Merge remote-tracking branch 'spi/topic/rspi' into spi-pdata
[deliverable/linux.git] / drivers / md / bcache / alloc.c
1 /*
2 * Primary bucket allocation code
3 *
4 * Copyright 2012 Google, Inc.
5 *
6 * Allocation in bcache is done in terms of buckets:
7 *
8 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
9 * btree pointers - they must match for the pointer to be considered valid.
10 *
11 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
12 * bucket simply by incrementing its gen.
13 *
14 * The gens (along with the priorities; it's really the gens are important but
15 * the code is named as if it's the priorities) are written in an arbitrary list
16 * of buckets on disk, with a pointer to them in the journal header.
17 *
18 * When we invalidate a bucket, we have to write its new gen to disk and wait
19 * for that write to complete before we use it - otherwise after a crash we
20 * could have pointers that appeared to be good but pointed to data that had
21 * been overwritten.
22 *
23 * Since the gens and priorities are all stored contiguously on disk, we can
24 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
25 * call prio_write(), and when prio_write() finishes we pull buckets off the
26 * free_inc list and optionally discard them.
27 *
28 * free_inc isn't the only freelist - if it was, we'd often to sleep while
29 * priorities and gens were being written before we could allocate. c->free is a
30 * smaller freelist, and buckets on that list are always ready to be used.
31 *
32 * If we've got discards enabled, that happens when a bucket moves from the
33 * free_inc list to the free list.
34 *
35 * There is another freelist, because sometimes we have buckets that we know
36 * have nothing pointing into them - these we can reuse without waiting for
37 * priorities to be rewritten. These come from freed btree nodes and buckets
38 * that garbage collection discovered no longer had valid keys pointing into
39 * them (because they were overwritten). That's the unused list - buckets on the
40 * unused list move to the free list, optionally being discarded in the process.
41 *
42 * It's also important to ensure that gens don't wrap around - with respect to
43 * either the oldest gen in the btree or the gen on disk. This is quite
44 * difficult to do in practice, but we explicitly guard against it anyways - if
45 * a bucket is in danger of wrapping around we simply skip invalidating it that
46 * time around, and we garbage collect or rewrite the priorities sooner than we
47 * would have otherwise.
48 *
49 * bch_bucket_alloc() allocates a single bucket from a specific cache.
50 *
51 * bch_bucket_alloc_set() allocates one or more buckets from different caches
52 * out of a cache set.
53 *
54 * free_some_buckets() drives all the processes described above. It's called
55 * from bch_bucket_alloc() and a few other places that need to make sure free
56 * buckets are ready.
57 *
58 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
59 * invalidated, and then invalidate them and stick them on the free_inc list -
60 * in either lru or fifo order.
61 */
62
63 #include "bcache.h"
64 #include "btree.h"
65
66 #include <linux/freezer.h>
67 #include <linux/kthread.h>
68 #include <linux/random.h>
69 #include <trace/events/bcache.h>
70
71 #define MAX_IN_FLIGHT_DISCARDS 8U
72
73 /* Bucket heap / gen */
74
75 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
76 {
77 uint8_t ret = ++b->gen;
78
79 ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
80 WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
81
82 if (CACHE_SYNC(&ca->set->sb)) {
83 ca->need_save_prio = max(ca->need_save_prio,
84 bucket_disk_gen(b));
85 WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX);
86 }
87
88 return ret;
89 }
90
91 void bch_rescale_priorities(struct cache_set *c, int sectors)
92 {
93 struct cache *ca;
94 struct bucket *b;
95 unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
96 unsigned i;
97 int r;
98
99 atomic_sub(sectors, &c->rescale);
100
101 do {
102 r = atomic_read(&c->rescale);
103
104 if (r >= 0)
