Merge tag 'pci-v3.15-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[deliverable/linux.git] / drivers / md / bcache / request.c
1 /*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/cgroup.h>
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include "blk-cgroup.h"
20
21 #include <trace/events/bcache.h>
22
23 #define CUTOFF_CACHE_ADD 95
24 #define CUTOFF_CACHE_READA 90
25
26 struct kmem_cache *bch_search_cache;
27
28 static void bch_data_insert_start(struct closure *);
29
30 /* Cgroup interface */
31
32 #ifdef CONFIG_CGROUP_BCACHE
33 static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
34
35 static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
36 {
37 struct cgroup_subsys_state *css;
38 return cgroup &&
39 (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
40 ? container_of(css, struct bch_cgroup, css)
41 : &bcache_default_cgroup;
42 }
43
44 struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
45 {
46 struct cgroup_subsys_state *css = bio->bi_css
47 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
48 : task_subsys_state(current, bcache_subsys_id);
49
50 return css
51 ? container_of(css, struct bch_cgroup, css)
52 : &bcache_default_cgroup;
53 }
54
55 static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
56 struct file *file,
57 char __user *buf, size_t nbytes, loff_t *ppos)
58 {
59 char tmp[1024];
60 int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
61 cgroup_to_bcache(cgrp)->cache_mode + 1);
62
63 if (len < 0)
64 return len;
65
66 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
67 }
68
69 static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
70 const char *buf)
71 {
72 int v = bch_read_string_list(buf, bch_cache_modes);
73 if (v < 0)
74 return v;
75
76 cgroup_to_bcache(cgrp)->cache_mode = v - 1;
77 return 0;
78 }
79
80 static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
81 {
82 return cgroup_to_bcache(cgrp)->verify;
83 }
84
85 static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
86 {
87 cgroup_to_bcache(cgrp)->verify = val;
88 return 0;
89 }
90
91 static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
92 {
93 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
94 return atomic_read(&bcachecg->stats.cache_hits);
95 }
96
97 static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
98 {
99 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
100 return atomic_read(&bcachecg->stats.cache_misses);
101 }
102
103 static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
104 struct cftype *cft)
105 {
106 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
107 return atomic_read(&bcachecg->stats.cache_bypass_hits);
108 }
109
110 static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
111 struct cftype *cft)
112 {
113 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
114 return atomic_read(&bcachecg->stats.cache_bypass_misses);
115 }
116
117 static struct cftype bch_files[] = {
118 {
119 .name = "cache_mode",
120 .read = cache_mode_read,
121 .write_string = cache_mode_write,
122 },
123 {
124 .name = "verify",
125 .read_u64 = bch_verify_read,
126 .write_u64 = bch_verify_write,
127 },
128 {
129 .name = "cache_hits",
130 .read_u64 = bch_cache_hits_read,
131 },
132 {
133 .name = "cache_misses",
134 .read_u64 = bch_cache_misses_read,
135 },
136 {
137 .name = "cache_bypass_hits",
138 .read_u64 = bch_cache_bypass_hits_read,
139 },
140 {
141 .name = "cache_bypass_misses",
142 .read_u64 = bch_cache_bypass_misses_read,
143 },
144 { } /* terminate */
145 };
146
147 static void init_bch_cgroup(struct bch_cgroup *cg)
148 {
149 cg->cache_mode = -1;
150 }
151
152 static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
153 {
154 struct bch_cgroup *cg;
155
156 cg = kzalloc(sizeof(*cg), GFP_KERNEL);
157 if (!cg)
158 return ERR_PTR(-ENOMEM);
159 init_bch_cgroup(cg);
160 return &cg->css;
161 }
162
163 static void bcachecg_destroy(struct cgroup *cgroup)
164 {
165 struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
166 kfree(cg);
167 }
168
169 struct cgroup_subsys bcache_subsys = {
170 .create = bcachecg_create,
171 .destroy = bcachecg_destroy,
172 .subsys_id = bcache_subsys_id,
173 .name = "bcache",
174 .module = THIS_MODULE,
175 };
176 EXPORT_SYMBOL_GPL(bcache_subsys);
177 #endif
178
179 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
180 {
181 #ifdef CONFIG_CGROUP_BCACHE
182 int r = bch_bio_to_cgroup(bio)->cache_mode;
183 if (r >= 0)
184 return r;
185 #endif
186 return BDEV_CACHE_MODE(&dc->sb);
187 }
188
189 static bool verify(struct cached_dev *dc, struct bio *bio)
190 {
191 #ifdef CONFIG_CGROUP_BCACHE
192 if (bch_bio_to_cgroup(bio)->verify)
193 return true;
194 #endif
195 return dc->verify;
196 }
197
