Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[deliverable/linux.git] / drivers / md / bcache / super.c
1 /*
2 * bcache setup/teardown code, and some metadata io - read a superblock and
3 * figure out what to do with it.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29
30 static const char bcache_magic[] = {
31 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34
35 static const char invalid_uuid[] = {
36 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42 "default",
43 "writethrough",
44 "writeback",
45 "writearound",
46 "none",
47 NULL
48 };
49
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54
55 static int bcache_major;
56 static DEFINE_IDA(bcache_minor);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59
60 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
61
62 /* Superblock */
63
64 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
65 struct page **res)
66 {
67 const char *err;
68 struct cache_sb *s;
69 struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
70 unsigned i;
71
72 if (!bh)
73 return "IO error";
74
75 s = (struct cache_sb *) bh->b_data;
76
77 sb->offset = le64_to_cpu(s->offset);
78 sb->version = le64_to_cpu(s->version);
79
80 memcpy(sb->magic, s->magic, 16);
81 memcpy(sb->uuid, s->uuid, 16);
82 memcpy(sb->set_uuid, s->set_uuid, 16);
83 memcpy(sb->label, s->label, SB_LABEL_SIZE);
84
85 sb->flags = le64_to_cpu(s->flags);
86 sb->seq = le64_to_cpu(s->seq);
87 sb->last_mount = le32_to_cpu(s->last_mount);
88 sb->first_bucket = le16_to_cpu(s->first_bucket);
89 sb->keys = le16_to_cpu(s->keys);
90
91 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
92 sb->d[i] = le64_to_cpu(s->d[i]);
93
94 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
95 sb->version, sb->flags, sb->seq, sb->keys);
96
97 err = "Not a bcache superblock";
98 if (sb->offset != SB_SECTOR)
99 goto err;
100
101 if (memcmp(sb->magic, bcache_magic, 16))
102 goto err;
103
104 err = "Too many journal buckets";
105 if (sb->keys > SB_JOURNAL_BUCKETS)
106 goto err;
107
108 err = "Bad checksum";
109 if (s->csum != csum_set(s))
110 goto err;
111
112 err = "Bad UUID";
113 if (bch_is_zero(sb->uuid, 16))
114 goto err;
115
116 sb->block_size = le16_to_cpu(s->block_size);
117
118 err = "Superblock block size smaller than device block size";
119 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
120 goto err;
121
122 switch (sb->version) {
123 case BCACHE_SB_VERSION_BDEV:
124 sb->data_offset = BDEV_DATA_START_DEFAULT;
125 break;
126 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
127 sb->data_offset = le64_to_cpu(s->data_offset);
128
129 err = "Bad data offset";
130 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
131 goto err;
132
133 break;
134 case BCACHE_SB_VERSION_CDEV:
135 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
136 sb->nbuckets = le64_to_cpu(s->nbuckets);
137 sb->block_size = le16_to_cpu(s->block_size);
138 sb->bucket_size = le16_to_cpu(s->bucket_size);
139
140 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
141 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
142
143 err = "Too many buckets";
144 if (sb->nbuckets > LONG_MAX)
145 goto err;
146
147 err = "Not enough buckets";
148 if (sb->nbuckets < 1 << 7)
149 goto err;
150
151 err = "Bad block/bucket size";
152 if (!is_power_of_2(sb->block_size) ||
153 sb->block_size > PAGE_SECTORS ||
154 !is_power_of_2(sb->bucket_size) ||
155 sb->bucket_size < PAGE_SECTORS)
156 goto err;
157
158 err = "Invalid superblock: device too small";
159 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
160 goto err;
161
162 err = "Bad UUID";
163 if (bch_is_zero(sb->set_uuid, 16))
164 goto err;
165
166 err = "Bad cache device number in set";
167 if (!sb->nr_in_set ||
168 sb->nr_in_set <= sb->nr_this_dev ||
169 sb->nr_in_set > MAX_CACHES_PER_SET)
170 goto err;
171
172 err = "Journal buckets not sequential";