105 return;
106 } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
107
108 mutex_lock(&c->bucket_lock);
109
110 c->min_prio = USHRT_MAX;
111
112 for_each_cache(ca, c, i)
113 for_each_bucket(b, ca)
114 if (b->prio &&
115 b->prio != BTREE_PRIO &&
116 !atomic_read(&b->pin)) {
117 b->prio--;
118 c->min_prio = min(c->min_prio, b->prio);
119 }
120
121 mutex_unlock(&c->bucket_lock);
122 }
123
124 /* Discard/TRIM */
125
126 struct discard {
127 struct list_head list;
128 struct work_struct work;
129 struct cache *ca;
130 long bucket;
131
132 struct bio bio;
133 struct bio_vec bv;
134 };
135
136 static void discard_finish(struct work_struct *w)
137 {
138 struct discard *d = container_of(w, struct discard, work);
139 struct cache *ca = d->ca;
140 char buf[BDEVNAME_SIZE];
141
142 if (!test_bit(BIO_UPTODATE, &d->bio.bi_flags)) {
143 pr_notice("discard error on %s, disabling",
144 bdevname(ca->bdev, buf));
145 d->ca->discard = 0;
146 }
147
148 mutex_lock(&ca->set->bucket_lock);
149
150 fifo_push(&ca->free, d->bucket);
151 list_add(&d->list, &ca->discards);
152 atomic_dec(&ca->discards_in_flight);
153
154 mutex_unlock(&ca->set->bucket_lock);
155
156 closure_wake_up(&ca->set->bucket_wait);
157 wake_up_process(ca->alloc_thread);
158
159 closure_put(&ca->set->cl);
160 }
161
162 static void discard_endio(struct bio *bio, int error)
163 {
164 struct discard *d = container_of(bio, struct discard, bio);
165 schedule_work(&d->work);
166 }
167
168 static void do_discard(struct cache *ca, long bucket)
169 {
170 struct discard *d = list_first_entry(&ca->discards,
171 struct discard, list);
172
173 list_del(&d->list);
174 d->bucket = bucket;
175
176 atomic_inc(&ca->discards_in_flight);
177 closure_get(&ca->set->cl);
178
179 bio_init(&d->bio);
180
181 d->bio.bi_sector = bucket_to_sector(ca->set, d->bucket);
182 d->bio.bi_bdev = ca->bdev;
183 d->bio.bi_rw = REQ_WRITE|REQ_DISCARD;
184 d->bio.bi_max_vecs = 1;
185 d->bio.bi_io_vec = d->bio.bi_inline_vecs;
186 d->bio.bi_size = bucket_bytes(ca);
187 d->bio.bi_end_io = discard_endio;
188 bio_set_prio(&d->bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
189
190 submit_bio(0, &d->bio);
191 }
192
193 /* Allocation */
194
195 static inline bool can_inc_bucket_gen(struct bucket *b)
196 {
197 return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX &&
198 bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX;
199 }
200
201 bool bch_bucket_add_unused(struct cache *ca, struct bucket *b)
202 {
203 BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b));
204
205 if (fifo_used(&ca->free) > ca->watermark[WATERMARK_MOVINGGC] &&
206 CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO)
207 return false;
208
209 b->prio = 0;
210
211 if (can_inc_bucket_gen(b) &&
212 fifo_push(&ca->unused, b - ca->buckets)) {
213 atomic_inc(&b->pin);
214 return true;
215 }
216
217 return false;
218 }
219
220 static bool can_invalidate_bucket(struct cache *ca, struct bucket *b)
221 {
222 return GC_MARK(b) == GC_MARK_RECLAIMABLE &&
223 !atomic_read(&b->pin) &&
224 can_inc_bucket_gen(b);
225 }
226
227 static void invalidate_one_bucket(struct cache *ca, struct bucket *b)
228 {
229 bch_inc_gen(ca, b);
230 b->prio = INITIAL_PRIO;
231 atomic_inc(&b->pin);
232 fifo_push(&ca->free_inc, b - ca->buckets);
233 }
234
235 #define bucket_prio(b) \
236 (((unsigned) (b->prio - ca->set->min_prio)) * GC_SECTORS_USED(b))
237
238 #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r))
239 #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r))
240
241 static void invalidate_buckets_lru(struct cache *ca)
242 {
243 struct bucket *b;
244 ssize_t i;
245
246 ca->heap.used = 0;
247
248 for_each_bucket(b, ca) {
249 /*
250 * If we fill up the unused list, if we then return before
251 * adding anything to the free_inc list we'll skip writing
252 * prios/gens and just go back to allocating from the unused
253 * list:
254 */
255 if (fifo_full(&ca->unused))
256 return;
257
258 if (!can_invalidate_bucket(ca, b))
259 continue;
260
261 if (!GC_SECTORS_USED(b) &&
262 bch_bucket_add_unused(ca, b))
263 continue;
264
265 if (!heap_full(&ca->heap))