198 static void bio_csum(struct bio *bio, struct bkey *k)
199 {
200 struct bio_vec bv;
201 struct bvec_iter iter;
202 uint64_t csum = 0;
203
204 bio_for_each_segment(bv, bio, iter) {
205 void *d = kmap(bv.bv_page) + bv.bv_offset;
206 csum = bch_crc64_update(csum, d, bv.bv_len);
207 kunmap(bv.bv_page);
208 }
209
210 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
211 }
212
213 /* Insert data into cache */
214
215 static void bch_data_insert_keys(struct closure *cl)
216 {
217 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
218 atomic_t *journal_ref = NULL;
219 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
220 int ret;
221
222 /*
223 * If we're looping, might already be waiting on
224 * another journal write - can't wait on more than one journal write at
225 * a time
226 *
227 * XXX: this looks wrong
228 */
229 #if 0
230 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
231 closure_sync(&s->cl);
232 #endif
233
234 if (!op->replace)
235 journal_ref = bch_journal(op->c, &op->insert_keys,
236 op->flush_journal ? cl : NULL);
237
238 ret = bch_btree_insert(op->c, &op->insert_keys,
239 journal_ref, replace_key);
240 if (ret == -ESRCH) {
241 op->replace_collision = true;
242 } else if (ret) {
243 op->error = -ENOMEM;
244 op->insert_data_done = true;
245 }
246
247 if (journal_ref)
248 atomic_dec_bug(journal_ref);
249
250 if (!op->insert_data_done)
251 continue_at(cl, bch_data_insert_start, bcache_wq);
252
253 bch_keylist_free(&op->insert_keys);
254 closure_return(cl);
255 }
256
257 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
258 struct cache_set *c)
259 {
260 size_t oldsize = bch_keylist_nkeys(l);
261 size_t newsize = oldsize + u64s;
262
263 /*
264 * The journalling code doesn't handle the case where the keys to insert
265 * is bigger than an empty write: If we just return -ENOMEM here,
266 * bio_insert() and bio_invalidate() will insert the keys created so far
267 * and finish the rest when the keylist is empty.
268 */
269 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
270 return -ENOMEM;
271
272 return __bch_keylist_realloc(l, u64s);
273 }
274
275 static void bch_data_invalidate(struct closure *cl)
276 {
277 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
278 struct bio *bio = op->bio;
279
280 pr_debug("invalidating %i sectors from %llu",
281 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
282
283 while (bio_sectors(bio)) {
284 unsigned sectors = min(bio_sectors(bio),
285 1U << (KEY_SIZE_BITS - 1));
286
287 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
288 goto out;
289
290 bio->bi_iter.bi_sector += sectors;
291 bio->bi_iter.bi_size -= sectors << 9;
292
293 bch_keylist_add(&op->insert_keys,
294 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
295 }
296
297 op->insert_data_done = true;
298 bio_put(bio);
299 out:
300 continue_at(cl, bch_data_insert_keys, bcache_wq);
301 }
302
303 static void bch_data_insert_error(struct closure *cl)
304 {
305 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
306
307 /*
308 * Our data write just errored, which means we've got a bunch of keys to
309 * insert that point to data that wasn't succesfully written.
310 *
311 * We don't have to insert those keys but we still have to invalidate
312 * that region of the cache - so, if we just strip off all the pointers
313 * from the keys we'll accomplish just that.
314 */
315
316 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
317
318 while (src != op->insert_keys.top) {
319 struct bkey *n = bkey_next(src);
320
321 SET_KEY_PTRS(src, 0);
322 memmove(dst, src, bkey_bytes(src));
323
324 dst = bkey_next(dst);
325 src = n;
326 }
327
328 op->insert_keys.top = dst;
329
330 bch_data_insert_keys(cl);
331 }
332
333 static void bch_data_insert_endio(struct bio *bio, int error)
334 {
335 struct closure *cl = bio->bi_private;
336 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
337
338 if (error) {
339 /* TODO: We could try to recover from this. */
340 if (op->writeback)
341 op->error = error;
342 else if (!op->replace)
343 set_closure_fn(cl, bch_data_insert_error, bcache_wq);
344 else
345 set_closure_fn(cl, NULL, NULL);
346 }
347
348 bch_bbio_endio(op->c, bio, error, "writing data to cache");
349 }
350
351 static void bch_data_insert_start(struct closure *cl)
352 {
353 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
354 struct bio *bio = op->bio, *n;
355
356 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
357 set_gc_sectors(op->c);
358 wake_up_gc(op->c);
359 }
360
361 if (op->bypass)
362 return bch_data_invalidate(cl);
363
364 /*
365 * Journal writes are marked REQ_FLUSH; if the original write was a
366 * flush, it'll wait on the journal write.