173 for (i = 0; i < sb->keys; i++)
174 if (sb->d[i] != sb->first_bucket + i)
175 goto err;
176
177 err = "Too many journal buckets";
178 if (sb->first_bucket + sb->keys > sb->nbuckets)
179 goto err;
180
181 err = "Invalid superblock: first bucket comes before end of super";
182 if (sb->first_bucket * sb->bucket_size < 16)
183 goto err;
184
185 break;
186 default:
187 err = "Unsupported superblock version";
188 goto err;
189 }
190
191 sb->last_mount = get_seconds();
192 err = NULL;
193
194 get_page(bh->b_page);
195 *res = bh->b_page;
196 err:
197 put_bh(bh);
198 return err;
199 }
200
201 static void write_bdev_super_endio(struct bio *bio)
202 {
203 struct cached_dev *dc = bio->bi_private;
204 /* XXX: error checking */
205
206 closure_put(&dc->sb_write);
207 }
208
209 static void __write_super(struct cache_sb *sb, struct bio *bio)
210 {
211 struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
212 unsigned i;
213
214 bio->bi_iter.bi_sector = SB_SECTOR;
215 bio->bi_rw = REQ_SYNC|REQ_META;
216 bio->bi_iter.bi_size = SB_SIZE;
217 bch_bio_map(bio, NULL);
218
219 out->offset = cpu_to_le64(sb->offset);
220 out->version = cpu_to_le64(sb->version);
221
222 memcpy(out->uuid, sb->uuid, 16);
223 memcpy(out->set_uuid, sb->set_uuid, 16);
224 memcpy(out->label, sb->label, SB_LABEL_SIZE);
225
226 out->flags = cpu_to_le64(sb->flags);
227 out->seq = cpu_to_le64(sb->seq);
228
229 out->last_mount = cpu_to_le32(sb->last_mount);
230 out->first_bucket = cpu_to_le16(sb->first_bucket);
231 out->keys = cpu_to_le16(sb->keys);
232
233 for (i = 0; i < sb->keys; i++)
234 out->d[i] = cpu_to_le64(sb->d[i]);
235
236 out->csum = csum_set(out);
237
238 pr_debug("ver %llu, flags %llu, seq %llu",
239 sb->version, sb->flags, sb->seq);
240
241 submit_bio(REQ_WRITE, bio);
242 }
243
244 static void bch_write_bdev_super_unlock(struct closure *cl)
245 {
246 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
247
248 up(&dc->sb_write_mutex);
249 }
250
251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
252 {
253 struct closure *cl = &dc->sb_write;
254 struct bio *bio = &dc->sb_bio;
255
256 down(&dc->sb_write_mutex);
257 closure_init(cl, parent);
258
259 bio_reset(bio);
260 bio->bi_bdev = dc->bdev;
261 bio->bi_end_io = write_bdev_super_endio;
262 bio->bi_private = dc;
263
264 closure_get(cl);
265 __write_super(&dc->sb, bio);
266
267 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
268 }
269
270 static void write_super_endio(struct bio *bio)
271 {
272 struct cache *ca = bio->bi_private;
273
274 bch_count_io_errors(ca, bio->bi_error, "writing superblock");
275 closure_put(&ca->set->sb_write);
276 }
277
278 static void bcache_write_super_unlock(struct closure *cl)
279 {
280 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
281
282 up(&c->sb_write_mutex);
283 }
284
285 void bcache_write_super(struct cache_set *c)
286 {
287 struct closure *cl = &c->sb_write;
288 struct cache *ca;
289 unsigned i;
290
291 down(&c->sb_write_mutex);
292 closure_init(cl, &c->cl);
293
294 c->sb.seq++;
295
296 for_each_cache(ca, c, i) {
297 struct bio *bio = &ca->sb_bio;
298
299 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
300 ca->sb.seq = c->sb.seq;
301 ca->sb.last_mount = c->sb.last_mount;
302
303 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
304
305 bio_reset(bio);
306 bio->bi_bdev = ca->bdev;
307 bio->bi_end_io = write_super_endio;
308 bio->bi_private = ca;
309
310 closure_get(cl);
311 __write_super(&ca->sb, bio);
312 }
313
314 closure_return_with_destructor(cl, bcache_write_super_unlock);
315 }
316
317 /* UUID io */
318
319 static void uuid_endio(struct bio *bio)
320 {
321 struct closure *cl = bio->bi_private;
322 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
323
324 cache_set_err_on(bio->bi_error, c, "accessing uuids");
325 bch_bbio_free(bio, c);
326 closure_put(cl);
327 }
328
