bcache: Convert bch_btree_read_async() to bch_btree_map_keys()
[deliverable/linux.git] / drivers / md / bcache / journal.c
1 /*
2 * bcache journalling code, for btree insertions
3 *
4 * Copyright 2012 Google, Inc.
5 */
6
7 #include "bcache.h"
8 #include "btree.h"
9 #include "debug.h"
10
11 #include <trace/events/bcache.h>
12
13 /*
14 * Journal replay/recovery:
15 *
16 * This code is all driven from run_cache_set(); we first read the journal
17 * entries, do some other stuff, then we mark all the keys in the journal
18 * entries (same as garbage collection would), then we replay them - reinserting
19 * them into the cache in precisely the same order as they appear in the
20 * journal.
21 *
22 * We only journal keys that go in leaf nodes, which simplifies things quite a
23 * bit.
24 */
25
26 static void journal_read_endio(struct bio *bio, int error)
27 {
28 struct closure *cl = bio->bi_private;
29 closure_put(cl);
30 }
31
32 static int journal_read_bucket(struct cache *ca, struct list_head *list,
33 struct btree_op *op, unsigned bucket_index)
34 {
35 struct journal_device *ja = &ca->journal;
36 struct bio *bio = &ja->bio;
37
38 struct journal_replay *i;
39 struct jset *j, *data = ca->set->journal.w[0].data;
40 unsigned len, left, offset = 0;
41 int ret = 0;
42 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]);
43
44 pr_debug("reading %llu", (uint64_t) bucket);
45
46 while (offset < ca->sb.bucket_size) {
47 reread: left = ca->sb.bucket_size - offset;
48 len = min_t(unsigned, left, PAGE_SECTORS * 8);
49
50 bio_reset(bio);
51 bio->bi_sector = bucket + offset;
52 bio->bi_bdev = ca->bdev;
53 bio->bi_rw = READ;
54 bio->bi_size = len << 9;
55
56 bio->bi_end_io = journal_read_endio;
57 bio->bi_private = &op->cl;
58 bch_bio_map(bio, data);
59
60 closure_bio_submit(bio, &op->cl, ca);
61 closure_sync(&op->cl);
62
63 /* This function could be simpler now since we no longer write
64 * journal entries that overlap bucket boundaries; this means
65 * the start of a bucket will always have a valid journal entry
66 * if it has any journal entries at all.
67 */
68
69 j = data;
70 while (len) {
71 struct list_head *where;
72 size_t blocks, bytes = set_bytes(j);
73
74 if (j->magic != jset_magic(ca->set))
75 return ret;
76
77 if (bytes > left << 9)
78 return ret;
79
80 if (bytes > len << 9)
81 goto reread;
82
83 if (j->csum != csum_set(j))
84 return ret;
85
86 blocks = set_blocks(j, ca->set);
87
88 while (!list_empty(list)) {
89 i = list_first_entry(list,
90 struct journal_replay, list);
91 if (i->j.seq >= j->last_seq)
92 break;
93 list_del(&i->list);
94 kfree(i);
95 }
96
97 list_for_each_entry_reverse(i, list, list) {
98 if (j->seq == i->j.seq)
99 goto next_set;
100
101 if (j->seq < i->j.last_seq)
102 goto next_set;
103
104 if (j->seq > i->j.seq) {
105 where = &i->list;
106 goto add;
107 }
108 }
109
110 where = list;
111 add:
112 i = kmalloc(offsetof(struct journal_replay, j) +
113 bytes, GFP_KERNEL);
114 if (!i)
115 return -ENOMEM;
116 memcpy(&i->j, j, bytes);
117 list_add(&i->list, where);
118 ret = 1;
119
120 ja->seq[bucket_index] = j->seq;
121 next_set:
122 offset += blocks * ca->sb.block_size;