367 */
368 bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
369
370 do {
371 unsigned i;
372 struct bkey *k;
373 struct bio_set *split = op->c->bio_split;
374
375 /* 1 for the device pointer and 1 for the chksum */
376 if (bch_keylist_realloc(&op->insert_keys,
377 3 + (op->csum ? 1 : 0),
378 op->c))
379 continue_at(cl, bch_data_insert_keys, bcache_wq);
380
381 k = op->insert_keys.top;
382 bkey_init(k);
383 SET_KEY_INODE(k, op->inode);
384 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
385
386 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
387 op->write_point, op->write_prio,
388 op->writeback))
389 goto err;
390
391 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
392
393 n->bi_end_io = bch_data_insert_endio;
394 n->bi_private = cl;
395
396 if (op->writeback) {
397 SET_KEY_DIRTY(k, true);
398
399 for (i = 0; i < KEY_PTRS(k); i++)
400 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
401 GC_MARK_DIRTY);
402 }
403
404 SET_KEY_CSUM(k, op->csum);
405 if (KEY_CSUM(k))
406 bio_csum(n, k);
407
408 trace_bcache_cache_insert(k);
409 bch_keylist_push(&op->insert_keys);
410
411 n->bi_rw |= REQ_WRITE;
412 bch_submit_bbio(n, op->c, k, 0);
413 } while (n != bio);
414
415 op->insert_data_done = true;
416 continue_at(cl, bch_data_insert_keys, bcache_wq);
417 err:
418 /* bch_alloc_sectors() blocks if s->writeback = true */
419 BUG_ON(op->writeback);
420
421 /*
422 * But if it's not a writeback write we'd rather just bail out if
423 * there aren't any buckets ready to write to - it might take awhile and
424 * we might be starving btree writes for gc or something.
425 */
426
427 if (!op->replace) {
428 /*
429 * Writethrough write: We can't complete the write until we've
430 * updated the index. But we don't want to delay the write while
431 * we wait for buckets to be freed up, so just invalidate the
432 * rest of the write.
433 */
434 op->bypass = true;
435 return bch_data_invalidate(cl);
436 } else {
437 /*
438 * From a cache miss, we can just insert the keys for the data
439 * we have written or bail out if we didn't do anything.
440 */
441 op->insert_data_done = true;
442 bio_put(bio);
443
444 if (!bch_keylist_empty(&op->insert_keys))
445 continue_at(cl, bch_data_insert_keys, bcache_wq);
446 else
447 closure_return(cl);
448 }
449 }
450
451 /**
452 * bch_data_insert - stick some data in the cache
453 *
454 * This is the starting point for any data to end up in a cache device; it could
455 * be from a normal write, or a writeback write, or a write to a flash only
456 * volume - it's also used by the moving garbage collector to compact data in
457 * mostly empty buckets.
458 *
459 * It first writes the data to the cache, creating a list of keys to be inserted
460 * (if the data had to be fragmented there will be multiple keys); after the
461 * data is written it calls bch_journal, and after the keys have been added to
462 * the next journal write they're inserted into the btree.
463 *
464 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
465 * and op->inode is used for the key inode.
466 *
467 * If s->bypass is true, instead of inserting the data it invalidates the
468 * region of the cache represented by s->cache_bio and op->inode.
469 */
470 void bch_data_insert(struct closure *cl)
471 {
472 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
473
474 trace_bcache_write(op->bio, op->writeback, op->bypass);
475
476 bch_keylist_init(&op->insert_keys);
477 bio_get(op->bio);
478 bch_data_insert_start(cl);
479 }
480
481 /* Congested? */
482
483 unsigned bch_get_congested(struct cache_set *c)
484 {
485 int i;
486 long rand;
487
488 if (!c->congested_read_threshold_us &&
489 !c->congested_write_threshold_us)
490 return 0;
491
492 i = (local_clock_us() - c->congested_last_us) / 1024;
493 if (i < 0)
494 return 0;
495
496 i += atomic_read(&c->congested);
497 if (i >= 0)
498 return 0;
499
500 i += CONGESTED_MAX;
501
502 if (i > 0)
503 i = fract_exp_two(i, 6);
504
505 rand = get_random_int();
506 i -= bitmap_weight(&rand, BITS_PER_LONG);
507
508 return i > 0 ? i : 1;
509 }
510
511 static void add_sequential(struct task_struct *t)
512 {
513 ewma_add(t->sequential_io_avg,
514 t->sequential_io, 8, 0);
515
516 t->sequential_io = 0;
517 }
518
519 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
520 {
521 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
522 }
523
524 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
525 {
526 struct cache_set *c = dc->disk.c;
527 unsigned mode = cache_mode(dc, bio);
528 unsigned sectors, congested = bch_get_congested(c);
529 struct task_struct *task = current;
530 struct io *i;
531
532 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
533 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
534 (bio->bi_rw & REQ_DISCARD))
535 goto skip;
536