329 static void uuid_io_unlock(struct closure *cl)
330 {
331 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
332
333 up(&c->uuid_write_mutex);
334 }
335
336 static void uuid_io(struct cache_set *c, unsigned long rw,
337 struct bkey *k, struct closure *parent)
338 {
339 struct closure *cl = &c->uuid_write;
340 struct uuid_entry *u;
341 unsigned i;
342 char buf[80];
343
344 BUG_ON(!parent);
345 down(&c->uuid_write_mutex);
346 closure_init(cl, parent);
347
348 for (i = 0; i < KEY_PTRS(k); i++) {
349 struct bio *bio = bch_bbio_alloc(c);
350
351 bio->bi_rw = REQ_SYNC|REQ_META|rw;
352 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
353
354 bio->bi_end_io = uuid_endio;
355 bio->bi_private = cl;
356 bch_bio_map(bio, c->uuids);
357
358 bch_submit_bbio(bio, c, k, i);
359
360 if (!(rw & WRITE))
361 break;
362 }
363
364 bch_extent_to_text(buf, sizeof(buf), k);
365 pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
366
367 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
368 if (!bch_is_zero(u->uuid, 16))
369 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
370 u - c->uuids, u->uuid, u->label,
371 u->first_reg, u->last_reg, u->invalidated);
372
373 closure_return_with_destructor(cl, uuid_io_unlock);
374 }
375
376 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
377 {
378 struct bkey *k = &j->uuid_bucket;
379
380 if (__bch_btree_ptr_invalid(c, k))
381 return "bad uuid pointer";
382
383 bkey_copy(&c->uuid_bucket, k);
384 uuid_io(c, READ_SYNC, k, cl);
385
386 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
387 struct uuid_entry_v0 *u0 = (void *) c->uuids;
388 struct uuid_entry *u1 = (void *) c->uuids;
389 int i;
390
391 closure_sync(cl);
392
393 /*
394 * Since the new uuid entry is bigger than the old, we have to
395 * convert starting at the highest memory address and work down
396 * in order to do it in place
397 */
398
399 for (i = c->nr_uuids - 1;
400 i >= 0;
401 --i) {
402 memcpy(u1[i].uuid, u0[i].uuid, 16);
403 memcpy(u1[i].label, u0[i].label, 32);
404
405 u1[i].first_reg = u0[i].first_reg;
406 u1[i].last_reg = u0[i].last_reg;
407 u1[i].invalidated = u0[i].invalidated;
408
409 u1[i].flags = 0;
410 u1[i].sectors = 0;
411 }
412 }
413
414 return NULL;
415 }
416
417 static int __uuid_write(struct cache_set *c)
418 {
419 BKEY_PADDED(key) k;
420 struct closure cl;
421 closure_init_stack(&cl);
422
423 lockdep_assert_held(&bch_register_lock);
424
425 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
426 return 1;
427
428 SET_KEY_SIZE(&k.key, c->sb.bucket_size);
429 uuid_io(c, REQ_WRITE, &k.key, &cl);
430 closure_sync(&cl);
431
432 bkey_copy(&c->uuid_bucket, &k.key);
433 bkey_put(c, &k.key);
434 return 0;
435 }
436
437 int bch_uuid_write(struct cache_set *c)
438 {
439 int ret = __uuid_write(c);
440
441 if (!ret)
442 bch_journal_meta(c, NULL);
443
444 return ret;
445 }
446
447 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
448 {
449 struct uuid_entry *u;
450
451 for (u = c->uuids;
452 u < c->uuids + c->nr_uuids; u++)
453 if (!memcmp(u->uuid, uuid, 16))
454 return u;
455
456 return NULL;
457 }
458
459 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
460 {
461 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
462 return uuid_find(c, zero_uuid);
463 }
464
465 /*
466 * Bucket priorities/gens:
467 *
468 * For each bucket, we store on disk its
469 * 8 bit gen
470 * 16 bit priority
471 *
472 * See alloc.c for an explanation of the gen. The priority is used to implement
473 * lru (and in the future other) cache replacement policies; for most purposes
474 * it's just an opaque integer.
475 *
476 * The gens and the priorities don't have a whole lot to do with each other, and
477 * it's actually the gens that must be written out at specific times - it's no
478 * big deal if the priorities don't get written, if we lose them we just reuse
479 * buckets in suboptimal order.