123 len -= blocks * ca->sb.block_size;
124 j = ((void *) j) + blocks * block_bytes(ca);
125 }
126 }
127
128 return ret;
129 }
130
131 int bch_journal_read(struct cache_set *c, struct list_head *list,
132 struct btree_op *op)
133 {
134 #define read_bucket(b) \
135 ({ \
136 int ret = journal_read_bucket(ca, list, op, b); \
137 __set_bit(b, bitmap); \
138 if (ret < 0) \
139 return ret; \
140 ret; \
141 })
142
143 struct cache *ca;
144 unsigned iter;
145
146 for_each_cache(ca, c, iter) {
147 struct journal_device *ja = &ca->journal;
148 unsigned long bitmap[SB_JOURNAL_BUCKETS / BITS_PER_LONG];
149 unsigned i, l, r, m;
150 uint64_t seq;
151
152 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
153 pr_debug("%u journal buckets", ca->sb.njournal_buckets);
154
155 /*
156 * Read journal buckets ordered by golden ratio hash to quickly
157 * find a sequence of buckets with valid journal entries
158 */
159 for (i = 0; i < ca->sb.njournal_buckets; i++) {
160 l = (i * 2654435769U) % ca->sb.njournal_buckets;
161
162 if (test_bit(l, bitmap))
163 break;
164
165 if (read_bucket(l))
166 goto bsearch;
167 }
168
169 /*
170 * If that fails, check all the buckets we haven't checked
171 * already
172 */
173 pr_debug("falling back to linear search");
174
175 for (l = find_first_zero_bit(bitmap, ca->sb.njournal_buckets);
176 l < ca->sb.njournal_buckets;
177 l = find_next_zero_bit(bitmap, ca->sb.njournal_buckets, l + 1))
178 if (read_bucket(l))
179 goto bsearch;
180
181 if (list_empty(list))
182 continue;
183 bsearch:
184 /* Binary search */
185 m = r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
186 pr_debug("starting binary search, l %u r %u", l, r);
187
188 while (l + 1 < r) {
189 seq = list_entry(list->prev, struct journal_replay,
190 list)->j.seq;
191
192 m = (l + r) >> 1;
193 read_bucket(m);
194
195 if (seq != list_entry(list->prev, struct journal_replay,
196 list)->j.seq)
197 l = m;
198 else
199 r = m;
200 }
201
202 /*
203 * Read buckets in reverse order until we stop finding more
204 * journal entries
205 */
206 pr_debug("finishing up: m %u njournal_buckets %u",
207 m, ca->sb.njournal_buckets);
208 l = m;
209
210 while (1) {
211 if (!l--)
212 l = ca->sb.njournal_buckets - 1;
213
214 if (l == m)
215 break;
216
217 if (test_bit(l, bitmap))
218 continue;
219
220 if (!read_bucket(l))
221 break;
222 }
223
224 seq = 0;
225
226 for (i = 0; i < ca->sb.njournal_buckets; i++)
227 if (ja->seq[i] > seq) {
228 seq = ja->seq[i];
229 ja->cur_idx = ja->discard_idx =
230 ja->last_idx = i;
231
232 }
233 }
234
235 if (!list_empty(list))
236 c->journal.seq = list_entry(list->prev,
237 struct journal_replay,
238 list)->j.seq;
239
240 return 0;
241 #undef read_bucket
242 }
243
244 void bch_journal_mark(struct cache_set *c, struct list_head *list)
245 {
246 atomic_t p = { 0 };
247 struct bkey *k;
248 struct journal_replay *i;
249 struct journal *j = &c->journal;
250 uint64_t last = j->seq;
251
252 /*
253 * journal.pin should never fill up - we never write a journal
254 * entry when it would fill up. But if for some reason it does, we
255 * iterate over the list in reverse order so that we can just skip that
256 * refcount instead of bugging.