537 if (mode == CACHE_MODE_NONE ||
538 (mode == CACHE_MODE_WRITEAROUND &&
539 (bio->bi_rw & REQ_WRITE)))
540 goto skip;
541
542 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
543 bio_sectors(bio) & (c->sb.block_size - 1)) {
544 pr_debug("skipping unaligned io");
545 goto skip;
546 }
547
548 if (bypass_torture_test(dc)) {
549 if ((get_random_int() & 3) == 3)
550 goto skip;
551 else
552 goto rescale;
553 }
554
555 if (!congested && !dc->sequential_cutoff)
556 goto rescale;
557
558 if (!congested &&
559 mode == CACHE_MODE_WRITEBACK &&
560 (bio->bi_rw & REQ_WRITE) &&
561 (bio->bi_rw & REQ_SYNC))
562 goto rescale;
563
564 spin_lock(&dc->io_lock);
565
566 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
567 if (i->last == bio->bi_iter.bi_sector &&
568 time_before(jiffies, i->jiffies))
569 goto found;
570
571 i = list_first_entry(&dc->io_lru, struct io, lru);
572
573 add_sequential(task);
574 i->sequential = 0;
575 found:
576 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
577 i->sequential += bio->bi_iter.bi_size;
578
579 i->last = bio_end_sector(bio);
580 i->jiffies = jiffies + msecs_to_jiffies(5000);
581 task->sequential_io = i->sequential;
582
583 hlist_del(&i->hash);
584 hlist_add_head(&i->hash, iohash(dc, i->last));
585 list_move_tail(&i->lru, &dc->io_lru);
586
587 spin_unlock(&dc->io_lock);
588
589 sectors = max(task->sequential_io,
590 task->sequential_io_avg) >> 9;
591
592 if (dc->sequential_cutoff &&
593 sectors >= dc->sequential_cutoff >> 9) {
594 trace_bcache_bypass_sequential(bio);
595 goto skip;
596 }
597
598 if (congested && sectors >= congested) {
599 trace_bcache_bypass_congested(bio);
600 goto skip;
601 }
602
603 rescale:
604 bch_rescale_priorities(c, bio_sectors(bio));
605 return false;
606 skip:
607 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
608 return true;
609 }
610
611 /* Cache lookup */
612
613 struct search {
614 /* Stack frame for bio_complete */
615 struct closure cl;
616
617 struct bbio bio;
618 struct bio *orig_bio;
619 struct bio *cache_miss;
620 struct bcache_device *d;
621
622 unsigned insert_bio_sectors;
623 unsigned recoverable:1;
624 unsigned write:1;
625 unsigned read_dirty_data:1;
626
627 unsigned long start_time;
628
629 struct btree_op op;
630 struct data_insert_op iop;
631 };
632
633 static void bch_cache_read_endio(struct bio *bio, int error)
634 {
635 struct bbio *b = container_of(bio, struct bbio, bio);
636 struct closure *cl = bio->bi_private;
637 struct search *s = container_of(cl, struct search, cl);
638
639 /*
640 * If the bucket was reused while our bio was in flight, we might have
641 * read the wrong data. Set s->error but not error so it doesn't get
642 * counted against the cache device, but we'll still reread the data
643 * from the backing device.
644 */
645
646 if (error)
647 s->iop.error = error;
648 else if (!KEY_DIRTY(&b->key) &&
649 ptr_stale(s->iop.c, &b->key, 0)) {
650 atomic_long_inc(&s->iop.c->cache_read_races);
651 s->iop.error = -EINTR;
652 }
653
654 bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
655 }
656
657 /*
658 * Read from a single key, handling the initial cache miss if the key starts in
659 * the middle of the bio
660 */
661 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
662 {
663 struct search *s = container_of(op, struct search, op);
664 struct bio *n, *bio = &s->bio.bio;
665 struct bkey *bio_key;
666 unsigned ptr;
667
668 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
669 return MAP_CONTINUE;
670
671 if (KEY_INODE(k) != s->iop.inode ||
672 KEY_START(k) > bio->bi_iter.bi_sector) {
673 unsigned bio_sectors = bio_sectors(bio);
674 unsigned sectors = KEY_INODE(k) == s->iop.inode
675 ? min_t(uint64_t, INT_MAX,
676 KEY_START(k) - bio->bi_iter.bi_sector)
677 : INT_MAX;
678
679 int ret = s->d->cache_miss(b, s, bio, sectors);
680 if (ret != MAP_CONTINUE)
681 return ret;
682
683 /* if this was a complete miss we shouldn't get here */
684 BUG_ON(bio_sectors <= sectors);
685 }
686
687 if (!KEY_SIZE(k))
688 return MAP_CONTINUE;
689
690 /* XXX: figure out best pointer - for multiple cache devices */
691 ptr = 0;
692
693 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
694
695 if (KEY_DIRTY(k))
696 s->read_dirty_data = true;
697
698 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
699 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
700 GFP_NOIO, s->d->bio_split);
701
702 bio_key = &container_of(n, struct bbio, bio)->key;
703 bch_bkey_copy_single_ptr(bio_key, k, ptr);
704
705 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
706 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
707
708 n->bi_end_io = bch_cache_read_endio;
709 n->bi_private = &s->cl;
710
711 /*
712 * The bucket we're reading from might be reused while our bio
713 * is in flight, and we could then end up reading the wrong
714 * data.