480 *
481 * On disk they're stored in a packed array, and in as many buckets are required
482 * to fit them all. The buckets we use to store them form a list; the journal
483 * header points to the first bucket, the first bucket points to the second
484 * bucket, et cetera.
485 *
486 * This code is used by the allocation code; periodically (whenever it runs out
487 * of buckets to allocate from) the allocation code will invalidate some
488 * buckets, but it can't use those buckets until their new gens are safely on
489 * disk.
490 */
491
492 static void prio_endio(struct bio *bio)
493 {
494 struct cache *ca = bio->bi_private;
495
496 cache_set_err_on(bio->bi_error, ca->set, "accessing priorities");
497 bch_bbio_free(bio, ca->set);
498 closure_put(&ca->prio);
499 }
500
501 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
502 {
503 struct closure *cl = &ca->prio;
504 struct bio *bio = bch_bbio_alloc(ca->set);
505
506 closure_init_stack(cl);
507
508 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
509 bio->bi_bdev = ca->bdev;
510 bio->bi_rw = REQ_SYNC|REQ_META|rw;
511 bio->bi_iter.bi_size = bucket_bytes(ca);
512
513 bio->bi_end_io = prio_endio;
514 bio->bi_private = ca;
515 bch_bio_map(bio, ca->disk_buckets);
516
517 closure_bio_submit(bio, &ca->prio);
518 closure_sync(cl);
519 }
520
521 void bch_prio_write(struct cache *ca)
522 {
523 int i;
524 struct bucket *b;
525 struct closure cl;
526
527 closure_init_stack(&cl);
528
529 lockdep_assert_held(&ca->set->bucket_lock);
530
531 ca->disk_buckets->seq++;
532
533 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
534 &ca->meta_sectors_written);
535
536 //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
537 // fifo_used(&ca->free_inc), fifo_used(&ca->unused));
538
539 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
540 long bucket;
541 struct prio_set *p = ca->disk_buckets;
542 struct bucket_disk *d = p->data;
543 struct bucket_disk *end = d + prios_per_bucket(ca);
544
545 for (b = ca->buckets + i * prios_per_bucket(ca);
546 b < ca->buckets + ca->sb.nbuckets && d < end;
547 b++, d++) {
548 d->prio = cpu_to_le16(b->prio);
549 d->gen = b->gen;
550 }
551
552 p->next_bucket = ca->prio_buckets[i + 1];
553 p->magic = pset_magic(&ca->sb);
554 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
555
556 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
557 BUG_ON(bucket == -1);
558
559 mutex_unlock(&ca->set->bucket_lock);
560 prio_io(ca, bucket, REQ_WRITE);
561 mutex_lock(&ca->set->bucket_lock);
562
563 ca->prio_buckets[i] = bucket;
564 atomic_dec_bug(&ca->buckets[bucket].pin);
565 }
566
567 mutex_unlock(&ca->set->bucket_lock);
568
569 bch_journal_meta(ca->set, &cl);
570 closure_sync(&cl);
571
572 mutex_lock(&ca->set->bucket_lock);
573
574 /*
575 * Don't want the old priorities to get garbage collected until after we
576 * finish writing the new ones, and they're journalled
577 */
578 for (i = 0; i < prio_buckets(ca); i++) {
579 if (ca->prio_last_buckets[i])
580 __bch_bucket_free(ca,
581 &ca->buckets[ca->prio_last_buckets[i]]);
582
583 ca->prio_last_buckets[i] = ca->prio_buckets[i];
584 }
585 }
586
587 static void prio_read(struct cache *ca, uint64_t bucket)
588 {
589 struct prio_set *p = ca->disk_buckets;
590 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
591 struct bucket *b;
592 unsigned bucket_nr = 0;
593
594 for (b = ca->buckets;
595 b < ca->buckets + ca->sb.nbuckets;
596 b++, d++) {
597 if (d == end) {
598 ca->prio_buckets[bucket_nr] = bucket;
599 ca->prio_last_buckets[bucket_nr] = bucket;
600 bucket_nr++;
601
602 prio_io(ca, bucket, READ_SYNC);
603
604 if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
605 pr_warn("bad csum reading priorities");
606
607 if (p->magic != pset_magic(&ca->sb))
608 pr_warn("bad magic reading priorities");
609
610 bucket = p->next_bucket;
611 d = p->data;
612 }
613
614 b->prio = le16_to_cpu(d->prio);
615 b->gen = b->last_gc = d->gen;
616 }
617 }
618
619 /* Bcache device */
620
621 static int open_dev(struct block_device *b, fmode_t mode)