266 heap_add(&ca->heap, b, bucket_max_cmp);
267 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
268 ca->heap.data[0] = b;
269 heap_sift(&ca->heap, 0, bucket_max_cmp);
270 }
271 }
272
273 for (i = ca->heap.used / 2 - 1; i >= 0; --i)
274 heap_sift(&ca->heap, i, bucket_min_cmp);
275
276 while (!fifo_full(&ca->free_inc)) {
277 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
278 /*
279 * We don't want to be calling invalidate_buckets()
280 * multiple times when it can't do anything
281 */
282 ca->invalidate_needs_gc = 1;
283 bch_queue_gc(ca->set);
284 return;
285 }
286
287 invalidate_one_bucket(ca, b);
288 }
289 }
290
291 static void invalidate_buckets_fifo(struct cache *ca)
292 {
293 struct bucket *b;
294 size_t checked = 0;
295
296 while (!fifo_full(&ca->free_inc)) {
297 if (ca->fifo_last_bucket < ca->sb.first_bucket ||
298 ca->fifo_last_bucket >= ca->sb.nbuckets)
299 ca->fifo_last_bucket = ca->sb.first_bucket;
300
301 b = ca->buckets + ca->fifo_last_bucket++;
302
303 if (can_invalidate_bucket(ca, b))
304 invalidate_one_bucket(ca, b);
305
306 if (++checked >= ca->sb.nbuckets) {
307 ca->invalidate_needs_gc = 1;
308 bch_queue_gc(ca->set);
309 return;
310 }
311 }
312 }
313
314 static void invalidate_buckets_random(struct cache *ca)
315 {
316 struct bucket *b;
317 size_t checked = 0;
318
319 while (!fifo_full(&ca->free_inc)) {
320 size_t n;
321 get_random_bytes(&n, sizeof(n));
322
323 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
324 n += ca->sb.first_bucket;
325
326 b = ca->buckets + n;
327
328 if (can_invalidate_bucket(ca, b))
329 invalidate_one_bucket(ca, b);
330
331 if (++checked >= ca->sb.nbuckets / 2) {
332 ca->invalidate_needs_gc = 1;
333 bch_queue_gc(ca->set);
334 return;
335 }
336 }
337 }
338
339 static void invalidate_buckets(struct cache *ca)
340 {
341 if (ca->invalidate_needs_gc)
342 return;
343
344 switch (CACHE_REPLACEMENT(&ca->sb)) {
345 case CACHE_REPLACEMENT_LRU:
346 invalidate_buckets_lru(ca);
347 break;
348 case CACHE_REPLACEMENT_FIFO:
349 invalidate_buckets_fifo(ca);
350 break;
351 case CACHE_REPLACEMENT_RANDOM:
352 invalidate_buckets_random(ca);
353 break;
354 }
355
356 trace_bcache_alloc_invalidate(ca);
357 }
358
359 #define allocator_wait(ca, cond) \
360 do { \
361 while (1) { \
362 set_current_state(TASK_INTERRUPTIBLE); \
363 if (cond) \
364 break; \
365 \
366 mutex_unlock(&(ca)->set->bucket_lock); \
367 if (kthread_should_stop()) \
368 return 0; \
369 \
370 try_to_freeze(); \
371 schedule(); \
372 mutex_lock(&(ca)->set->bucket_lock); \
373 } \
374 __set_current_state(TASK_RUNNING); \
375 } while (0)
376
377 static int bch_allocator_thread(void *arg)
378 {
379 struct cache *ca = arg;
380
381 mutex_lock(&ca->set->bucket_lock);
382
383 while (1) {
384 /*
385 * First, we pull buckets off of the unused and free_inc lists,
386 * possibly issue discards to them, then we add the bucket to
387 * the free list:
388 */
389 while (1) {
390 long bucket;
391
392 if ((!atomic_read(&ca->set->prio_blocked) ||
393 !CACHE_SYNC(&ca->set->sb)) &&
394 !fifo_empty(&ca->unused))
395 fifo_pop(&ca->unused, bucket);
396 else if (!fifo_empty(&ca->free_inc))
397 fifo_pop(&ca->free_inc, bucket);
398 else
399 break;
400
401 allocator_wait(ca, (int) fifo_free(&ca->free) >
402 atomic_read(&ca->discards_in_flight));
403
404 if (ca->discard) {
405 allocator_wait(ca, !list_empty(&ca->discards));
406 do_discard(ca, bucket);
407 } else {
408 fifo_push(&ca->free, bucket);
409 closure_wake_up(&ca->set->bucket_wait);
410 }
411 }
412
413 /*
414 * We've run out of free buckets, we need to find some buckets
415 * we can invalidate. First, invalidate them in memory and add
416 * them to the free_inc list:
417 */
418
419 allocator_wait(ca, ca->set->gc_mark_valid &&
420 (ca->need_save_prio > 64 ||
421 !ca->invalidate_needs_gc));
422 invalidate_buckets(ca);
423
424 /*
425 * Now, we write their new gens to disk so we can start writing
426 * new stuff to them:
427 */
428 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
429 if (CACHE_SYNC(&ca->set->sb) &&
430 (!fifo_empty(&ca->free_inc) ||