715 *
716 * We guard against this by checking (in cache_read_endio()) if
717 * the pointer is stale again; if so, we treat it as an error
718 * and reread from the backing device (but we don't pass that
719 * error up anywhere).
720 */
721
722 __bch_submit_bbio(n, b->c);
723 return n == bio ? MAP_DONE : MAP_CONTINUE;
724 }
725
726 static void cache_lookup(struct closure *cl)
727 {
728 struct search *s = container_of(cl, struct search, iop.cl);
729 struct bio *bio = &s->bio.bio;
730 int ret;
731
732 bch_btree_op_init(&s->op, -1);
733
734 ret = bch_btree_map_keys(&s->op, s->iop.c,
735 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
736 cache_lookup_fn, MAP_END_KEY);
737 if (ret == -EAGAIN)
738 continue_at(cl, cache_lookup, bcache_wq);
739
740 closure_return(cl);
741 }
742
743 /* Common code for the make_request functions */
744
745 static void request_endio(struct bio *bio, int error)
746 {
747 struct closure *cl = bio->bi_private;
748
749 if (error) {
750 struct search *s = container_of(cl, struct search, cl);
751 s->iop.error = error;
752 /* Only cache read errors are recoverable */
753 s->recoverable = false;
754 }
755
756 bio_put(bio);
757 closure_put(cl);
758 }
759
760 static void bio_complete(struct search *s)
761 {
762 if (s->orig_bio) {
763 int cpu, rw = bio_data_dir(s->orig_bio);
764 unsigned long duration = jiffies - s->start_time;
765
766 cpu = part_stat_lock();
767 part_round_stats(cpu, &s->d->disk->part0);
768 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
769 part_stat_unlock();
770
771 trace_bcache_request_end(s->d, s->orig_bio);
772 bio_endio(s->orig_bio, s->iop.error);
773 s->orig_bio = NULL;
774 }
775 }
776
777 static void do_bio_hook(struct search *s, struct bio *orig_bio)
778 {
779 struct bio *bio = &s->bio.bio;
780
781 bio_init(bio);
782 __bio_clone_fast(bio, orig_bio);
783 bio->bi_end_io = request_endio;
784 bio->bi_private = &s->cl;
785
786 atomic_set(&bio->bi_cnt, 3);
787 }
788
789 static void search_free(struct closure *cl)
790 {
791 struct search *s = container_of(cl, struct search, cl);
792 bio_complete(s);
793
794 if (s->iop.bio)
795 bio_put(s->iop.bio);
796
797 closure_debug_destroy(cl);
798 mempool_free(s, s->d->c->search);
799 }
800
801 static inline struct search *search_alloc(struct bio *bio,
802 struct bcache_device *d)
803 {
804 struct search *s;
805
806 s = mempool_alloc(d->c->search, GFP_NOIO);
807
808 closure_init(&s->cl, NULL);
809 do_bio_hook(s, bio);
810
811 s->orig_bio = bio;
812 s->cache_miss = NULL;
813 s->d = d;
814 s->recoverable = 1;
815 s->write = (bio->bi_rw & REQ_WRITE) != 0;
816 s->read_dirty_data = 0;
817 s->start_time = jiffies;
818
819 s->iop.c = d->c;
820 s->iop.bio = NULL;
821 s->iop.inode = d->id;
822 s->iop.write_point = hash_long((unsigned long) current, 16);
823 s->iop.write_prio = 0;
824 s->iop.error = 0;
825 s->iop.flags = 0;
826 s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
827
828 return s;
829 }
830
831 /* Cached devices */
832
833 static void cached_dev_bio_complete(struct closure *cl)
834 {
835 struct search *s = container_of(cl, struct search, cl);
836 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
837
838 search_free(cl);
839 cached_dev_put(dc);
840 }
841
842 /* Process reads */
843
844 static void cached_dev_cache_miss_done(struct closure *cl)
845 {
846 struct search *s = container_of(cl, struct search, cl);
847
848 if (s->iop.replace_collision)
849 bch_mark_cache_miss_collision(s->iop.c, s->d);
850
851 if (s->iop.bio) {
852 int i;
853 struct bio_vec *bv;
854
855 bio_for_each_segment_all(bv, s->iop.bio, i)
856 __free_page(bv->bv_page);
857 }
858
859 cached_dev_bio_complete(cl);
860 }
861
862 static void cached_dev_read_error(struct closure *cl)
863 {
864 struct search *s = container_of(cl, struct search, cl);
865 struct bio *bio = &s->bio.bio;
866
867 if (s->recoverable) {
868 /* Retry from the backing device: */
869 trace_bcache_read_retry(s->orig_bio);
870
871 s->iop.error = 0;
872 do_bio_hook(s, s->orig_bio);
873
874 /* XXX: invalidate cache */
875
876 closure_bio_submit(bio, cl, s->d);
877 }
878
879 continue_at(cl, cached_dev_cache_miss_done, NULL);
880 }
881
882 static void cached_dev_read_done(struct closure *cl)
883 {
884 struct search *s = container_of(cl, struct search, cl);
885 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
886
887 /*
888 * We had a cache miss; cache_bio now contains data ready to be inserted
889 * into the cache.