622 {
623 struct bcache_device *d = b->bd_disk->private_data;
624 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
625 return -ENXIO;
626
627 closure_get(&d->cl);
628 return 0;
629 }
630
631 static void release_dev(struct gendisk *b, fmode_t mode)
632 {
633 struct bcache_device *d = b->private_data;
634 closure_put(&d->cl);
635 }
636
637 static int ioctl_dev(struct block_device *b, fmode_t mode,
638 unsigned int cmd, unsigned long arg)
639 {
640 struct bcache_device *d = b->bd_disk->private_data;
641 return d->ioctl(d, mode, cmd, arg);
642 }
643
644 static const struct block_device_operations bcache_ops = {
645 .open = open_dev,
646 .release = release_dev,
647 .ioctl = ioctl_dev,
648 .owner = THIS_MODULE,
649 };
650
651 void bcache_device_stop(struct bcache_device *d)
652 {
653 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
654 closure_queue(&d->cl);
655 }
656
657 static void bcache_device_unlink(struct bcache_device *d)
658 {
659 lockdep_assert_held(&bch_register_lock);
660
661 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
662 unsigned i;
663 struct cache *ca;
664
665 sysfs_remove_link(&d->c->kobj, d->name);
666 sysfs_remove_link(&d->kobj, "cache");
667
668 for_each_cache(ca, d->c, i)
669 bd_unlink_disk_holder(ca->bdev, d->disk);
670 }
671 }
672
673 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
674 const char *name)
675 {
676 unsigned i;
677 struct cache *ca;
678
679 for_each_cache(ca, d->c, i)
680 bd_link_disk_holder(ca->bdev, d->disk);
681
682 snprintf(d->name, BCACHEDEVNAME_SIZE,
683 "%s%u", name, d->id);
684
685 WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
686 sysfs_create_link(&c->kobj, &d->kobj, d->name),
687 "Couldn't create device <-> cache set symlinks");
688
689 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
690 }
691
692 static void bcache_device_detach(struct bcache_device *d)
693 {
694 lockdep_assert_held(&bch_register_lock);
695
696 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
697 struct uuid_entry *u = d->c->uuids + d->id;
698
699 SET_UUID_FLASH_ONLY(u, 0);
700 memcpy(u->uuid, invalid_uuid, 16);
701 u->invalidated = cpu_to_le32(get_seconds());
702 bch_uuid_write(d->c);
703 }
704
705 bcache_device_unlink(d);
706
707 d->c->devices[d->id] = NULL;
708 closure_put(&d->c->caching);
709 d->c = NULL;
710 }
711
712 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
713 unsigned id)
714 {
715 d->id = id;
716 d->c = c;
717 c->devices[id] = d;
718
719 closure_get(&c->caching);
720 }
721
722 static void bcache_device_free(struct bcache_device *d)
723 {
724 lockdep_assert_held(&bch_register_lock);
725
726 pr_info("%s stopped", d->disk->disk_name);
727
728 if (d->c)
729 bcache_device_detach(d);
730 if (d->disk && d->disk->flags & GENHD_FL_UP)
731 del_gendisk(d->disk);
732 if (d->disk && d->disk->queue)
733 blk_cleanup_queue(d->disk->queue);
734 if (d->disk) {
735 ida_simple_remove(&bcache_minor, d->disk->first_minor);
736 put_disk(d->disk);
737 }
738
739 if (d->bio_split)
740 bioset_free(d->bio_split);
741 kvfree(d->full_dirty_stripes);
742 kvfree(d->stripe_sectors_dirty);
743
744 closure_debug_destroy(&d->cl);
745 }
746
747 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
748 sector_t sectors)
749 {
750 struct request_queue *q;
751 size_t n;
752 int minor;
753
754 if (!d->stripe_size)
755 d->stripe_size = 1 << 31;
756
757 d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
758
759 if (!d->nr_stripes ||
760 d->nr_stripes > INT_MAX ||
761 d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
762 pr_err("nr_stripes too large");
763 return -ENOMEM;
764 }
765
766 n = d->nr_stripes * sizeof(atomic_t);
767 d->stripe_sectors_dirty = n < PAGE_SIZE << 6
768 ? kzalloc(n, GFP_KERNEL)
769 : vzalloc(n);
770 if (!d->stripe_sectors_dirty)
771 return -ENOMEM;
772
773 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
774 d->full_dirty_stripes = n < PAGE_SIZE << 6
775 ? kzalloc(n, GFP_KERNEL)
776 : vzalloc(n);
777 if (!d->full_dirty_stripes)
778 return -ENOMEM;
779
780 minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