257 */
258
259 list_for_each_entry_reverse(i, list, list) {
260 BUG_ON(last < i->j.seq);
261 i->pin = NULL;
262
263 while (last-- != i->j.seq)
264 if (fifo_free(&j->pin) > 1) {
265 fifo_push_front(&j->pin, p);
266 atomic_set(&fifo_front(&j->pin), 0);
267 }
268
269 if (fifo_free(&j->pin) > 1) {
270 fifo_push_front(&j->pin, p);
271 i->pin = &fifo_front(&j->pin);
272 atomic_set(i->pin, 1);
273 }
274
275 for (k = i->j.start;
276 k < end(&i->j);
277 k = bkey_next(k)) {
278 unsigned j;
279
280 for (j = 0; j < KEY_PTRS(k); j++) {
281 struct bucket *g = PTR_BUCKET(c, k, j);
282 atomic_inc(&g->pin);
283
284 if (g->prio == BTREE_PRIO &&
285 !ptr_stale(c, k, j))
286 g->prio = INITIAL_PRIO;
287 }
288
289 __bch_btree_mark_key(c, 0, k);
290 }
291 }
292 }
293
294 int bch_journal_replay(struct cache_set *s, struct list_head *list,
295 struct btree_op *op)
296 {
297 int ret = 0, keys = 0, entries = 0;
298 struct bkey *k;
299 struct journal_replay *i =
300 list_entry(list->prev, struct journal_replay, list);
301
302 uint64_t start = i->j.last_seq, end = i->j.seq, n = start;
303 struct keylist keylist;
304
305 bch_keylist_init(&keylist);
306
307 list_for_each_entry(i, list, list) {
308 BUG_ON(i->pin && atomic_read(i->pin) != 1);
309
310 cache_set_err_on(n != i->j.seq, s,
311 "bcache: journal entries %llu-%llu missing! (replaying %llu-%llu)",
312 n, i->j.seq - 1, start, end);
313
314 for (k = i->j.start;
315 k < end(&i->j);
316 k = bkey_next(k)) {
317 trace_bcache_journal_replay_key(k);
318
319 bkey_copy(keylist.top, k);
320 bch_keylist_push(&keylist);
321
322 op->journal = i->pin;
323
324 ret = bch_btree_insert(op, s, &keylist);
325 if (ret)
326 goto err;
327
328 BUG_ON(!bch_keylist_empty(&keylist));
329 keys++;
330
331 cond_resched();
332 }
333
334 if (i->pin)
335 atomic_dec(i->pin);
336 n = i->j.seq + 1;
337 entries++;
338 }
339
340 pr_info("journal replay done, %i keys in %i entries, seq %llu",
341 keys, entries, end);
342
343 while (!list_empty(list)) {
344 i = list_first_entry(list, struct journal_replay, list);
345 list_del(&i->list);
346 kfree(i);
347 }
348 err:
349 closure_sync(&op->cl);
350 return ret;
351 }
352
353 /* Journalling */
354
355 static void btree_flush_write(struct cache_set *c)
356 {
357 /*
358 * Try to find the btree node with that references the oldest journal
359 * entry, best is our current candidate and is locked if non NULL:
360 */
361 struct btree *b, *best;
362 unsigned i;
363 retry:
364 best = NULL;
365
366 for_each_cached_btree(b, c, i)
367 if (btree_current_write(b)->journal) {
368 if (!best)
369 best = b;
370 else if (journal_pin_cmp(c,
371 btree_current_write(best),
372 btree_current_write(b))) {
373 best = b;
374 }
375 }
376
377 b = best;
378 if (b) {
379 rw_lock(true, b, b->level);
380
381 if (!btree_current_write(b)->journal) {
382 rw_unlock(true, b);
383 /* We raced */
384 goto retry;
385 }
386
387 bch_btree_node_write(b, NULL);
388 rw_unlock(true, b);
389 }
390 }
391
392 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1)
393
394 static void journal_discard_endio(struct bio *bio, int error)
395 {
396 struct journal_device *ja =
397 container_of(bio, struct journal_device, discard_bio);
398 struct cache *ca = container_of(ja, struct cache, journal);
399
400 atomic_set(&ja->discard_in_flight, DISCARD_DONE);
401
402 closure_wake_up(&ca->set->journal.wait);
403 closure_put(&ca->set->cl);
404 }
405
406 static void journal_discard_work(struct work_struct *work)
407 {
408 struct journal_device *ja =
409 container_of(work, struct journal_device, discard_work);
410
411 submit_bio(0, &ja->discard_bio);
412 }
413
414 static void do_journal_discard(struct cache *ca)
415 {
416 struct journal_device *ja = &ca->journal;
417 struct bio *bio = &ja->discard_bio;
418
419 if (!ca->discard) {
420 ja->discard_idx = ja->last_idx;
421 return;
422 }
423
424 switch (atomic_read(&ja->discard_in_flight)) {
425 case DISCARD_IN_FLIGHT:
426 return;
427
428 case DISCARD_DONE:
429 ja->discard_idx = (ja->discard_idx + 1) %
430 ca->sb.njournal_buckets;
431
432 atomic_set(&ja->discard_in_flight, DISCARD_READY);
433 /* fallthrough */
434
435 case DISCARD_READY:
436 if (ja->discard_idx == ja->last_idx)
437 return;
438
439 atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT);
440
441 bio_init(bio);
442 bio->bi_sector = bucket_to_sector(ca->set,
443 ca->sb.d[ja->discard_idx]);
444 bio->bi_bdev = ca->bdev;
445 bio->bi_rw = REQ_WRITE|REQ_DISCARD;
446 bio->bi_max_vecs = 1;
447 bio->bi_io_vec = bio->bi_inline_vecs;
448 bio->bi_size = bucket_bytes(ca);
449 bio->bi_end_io = journal_discard_endio;
450
451 closure_get(&ca->set->cl);
452 INIT_WORK(&ja->discard_work, journal_discard_work);
453 schedule_work(&ja->discard_work);
454 }
455 }
456
457 static void journal_reclaim(struct cache_set *c)
458 {
459 struct bkey *k = &c->journal.key;
460 struct cache *ca;
461 uint64_t last_seq;
462 unsigned iter, n = 0;
463 atomic_t p;
464
465 while (!atomic_read(&fifo_front(&c->journal.pin)))
466 fifo_pop(&c->journal.pin, p);
467
468 last_seq = last_seq(&c->journal);
469
470 /* Update last_idx */
471
472 for_each_cache(ca, c, iter) {
473 struct journal_device *ja = &ca->journal;
474
475 while (ja->last_idx != ja->cur_idx &&
476 ja->seq[ja->last_idx] < last_seq)
477 ja->last_idx = (ja->last_idx + 1) %
478 ca->sb.njournal_buckets;
479 }
480
481 for_each_cache(ca, c, iter)
482 do_journal_discard(ca);
483
484 if (c->journal.blocks_free)
485 goto out;
486
487 /*
488 * Allocate:
489 * XXX: Sort by free journal space
490 */
491
492 for_each_cache(ca, c, iter) {
493 struct journal_device *ja = &ca->journal;
494 unsigned next = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
495
496 /* No space available on this device */
497 if (next == ja->discard_idx)
498 continue;
499
500 ja->cur_idx = next;
501 k->ptr[n++] = PTR(0,
502 bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
503 ca->sb.nr_this_dev);
504 }
505
506 bkey_init(k);
507 SET_KEY_PTRS(k, n);
508
509 if (n)
510 c->journal.blocks_free = c->sb.bucket_size >> c->block_bits;
511 out:
512 if (!journal_full(&c->journal))
513 __closure_wake_up(&c->journal.wait);
514 }
515
516 void bch_journal_next(struct journal *j)
517 {
518 atomic_t p = { 1 };
519
520 j->cur = (j->cur == j->w)
521 ? &j->w[1]
522 : &j->w[0];
523
524 /*
525 * The fifo_push() needs to happen at the same time as j->seq is
526 * incremented for last_seq() to be calculated correctly
527 */
528 BUG_ON(!fifo_push(&j->pin, p));
529 atomic_set(&fifo_back(&j->pin), 1);
530
531 j->cur->data->seq = ++j->seq;
532 j->cur->need_write = false;
533 j->cur->data->keys = 0;
534
535 if (fifo_full(&j->pin))
536 pr_debug("journal_pin full (%zu)", fifo_used(&j->pin));
537 }
538
539 static void journal_write_endio(struct bio *bio, int error)
540 {
541 struct journal_write *w = bio->bi_private;
542
543 cache_set_err_on(error, w->c, "journal io error");
544 closure_put(&w->c->journal.io);
545 }
546
547 static void journal_write(struct closure *);
548
549 static void journal_write_done(struct closure *cl)
550 {
551 struct journal *j = container_of(cl, struct journal, io);
552 struct journal_write *w = (j->cur == j->w)
553 ? &j->w[1]
554 : &j->w[0];
555
556 __closure_wake_up(&w->wait);
557 continue_at_nobarrier(cl, journal_write, system_wq);
558 }
559
560 static void journal_write_unlocked(struct closure *cl)
561 __releases(c->journal.lock)
562 {
563 struct cache_set *c = container_of(cl, struct cache_set, journal.io);
564 struct cache *ca;
565 struct journal_write *w = c->journal.cur;
566 struct bkey *k = &c->journal.key;
567 unsigned i, sectors = set_blocks(w->data, c) * c->sb.block_size;
568
569 struct bio *bio;
570 struct bio_list list;
571 bio_list_init(&list);
572
573 if (!w->need_write) {
574 /*
575 * XXX: have to unlock closure before we unlock journal lock,
576 * else we race with bch_journal(). But this way we race
577 * against cache set unregister. Doh.
