_HEAD(smu_clist);
1057 static DEFINE_SPINLOCK(smu_clist_lock);
1058
1059 enum smu_file_mode {
1060 smu_file_commands,
1061 smu_file_events,
1062 smu_file_closing
1063 };
1064
1065 struct smu_private
1066 {
1067 struct list_head list;
1068 enum smu_file_mode mode;
1069 int busy;
1070 struct smu_cmd cmd;
1071 spinlock_t lock;
1072 wait_queue_head_t wait;
1073 u8 buffer[SMU_MAX_DATA];
1074 };
1075
1076
1077 static int smu_open(struct inode *inode, struct file *file)
1078 {
1079 struct smu_private *pp;
1080 unsigned long flags;
1081
1082 pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1083 if (pp == 0)
1084 return -ENOMEM;
1085 spin_lock_init(&pp->lock);
1086 pp->mode = smu_file_commands;
1087 init_waitqueue_head(&pp->wait);
1088
1089 spin_lock_irqsave(&smu_clist_lock, flags);
1090 list_add(&pp->list, &smu_clist);
1091 spin_unlock_irqrestore(&smu_clist_lock, flags);
1092 file->private_data = pp;
1093
1094 return 0;
1095 }
1096
1097
1098 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1099 {
1100 struct smu_private *pp = misc;
1101
1102 wake_up_all(&pp->wait);
1103 }
1104
1105
1106 static ssize_t smu_write(struct file *file, const char __user *buf,
1107 size_t count, loff_t *ppos)
1108 {
1109 struct smu_private *pp = file->private_data;
1110 unsigned long flags;
1111 struct smu_user_cmd_hdr hdr;
1112 int rc = 0;
1113
1114 if (pp->busy)
1115 return -EBUSY;
1116 else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1117 return -EFAULT;
1118 else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1119 pp->mode = smu_file_events;
1120 return 0;
1121 } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1122 const struct smu_sdbp_header *part;
1123 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1124 if (part == NULL)
1125 return -EINVAL;
1126 else if (IS_ERR(part))
1127 return PTR_ERR(part);
1128 return 0;
1129 } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1130 return -EINVAL;
1131 else if (pp->mode != smu_file_commands)
1132 return -EBADFD;
1133 else if (hdr.data_len > SMU_MAX_DATA)
1134 return -EINVAL;
1135
1136 spin_lock_irqsave(&pp->lock, flags);
1137 if (pp->busy) {
1138 spin_unlock_irqrestore(&pp->lock, flags);
1139 return -EBUSY;
1140 }
1141 pp->busy = 1;
1142 pp->cmd.status = 1;
1143 spin_unlock_irqrestore(&pp->lock, flags);
1144
1145 if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1146 pp->busy = 0;
1147 return -EFAULT;
1148 }
1149
1150 pp->cmd.cmd = hdr.cmd;
1151 pp->cmd.data_len = hdr.data_len;
1152 pp->cmd.reply_len = SMU_MAX_DATA;
1153 pp->cmd.data_buf = pp->buffer;
1154 pp->cmd.reply_buf = pp->buffer;
1155 pp->cmd.done = smu_user_cmd_done;
1156 pp->cmd.misc = pp;
1157 rc = smu_queue_cmd(&pp->cmd);
1158 if (rc < 0)
1159 return rc;
1160 return count;
1161 }
1162
1163
1164 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1165 char __user *buf, size_t count)
1166 {
1167 DECLARE_WAITQUEUE(wait, current);
1168 struct smu_user_reply_hdr hdr;
1169 unsigned long flags;
1170 int size, rc = 0;
1171
1172 if (!pp->busy)
1173 return 0;
1174 if (count < sizeof(struct smu_user_reply_hdr))
1175 return -EOVERFLOW;
1176 spin_lock_irqsave(&pp->lock, flags);
1177 if (pp->cmd.status == 1) {
1178 if (file->f_flags & O_NONBLOCK)
1179 return -EAGAIN;
1180 add_wait_queue(&pp->wait, &wait);
1181 for (;;) {
1182 set_current_state(TASK_INTERRUPTIBLE);
1183 rc = 0;
1184 if (pp->cmd.status != 1)
1185 break;
1186 rc = -ERESTARTSYS;
1187 if (signal_pending(current))
1188 break;
1189 spin_unlock_irqrestore(&pp->lock, flags);
1190 schedule();
1191 spin_lock_irqsave(&pp->lock, flags);