781 if (minor < 0)
782 return minor;
783
784 if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
785 !(d->disk = alloc_disk(1))) {
786 ida_simple_remove(&bcache_minor, minor);
787 return -ENOMEM;
788 }
789
790 set_capacity(d->disk, sectors);
791 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
792
793 d->disk->major = bcache_major;
794 d->disk->first_minor = minor;
795 d->disk->fops = &bcache_ops;
796 d->disk->private_data = d;
797
798 q = blk_alloc_queue(GFP_KERNEL);
799 if (!q)
800 return -ENOMEM;
801
802 blk_queue_make_request(q, NULL);
803 d->disk->queue = q;
804 q->queuedata = d;
805 q->backing_dev_info.congested_data = d;
806 q->limits.max_hw_sectors = UINT_MAX;
807 q->limits.max_sectors = UINT_MAX;
808 q->limits.max_segment_size = UINT_MAX;
809 q->limits.max_segments = BIO_MAX_PAGES;
810 blk_queue_max_discard_sectors(q, UINT_MAX);
811 q->limits.discard_granularity = 512;
812 q->limits.io_min = block_size;
813 q->limits.logical_block_size = block_size;
814 q->limits.physical_block_size = block_size;
815 set_bit(QUEUE_FLAG_NONROT, &d->disk->queue->queue_flags);
816 clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
817 set_bit(QUEUE_FLAG_DISCARD, &d->disk->queue->queue_flags);
818
819 blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
820
821 return 0;
822 }
823
824 /* Cached device */
825
826 static void calc_cached_dev_sectors(struct cache_set *c)
827 {
828 uint64_t sectors = 0;
829 struct cached_dev *dc;
830
831 list_for_each_entry(dc, &c->cached_devs, list)
832 sectors += bdev_sectors(dc->bdev);
833
834 c->cached_dev_sectors = sectors;
835 }
836
837 void bch_cached_dev_run(struct cached_dev *dc)
838 {
839 struct bcache_device *d = &dc->disk;
840 char buf[SB_LABEL_SIZE + 1];
841 char *env[] = {
842 "DRIVER=bcache",
843 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
844 NULL,
845 NULL,
846 };
847
848 memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
849 buf[SB_LABEL_SIZE] = '\0';
850 env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
851
852 if (atomic_xchg(&dc->running, 1)) {
853 kfree(env[1]);
854 kfree(env[2]);
855 return;
856 }
857
858 if (!d->c &&
859 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
860 struct closure cl;
861 closure_init_stack(&cl);
862
863 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
864 bch_write_bdev_super(dc, &cl);
865 closure_sync(&cl);
866 }
867
868 add_disk(d->disk);
869 bd_link_disk_holder(dc->bdev, dc->disk.disk);
870 /* won't show up in the uevent file, use udevadm monitor -e instead
871 * only class / kset properties are persistent */
872 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
873 kfree(env[1]);
874 kfree(env[2]);
875
876 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
877 sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
878 pr_debug("error creating sysfs link");
879 }
880
881 static void cached_dev_detach_finish(struct work_struct *w)
882 {
883 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
884 char buf[BDEVNAME_SIZE];
885 struct closure cl;
886 closure_init_stack(&cl);
887
888 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
889 BUG_ON(atomic_read(&dc->count));
890
891 mutex_lock(&bch_register_lock);
892
893 memset(&dc->sb.set_uuid, 0, 16);
894 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
895
896 bch_write_bdev_super(dc, &cl);
897 closure_sync(&cl);
898
899 bcache_device_detach(&dc->disk);
900 list_move(&dc->list, &uncached_devices);
901
902 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
903 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
904
905 mutex_unlock(&bch_register_lock);
906
907 pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
908
909 /* Drop ref we took in cached_dev_detach() */
910 closure_put(&dc->disk.cl);
911 }
912
913 void bch_cached_dev_detach(struct cached_dev *dc)
914 {
915 lockdep_assert_held(&bch_register_lock);
916
917 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
918 return;
919
920 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