890 *
891 * First, we copy the data we just read from cache_bio's bounce buffers
892 * to the buffers the original bio pointed to:
893 */
894
895 if (s->iop.bio) {
896 bio_reset(s->iop.bio);
897 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
898 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
899 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
900 bch_bio_map(s->iop.bio, NULL);
901
902 bio_copy_data(s->cache_miss, s->iop.bio);
903
904 bio_put(s->cache_miss);
905 s->cache_miss = NULL;
906 }
907
908 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
909 bch_data_verify(dc, s->orig_bio);
910
911 bio_complete(s);
912
913 if (s->iop.bio &&
914 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
915 BUG_ON(!s->iop.replace);
916 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
917 }
918
919 continue_at(cl, cached_dev_cache_miss_done, NULL);
920 }
921
922 static void cached_dev_read_done_bh(struct closure *cl)
923 {
924 struct search *s = container_of(cl, struct search, cl);
925 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
926
927 bch_mark_cache_accounting(s->iop.c, s->d,
928 !s->cache_miss, s->iop.bypass);
929 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
930
931 if (s->iop.error)
932 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
933 else if (s->iop.bio || verify(dc, &s->bio.bio))
934 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
935 else
936 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
937 }
938
939 static int cached_dev_cache_miss(struct btree *b, struct search *s,
940 struct bio *bio, unsigned sectors)
941 {
942 int ret = MAP_CONTINUE;
943 unsigned reada = 0;
944 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
945 struct bio *miss, *cache_bio;
946
947 if (s->cache_miss || s->iop.bypass) {
948 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
949 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
950 goto out_submit;
951 }
952
953 if (!(bio->bi_rw & REQ_RAHEAD) &&
954 !(bio->bi_rw & REQ_META) &&
955 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
956 reada = min_t(sector_t, dc->readahead >> 9,
957 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
958
959 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
960
961 s->iop.replace_key = KEY(s->iop.inode,
962 bio->bi_iter.bi_sector + s->insert_bio_sectors,
963 s->insert_bio_sectors);
964
965 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
966 if (ret)
967 return ret;
968
969 s->iop.replace = true;
970
971 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
972
973 /* btree_search_recurse()'s btree iterator is no good anymore */
974 ret = miss == bio ? MAP_DONE : -EINTR;
975
976 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
977 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
978 dc->disk.bio_split);
979 if (!cache_bio)
980 goto out_submit;
981
982 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
983 cache_bio->bi_bdev = miss->bi_bdev;
984 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
985
986 cache_bio->bi_end_io = request_endio;
987 cache_bio->bi_private = &s->cl;
988
989 bch_bio_map(cache_bio, NULL);
990 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
991 goto out_put;
992
993 if (reada)
994 bch_mark_cache_readahead(s->iop.c, s->d);
995
996 s->cache_miss = miss;
997 s->iop.bio = cache_bio;
998 bio_get(cache_bio);
999 closure_bio_submit(cache_bio, &s->cl, s->d);
1000
1001 return ret;
1002 out_put:
1003 bio_put(cache_bio);
1004 out_submit:
1005 miss->bi_end_io = request_endio;
1006 miss->bi_private = &s->cl;
1007 closure_bio_submit(miss, &s->cl, s->d);
1008 return ret;
1009 }
1010
1011 static void cached_dev_read(struct cached_dev *dc, struct search *s)
1012 {
1013 struct closure *cl = &s->cl;
1014
1015 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1016 continue_at(cl, cached_dev_read_done_bh, NULL);
1017 }
1018
1019 /* Process writes */
1020
1021 static void cached_dev_write_complete(struct closure *cl)
1022 {
1023 struct search *s = container_of(cl, struct search, cl);
1024 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1025
1026 up_read_non_owner(&dc->writeback_lock);
1027 cached_dev_bio_complete(cl);
1028 }
1029
1030 static void cached_dev_write(struct cached_dev *dc, struct search *s)
1031 {
1032 struct closure *cl = &s->cl;
1033 struct bio *bio = &s->bio.bio;
1034 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
1035 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
1036
1037 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
1038
1039 down_read_non_owner(&dc->writeback_lock);
1040 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
1041 /*
1042 * We overlap with some dirty data undergoing background
1043 * writeback, force this write to writeback
1044 */
1045 s->iop.bypass = false;
1046 s->iop.writeback = true;
1047 }
1048
1049 /*
1050 * Discards aren't _required_ to do anything, so skipping if
1051 * check_overlapping returned true is ok
1052 *
1053 * But check_overlapping drops dirty keys for which io hasn't started,
1054 * so we still want to call it.