578 */
579 set_closure_fn(cl, NULL, NULL);
580 closure_sub(cl, CLOSURE_RUNNING + 1);
581 spin_unlock(&c->journal.lock);
582 return;
583 } else if (journal_full(&c->journal)) {
584 journal_reclaim(c);
585 spin_unlock(&c->journal.lock);
586
587 btree_flush_write(c);
588 continue_at(cl, journal_write, system_wq);
589 }
590
591 c->journal.blocks_free -= set_blocks(w->data, c);
592
593 w->data->btree_level = c->root->level;
594
595 bkey_copy(&w->data->btree_root, &c->root->key);
596 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);
597
598 for_each_cache(ca, c, i)
599 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
600
601 w->data->magic = jset_magic(c);
602 w->data->version = BCACHE_JSET_VERSION;
603 w->data->last_seq = last_seq(&c->journal);
604 w->data->csum = csum_set(w->data);
605
606 for (i = 0; i < KEY_PTRS(k); i++) {
607 ca = PTR_CACHE(c, k, i);
608 bio = &ca->journal.bio;
609
610 atomic_long_add(sectors, &ca->meta_sectors_written);
611
612 bio_reset(bio);
613 bio->bi_sector = PTR_OFFSET(k, i);
614 bio->bi_bdev = ca->bdev;
615 bio->bi_rw = REQ_WRITE|REQ_SYNC|REQ_META|REQ_FLUSH|REQ_FUA;
616 bio->bi_size = sectors << 9;
617
618 bio->bi_end_io = journal_write_endio;
619 bio->bi_private = w;
620 bch_bio_map(bio, w->data);
621
622 trace_bcache_journal_write(bio);
623 bio_list_add(&list, bio);
624
625 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors);
626
627 ca->journal.seq[ca->journal.cur_idx] = w->data->seq;
628 }
629
630 atomic_dec_bug(&fifo_back(&c->journal.pin));
631 bch_journal_next(&c->journal);
632 journal_reclaim(c);
633
634 spin_unlock(&c->journal.lock);
635
636 while ((bio = bio_list_pop(&list)))
637 closure_bio_submit(bio, cl, c->cache[0]);
638
639 continue_at(cl, journal_write_done, NULL);
640 }
641
642 static void journal_write(struct closure *cl)
643 {
644 struct cache_set *c = container_of(cl, struct cache_set, journal.io);
645
646 spin_lock(&c->journal.lock);
647 journal_write_unlocked(cl);
648 }
649
650 static void journal_try_write(struct cache_set *c)
651 __releases(c->journal.lock)
652 {
653 struct closure *cl = &c->journal.io;
654 struct journal_write *w = c->journal.cur;
655
656 w->need_write = true;
657
658 if (closure_trylock(cl, &c->cl))
659 journal_write_unlocked(cl);
660 else
661 spin_unlock(&c->journal.lock);
662 }
663
664 static struct journal_write *journal_wait_for_write(struct cache_set *c,
665 unsigned nkeys)
666 {
667 size_t sectors;
668 struct closure cl;
669
670 closure_init_stack(&cl);
671
672 spin_lock(&c->journal.lock);
673
674 while (1) {
675 struct journal_write *w = c->journal.cur;
676
677 sectors = __set_blocks(w->data, w->data->keys + nkeys,
678 c) * c->sb.block_size;
679
680 if (sectors <= min_t(size_t,
681 c->journal.blocks_free * c->sb.block_size,
682 PAGE_SECTORS << JSET_BITS))
683 return w;
684
685 /* XXX: tracepoint */
686 if (!journal_full(&c->journal)) {
687 trace_bcache_journal_entry_full(c);
688
689 /*
690 * XXX: If we were inserting so many keys that they
691 * won't fit in an _empty_ journal write, we'll
692 * deadlock. For now, handle this in
693 * bch_keylist_realloc() - but something to think about.