921 return;
922
923 /*
924 * Block the device from being closed and freed until we're finished
925 * detaching
926 */
927 closure_get(&dc->disk.cl);
928
929 bch_writeback_queue(dc);
930 cached_dev_put(dc);
931 }
932
933 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
934 {
935 uint32_t rtime = cpu_to_le32(get_seconds());
936 struct uuid_entry *u;
937 char buf[BDEVNAME_SIZE];
938
939 bdevname(dc->bdev, buf);
940
941 if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
942 return -ENOENT;
943
944 if (dc->disk.c) {
945 pr_err("Can't attach %s: already attached", buf);
946 return -EINVAL;
947 }
948
949 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
950 pr_err("Can't attach %s: shutting down", buf);
951 return -EINVAL;
952 }
953
954 if (dc->sb.block_size < c->sb.block_size) {
955 /* Will die */
956 pr_err("Couldn't attach %s: block size less than set's block size",
957 buf);
958 return -EINVAL;
959 }
960
961 u = uuid_find(c, dc->sb.uuid);
962
963 if (u &&
964 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
965 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
966 memcpy(u->uuid, invalid_uuid, 16);
967 u->invalidated = cpu_to_le32(get_seconds());
968 u = NULL;
969 }
970
971 if (!u) {
972 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
973 pr_err("Couldn't find uuid for %s in set", buf);
974 return -ENOENT;
975 }
976
977 u = uuid_find_empty(c);
978 if (!u) {
979 pr_err("Not caching %s, no room for UUID", buf);
980 return -EINVAL;
981 }
982 }
983
984 /* Deadlocks since we're called via sysfs...
985 sysfs_remove_file(&dc->kobj, &sysfs_attach);
986 */
987
988 if (bch_is_zero(u->uuid, 16)) {
989 struct closure cl;
990 closure_init_stack(&cl);
991
992 memcpy(u->uuid, dc->sb.uuid, 16);
993 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
994 u->first_reg = u->last_reg = rtime;
995 bch_uuid_write(c);
996
997 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
998 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
999
1000 bch_write_bdev_super(dc, &cl);
1001 closure_sync(&cl);
1002 } else {
1003 u->last_reg = rtime;
1004 bch_uuid_write(c);
1005 }
1006
1007 bcache_device_attach(&dc->disk, c, u - c->uuids);
1008 list_move(&dc->list, &c->cached_devs);
1009 calc_cached_dev_sectors(c);
1010
1011 smp_wmb();
1012 /*
1013 * dc->c must be set before dc->count != 0 - paired with the mb in
1014 * cached_dev_get()
1015 */
1016 atomic_set(&dc->count, 1);
1017
1018 if (bch_cached_dev_writeback_start(dc))
1019 return -ENOMEM;
1020
1021 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1022 bch_sectors_dirty_init(dc);
1023 atomic_set(&dc->has_dirty, 1);
1024 atomic_inc(&dc->count);
1025 bch_writeback_queue(dc);
1026 }
1027
1028 bch_cached_dev_run(dc);
1029 bcache_device_link(&dc->disk, c, "bdev");
1030
1031 pr_info("Caching %s as %s on set %pU",
1032 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1033 dc->disk.c->sb.set_uuid);
1034 return 0;
1035 }
1036
1037 void bch_cached_dev_release(struct kobject *kobj)
1038 {
1039 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1040 disk.kobj);
1041 kfree(dc);
1042 module_put(THIS_MODULE);
1043 }
1044
1045 static void cached_dev_free(struct closure *cl)
1046 {
1047 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1048
1049 cancel_delayed_work_sync(&dc->writeback_rate_update);
1050 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1051 kthread_stop(dc->writeback_thread);
1052
1053 mutex_lock(&bch_register_lock);
1054
1055 if (atomic_read(&dc->running))
1056 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1057 bcache_device_free(&dc->disk);
1058 list_del(&dc->list);
1059
1060 mutex_unlock(&bch_register_lock);
1061
1062 if (!IS_ERR_OR_NULL(dc->bdev))
1063 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1064
1065 wake_up(&unregister_wait);
1066
1067 kobject_put(&dc->disk.kobj);
1068 }
1069
1070 static void cached_dev_flush(struct closure *cl)
1071 {
1072 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1073 struct bcache_device *d = &dc->disk;
1074