431 ca->need_save_prio > 64))
432 bch_prio_write(ca);
433 }
434 }
435
436 long bch_bucket_alloc(struct cache *ca, unsigned watermark, struct closure *cl)
437 {
438 long r = -1;
439 again:
440 wake_up_process(ca->alloc_thread);
441
442 if (fifo_used(&ca->free) > ca->watermark[watermark] &&
443 fifo_pop(&ca->free, r)) {
444 struct bucket *b = ca->buckets + r;
445 #ifdef CONFIG_BCACHE_EDEBUG
446 size_t iter;
447 long i;
448
449 for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
450 BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
451
452 fifo_for_each(i, &ca->free, iter)
453 BUG_ON(i == r);
454 fifo_for_each(i, &ca->free_inc, iter)
455 BUG_ON(i == r);
456 fifo_for_each(i, &ca->unused, iter)
457 BUG_ON(i == r);
458 #endif
459 BUG_ON(atomic_read(&b->pin) != 1);
460
461 SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
462
463 if (watermark <= WATERMARK_METADATA) {
464 SET_GC_MARK(b, GC_MARK_METADATA);
465 b->prio = BTREE_PRIO;
466 } else {
467 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
468 b->prio = INITIAL_PRIO;
469 }
470
471 return r;
472 }
473
474 trace_bcache_alloc_fail(ca);
475
476 if (cl) {
477 closure_wait(&ca->set->bucket_wait, cl);
478
479 if (closure_blocking(cl)) {
480 mutex_unlock(&ca->set->bucket_lock);
481 closure_sync(cl);
482 mutex_lock(&ca->set->bucket_lock);
483 goto again;
484 }
485 }
486
487 return -1;
488 }
489
490 void bch_bucket_free(struct cache_set *c, struct bkey *k)
491 {
492 unsigned i;
493
494 for (i = 0; i < KEY_PTRS(k); i++) {
495 struct bucket *b = PTR_BUCKET(c, k, i);
496
497 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
498 SET_GC_SECTORS_USED(b, 0);
499 bch_bucket_add_unused(PTR_CACHE(c, k, i), b);
500 }
501 }
502
503 int __bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
504 struct bkey *k, int n, struct closure *cl)
505 {
506 int i;
507
508 lockdep_assert_held(&c->bucket_lock);
509 BUG_ON(!n || n > c->caches_loaded || n > 8);
510
511 bkey_init(k);
512
513 /* sort by free space/prio of oldest data in caches */
514
515 for (i = 0; i < n; i++) {
516 struct cache *ca = c->cache_by_alloc[i];
517 long b = bch_bucket_alloc(ca, watermark, cl);
518
519 if (b == -1)
520 goto err;
521
522 k->ptr[i] = PTR(ca->buckets[b].gen,
523 bucket_to_sector(c, b),
524 ca->sb.nr_this_dev);
525
526 SET_KEY_PTRS(k, i + 1);
527 }
528
529 return 0;
530 err:
531 bch_bucket_free(c, k);
532 __bkey_put(c, k);
533 return -1;
534 }
535
536 int bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
537 struct bkey *k, int n, struct closure *cl)
538 {
539 int ret;
540 mutex_lock(&c->bucket_lock);
541 ret = __bch_bucket_alloc_set(c, watermark, k, n, cl);
542 mutex_unlock(&c->bucket_lock);
543 return ret;
544 }
545
546 /* Init */
547
548 int bch_cache_allocator_start(struct cache *ca)
549 {
550 struct task_struct *k = kthread_run(bch_allocator_thread,
551 ca, "bcache_allocator");
552 if (IS_ERR(k))
553 return PTR_ERR(k);
554
555 ca->alloc_thread = k;
556 return 0;
557 }
558
559 void bch_cache_allocator_exit(struct cache *ca)
560 {
561 struct discard *d;
562
563 while (!list_empty(&ca->discards)) {
564 d = list_first_entry(&ca->discards, struct discard, list);
565 cancel_work_sync(&d->work);
566 list_del(&d->list);
567 kfree(d);
568 }
569 }
570
571 int bch_cache_allocator_init(struct cache *ca)
572 {
573 unsigned i;
574
575 /*
576 * Reserve:
577 * Prio/gen writes first
578 * Then 8 for btree allocations
579 * Then half for the moving garbage collector
580 */
581
582 ca->watermark[WATERMARK_PRIO] = 0;
583
584 ca->watermark[WATERMARK_METADATA] = prio_buckets(ca);
585
586 ca->watermark[WATERMARK_MOVINGGC] = 8 +
587 ca->watermark[WATERMARK_METADATA];
588
589 ca->watermark[WATERMARK_NONE] = ca->free.size / 2 +
590 ca->watermark[WATERMARK_MOVINGGC];
591
592 for (i = 0; i < MAX_IN_FLIGHT_DISCARDS; i++) {
593 struct discard *d = kzalloc(sizeof(*d), GFP_KERNEL);
594 if (!d)
595 return -ENOMEM;
596
597 d->ca = ca;
598 INIT_WORK(&d->work, discard_finish);
599 list_add(&d->list, &ca->discards);
600 }
601
602 return 0;
603 }
This page took 0.042589 seconds and 5 git commands to generate.