1055 */
1056 if (bio->bi_rw & REQ_DISCARD)
1057 s->iop.bypass = true;
1058
1059 if (should_writeback(dc, s->orig_bio,
1060 cache_mode(dc, bio),
1061 s->iop.bypass)) {
1062 s->iop.bypass = false;
1063 s->iop.writeback = true;
1064 }
1065
1066 if (s->iop.bypass) {
1067 s->iop.bio = s->orig_bio;
1068 bio_get(s->iop.bio);
1069
1070 if (!(bio->bi_rw & REQ_DISCARD) ||
1071 blk_queue_discard(bdev_get_queue(dc->bdev)))
1072 closure_bio_submit(bio, cl, s->d);
1073 } else if (s->iop.writeback) {
1074 bch_writeback_add(dc);
1075 s->iop.bio = bio;
1076
1077 if (bio->bi_rw & REQ_FLUSH) {
1078 /* Also need to send a flush to the backing device */
1079 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
1080 dc->disk.bio_split);
1081
1082 flush->bi_rw = WRITE_FLUSH;
1083 flush->bi_bdev = bio->bi_bdev;
1084 flush->bi_end_io = request_endio;
1085 flush->bi_private = cl;
1086
1087 closure_bio_submit(flush, cl, s->d);
1088 }
1089 } else {
1090 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
1091
1092 closure_bio_submit(bio, cl, s->d);
1093 }
1094
1095 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1096 continue_at(cl, cached_dev_write_complete, NULL);
1097 }
1098
1099 static void cached_dev_nodata(struct closure *cl)
1100 {
1101 struct search *s = container_of(cl, struct search, cl);
1102 struct bio *bio = &s->bio.bio;
1103
1104 if (s->iop.flush_journal)
1105 bch_journal_meta(s->iop.c, cl);
1106
1107 /* If it's a flush, we send the flush to the backing device too */
1108 closure_bio_submit(bio, cl, s->d);
1109
1110 continue_at(cl, cached_dev_bio_complete, NULL);
1111 }
1112
1113 /* Cached devices - read & write stuff */
1114
1115 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1116 {
1117 struct search *s;
1118 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1119 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1120 int cpu, rw = bio_data_dir(bio);
1121
1122 cpu = part_stat_lock();
1123 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1124 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1125 part_stat_unlock();
1126
1127 bio->bi_bdev = dc->bdev;
1128 bio->bi_iter.bi_sector += dc->sb.data_offset;
1129
1130 if (cached_dev_get(dc)) {
1131 s = search_alloc(bio, d);
1132 trace_bcache_request_start(s->d, bio);
1133
1134 if (!bio->bi_iter.bi_size) {
1135 /*
1136 * can't call bch_journal_meta from under
1137 * generic_make_request
1138 */
1139 continue_at_nobarrier(&s->cl,
1140 cached_dev_nodata,
1141 bcache_wq);
1142 } else {
1143 s->iop.bypass = check_should_bypass(dc, bio);
1144
1145 if (rw)
1146 cached_dev_write(dc, s);
1147 else
1148 cached_dev_read(dc, s);
1149 }
1150 } else {
1151 if ((bio->bi_rw & REQ_DISCARD) &&
1152 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1153 bio_endio(bio, 0);
1154 else
1155 bch_generic_make_request(bio, &d->bio_split_hook);
1156 }
1157 }
1158
1159 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1160 unsigned int cmd, unsigned long arg)
1161 {
1162 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1163 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1164 }
1165
1166 static int cached_dev_congested(void *data, int bits)
1167 {
1168 struct bcache_device *d = data;
1169 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1170 struct request_queue *q = bdev_get_queue(dc->bdev);
1171 int ret = 0;
1172
1173 if (bdi_congested(&q->backing_dev_info, bits))
1174 return 1;
1175
1176 if (cached_dev_get(dc)) {
1177 unsigned i;
1178 struct cache *ca;
1179
1180 for_each_cache(ca, d->c, i) {
1181 q = bdev_get_queue(ca->bdev);
1182 ret |= bdi_congested(&q->backing_dev_info, bits);
1183 }
1184
1185 cached_dev_put(dc);
1186 }
1187
1188 return ret;
1189 }
1190
1191 void bch_cached_dev_request_init(struct cached_dev *dc)
1192 {
1193 struct gendisk *g = dc->disk.disk;