694 */
695 BUG_ON(!w->data->keys);
696
697 closure_wait(&w->wait, &cl);
698 journal_try_write(c); /* unlocks */
699 } else {
700 trace_bcache_journal_full(c);
701
702 closure_wait(&c->journal.wait, &cl);
703 journal_reclaim(c);
704 spin_unlock(&c->journal.lock);
705
706 btree_flush_write(c);
707 }
708
709 closure_sync(&cl);
710 spin_lock(&c->journal.lock);
711 }
712 }
713
714 static void journal_write_work(struct work_struct *work)
715 {
716 struct cache_set *c = container_of(to_delayed_work(work),
717 struct cache_set,
718 journal.work);
719 spin_lock(&c->journal.lock);
720 journal_try_write(c);
721 }
722
723 /*
724 * Entry point to the journalling code - bio_insert() and btree_invalidate()
725 * pass bch_journal() a list of keys to be journalled, and then
726 * bch_journal() hands those same keys off to btree_insert_async()
727 */
728
729 atomic_t *bch_journal(struct cache_set *c,
730 struct keylist *keys,
731 struct closure *parent)
732 {
733 struct journal_write *w;
734 atomic_t *ret;
735
736 if (!CACHE_SYNC(&c->sb))
737 return NULL;
738
739 w = journal_wait_for_write(c, bch_keylist_nkeys(keys));
740
741 memcpy(end(w->data), keys->keys, bch_keylist_bytes(keys));
742 w->data->keys += bch_keylist_nkeys(keys);
743
744 ret = &fifo_back(&c->journal.pin);
745 atomic_inc(ret);
746
747 if (parent) {
748 closure_wait(&w->wait, parent);
749 journal_try_write(c);
750 } else if (!w->need_write) {
751 schedule_delayed_work(&c->journal.work,
752 msecs_to_jiffies(c->journal_delay_ms));
753 spin_unlock(&c->journal.lock);
754 } else {
755 spin_unlock(&c->journal.lock);
756 }
757
758
759 return ret;
760 }
761
762 void bch_journal_meta(struct cache_set *c, struct closure *cl)
763 {
764 struct keylist keys;
765 atomic_t *ref;
766
767 bch_keylist_init(&keys);
768
769 ref = bch_journal(c, &keys, cl);
770 if (ref)
771 atomic_dec_bug(ref);
772 }
773
774 void bch_journal_free(struct cache_set *c)
775 {
776 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS);
777 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS);
778 free_fifo(&c->journal.pin);
779 }
780
781 int bch_journal_alloc(struct cache_set *c)
782 {
783 struct journal *j = &c->journal;
784
785 closure_init_unlocked(&j->io);
786 spin_lock_init(&j->lock);
787 INIT_DELAYED_WORK(&j->work, journal_write_work);
788
789 c->journal_delay_ms = 100;
790
791 j->w[0].c = c;
792 j->w[1].c = c;
793
794 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
795 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) ||
796 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)))
797 return -ENOMEM;
798
799 return 0;
800 }
This page took 0.048441 seconds and 6 git commands to generate.