1192 }
1193 set_current_state(TASK_RUNNING);
1194 remove_wait_queue(&pp->wait, &wait);
1195 }
1196 spin_unlock_irqrestore(&pp->lock, flags);
1197 if (rc)
1198 return rc;
1199 if (pp->cmd.status != 0)
1200 pp->cmd.reply_len = 0;
1201 size = sizeof(hdr) + pp->cmd.reply_len;
1202 if (count < size)
1203 size = count;
1204 rc = size;
1205 hdr.status = pp->cmd.status;
1206 hdr.reply_len = pp->cmd.reply_len;
1207 if (copy_to_user(buf, &hdr, sizeof(hdr)))
1208 return -EFAULT;
1209 size -= sizeof(hdr);
1210 if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1211 return -EFAULT;
1212 pp->busy = 0;
1213
1214 return rc;
1215 }
1216
1217
1218 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1219 char __user *buf, size_t count)
1220 {
1221 /* Not implemented */
1222 msleep_interruptible(1000);
1223 return 0;
1224 }
1225
1226
1227 static ssize_t smu_read(struct file *file, char __user *buf,
1228 size_t count, loff_t *ppos)
1229 {
1230 struct smu_private *pp = file->private_data;
1231
1232 if (pp->mode == smu_file_commands)
1233 return smu_read_command(file, pp, buf, count);
1234 if (pp->mode == smu_file_events)
1235 return smu_read_events(file, pp, buf, count);
1236
1237 return -EBADFD;
1238 }
1239
1240 static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1241 {
1242 struct smu_private *pp = file->private_data;
1243 unsigned int mask = 0;
1244 unsigned long flags;
1245
1246 if (pp == 0)
1247 return 0;
1248
1249 if (pp->mode == smu_file_commands) {
1250 poll_wait(file, &pp->wait, wait);
1251
1252 spin_lock_irqsave(&pp->lock, flags);
1253 if (pp->busy && pp->cmd.status != 1)
1254 mask |= POLLIN;
1255 spin_unlock_irqrestore(&pp->lock, flags);
1256 } if (pp->mode == smu_file_events) {
1257 /* Not yet implemented */
1258 }
1259 return mask;
1260 }
1261
1262 static int smu_release(struct inode *inode, struct file *file)
1263 {
1264 struct smu_private *pp = file->private_data;
1265 unsigned long flags;
1266 unsigned int busy;
1267
1268 if (pp == 0)
1269 return 0;
1270
1271 file->private_data = NULL;
1272
1273 /* Mark file as closing to avoid races with new request */
1274 spin_lock_irqsave(&pp->lock, flags);
1275 pp->mode = smu_file_closing;
1276 busy = pp->busy;
1277
1278 /* Wait for any pending request to complete */
1279 if (busy && pp->cmd.status == 1) {
1280 DECLARE_WAITQUEUE(wait, current);
1281
1282 add_wait_queue(&pp->wait, &wait);
1283 for (;;) {
1284 set_current_state(TASK_UNINTERRUPTIBLE);
1285 if (pp->cmd.status != 1)
1286 break;
1287 spin_unlock_irqrestore(&pp->lock, flags);
1288 schedule();
1289 spin_lock_irqsave(&pp->lock, flags);
1290 }
1291 set_current_state(TASK_RUNNING);
1292 remove_wait_queue(&pp->wait, &wait);
1293 }
1294 spin_unlock_irqrestore(&pp->lock, flags);
1295
1296 spin_lock_irqsave(&smu_clist_lock, flags);
1297 list_del(&pp->list);
1298 spin_unlock_irqrestore(&smu_clist_lock, flags);
1299 kfree(pp);
1300
1301 return 0;
1302 }
1303
1304
1305 static const struct file_operations smu_device_fops = {
1306 .llseek = no_llseek,
1307 .read = smu_read,
1308 .write = smu_write,
1309 .poll = smu_fpoll,
1310 .open = smu_open,
1311 .release = smu_release,
1312 };
1313
1314 static struct miscdevice pmu_device = {
1315 MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1316 };
1317
1318 static int smu_device_init(void)
1319 {
1320 if (!smu)
1321 return -ENODEV;
1322 if (misc_register(&pmu_device) < 0)
1323 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1324 return 0;
1325 }
1326 device_initcall(smu_device_init);
This page took 0.054375 seconds and 4 git commands to generate.