1194
1195 g->queue->make_request_fn = cached_dev_make_request;
1196 g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1197 dc->disk.cache_miss = cached_dev_cache_miss;
1198 dc->disk.ioctl = cached_dev_ioctl;
1199 }
1200
1201 /* Flash backed devices */
1202
1203 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1204 struct bio *bio, unsigned sectors)
1205 {
1206 struct bio_vec bv;
1207 struct bvec_iter iter;
1208
1209 /* Zero fill bio */
1210
1211 bio_for_each_segment(bv, bio, iter) {
1212 unsigned j = min(bv.bv_len >> 9, sectors);
1213
1214 void *p = kmap(bv.bv_page);
1215 memset(p + bv.bv_offset, 0, j << 9);
1216 kunmap(bv.bv_page);
1217
1218 sectors -= j;
1219 }
1220
1221 bio_advance(bio, min(sectors << 9, bio->bi_iter.bi_size));
1222
1223 if (!bio->bi_iter.bi_size)
1224 return MAP_DONE;
1225
1226 return MAP_CONTINUE;
1227 }
1228
1229 static void flash_dev_nodata(struct closure *cl)
1230 {
1231 struct search *s = container_of(cl, struct search, cl);
1232
1233 if (s->iop.flush_journal)
1234 bch_journal_meta(s->iop.c, cl);
1235
1236 continue_at(cl, search_free, NULL);
1237 }
1238
1239 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1240 {
1241 struct search *s;
1242 struct closure *cl;
1243 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1244 int cpu, rw = bio_data_dir(bio);
1245
1246 cpu = part_stat_lock();
1247 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1248 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1249 part_stat_unlock();
1250
1251 s = search_alloc(bio, d);
1252 cl = &s->cl;
1253 bio = &s->bio.bio;
1254
1255 trace_bcache_request_start(s->d, bio);
1256
1257 if (!bio->bi_iter.bi_size) {
1258 /*
1259 * can't call bch_journal_meta from under
1260 * generic_make_request
1261 */
1262 continue_at_nobarrier(&s->cl,
1263 flash_dev_nodata,
1264 bcache_wq);
1265 } else if (rw) {
1266 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1267 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1268 &KEY(d->id, bio_end_sector(bio), 0));
1269
1270 s->iop.bypass = (bio->bi_rw & REQ_DISCARD) != 0;
1271 s->iop.writeback = true;
1272 s->iop.bio = bio;
1273
1274 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1275 } else {
1276 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1277 }
1278
1279 continue_at(cl, search_free, NULL);
1280 }
1281
1282 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1283 unsigned int cmd, unsigned long arg)
1284 {
1285 return -ENOTTY;
1286 }
1287
1288 static int flash_dev_congested(void *data, int bits)
1289 {
1290 struct bcache_device *d = data;
1291 struct request_queue *q;
1292 struct cache *ca;
1293 unsigned i;
1294 int ret = 0;
1295
1296 for_each_cache(ca, d->c, i) {
1297 q = bdev_get_queue(ca->bdev);
1298 ret |= bdi_congested(&q->backing_dev_info, bits);
1299 }
1300
1301 return ret;
1302 }
1303
1304 void bch_flash_dev_request_init(struct bcache_device *d)
1305 {
1306 struct gendisk *g = d->disk;
1307
1308 g->queue->make_request_fn = flash_dev_make_request;
1309 g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1310 d->cache_miss = flash_dev_cache_miss;
1311 d->ioctl = flash_dev_ioctl;
1312 }
1313
1314 void bch_request_exit(void)
1315 {
1316 #ifdef CONFIG_CGROUP_BCACHE
1317 cgroup_unload_subsys(&bcache_subsys);
1318 #endif
1319 if (bch_search_cache)
1320 kmem_cache_destroy(bch_search_cache);
1321 }
1322
1323 int __init bch_request_init(void)
1324 {
1325 bch_search_cache = KMEM_CACHE(search, 0);
1326 if (!bch_search_cache)
1327 return -ENOMEM;
1328
1329 #ifdef CONFIG_CGROUP_BCACHE
1330 cgroup_load_subsys(&bcache_subsys);
1331 init_bch_cgroup(&bcache_default_cgroup);
1332
1333 cgroup_add_cftypes(&bcache_subsys, bch_files);
1334 #endif
1335 return 0;
1336 }
This page took 0.059329 seconds and 5 git commands to generate.