1075 mutex_lock(&bch_register_lock);
1076 bcache_device_unlink(d);
1077 mutex_unlock(&bch_register_lock);
1078
1079 bch_cache_accounting_destroy(&dc->accounting);
1080 kobject_del(&d->kobj);
1081
1082 continue_at(cl, cached_dev_free, system_wq);
1083 }
1084
1085 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1086 {
1087 int ret;
1088 struct io *io;
1089 struct request_queue *q = bdev_get_queue(dc->bdev);
1090
1091 __module_get(THIS_MODULE);
1092 INIT_LIST_HEAD(&dc->list);
1093 closure_init(&dc->disk.cl, NULL);
1094 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1095 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1096 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1097 sema_init(&dc->sb_write_mutex, 1);
1098 INIT_LIST_HEAD(&dc->io_lru);
1099 spin_lock_init(&dc->io_lock);
1100 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1101
1102 dc->sequential_cutoff = 4 << 20;
1103
1104 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1105 list_add(&io->lru, &dc->io_lru);
1106 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1107 }
1108
1109 dc->disk.stripe_size = q->limits.io_opt >> 9;
1110
1111 if (dc->disk.stripe_size)
1112 dc->partial_stripes_expensive =
1113 q->limits.raid_partial_stripes_expensive;
1114
1115 ret = bcache_device_init(&dc->disk, block_size,
1116 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1117 if (ret)
1118 return ret;
1119
1120 set_capacity(dc->disk.disk,
1121 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1122
1123 dc->disk.disk->queue->backing_dev_info.ra_pages =
1124 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1125 q->backing_dev_info.ra_pages);
1126
1127 bch_cached_dev_request_init(dc);
1128 bch_cached_dev_writeback_init(dc);
1129 return 0;
1130 }
1131
1132 /* Cached device - bcache superblock */
1133
1134 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1135 struct block_device *bdev,
1136 struct cached_dev *dc)
1137 {
1138 char name[BDEVNAME_SIZE];
1139 const char *err = "cannot allocate memory";
1140 struct cache_set *c;
1141
1142 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1143 dc->bdev = bdev;
1144 dc->bdev->bd_holder = dc;
1145
1146 bio_init(&dc->sb_bio);
1147 dc->sb_bio.bi_max_vecs = 1;
1148 dc->sb_bio.bi_io_vec = dc->sb_bio.bi_inline_vecs;
1149 dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1150 get_page(sb_page);
1151
1152 if (cached_dev_init(dc, sb->block_size << 9))
1153 goto err;
1154
1155 err = "error creating kobject";
1156 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1157 "bcache"))
1158 goto err;
1159 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1160 goto err;
1161
1162 pr_info("registered backing device %s", bdevname(bdev, name));
1163
1164 list_add(&dc->list, &uncached_devices);
1165 list_for_each_entry(c, &bch_cache_sets, list)
1166 bch_cached_dev_attach(dc, c);
1167
1168 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1169 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1170 bch_cached_dev_run(dc);
1171
1172 return;
1173 err:
1174 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1175 bcache_device_stop(&dc->disk);
1176 }
1177
1178 /* Flash only volumes */
1179
1180 void bch_flash_dev_release(struct kobject *kobj)
1181 {
1182 struct bcache_device *d = container_of(kobj, struct bcache_device,
1183 kobj);
1184 kfree(d);
1185 }
1186
1187 static void flash_dev_free(struct closure *cl)
1188 {
1189 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1190 mutex_lock(&bch_register_lock);
1191 bcache_device_free(d);
1192 mutex_unlock(&bch_register_lock);
1193 kobject_put(&d->kobj);
1194 }
1195
1196 static void flash_dev_flush(struct closure *cl)
1197 {
1198 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1199
1200 mutex_lock(&bch_register_lock);
1201 bcache_device_unlink(d);
1202 mutex_unlock(&bch_register_lock);
1203 kobject_del(&d->kobj);
1204 continue_at(cl, flash_dev_free, system_wq);
1205 }
1206
1207 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1208 {
1209 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1210 GFP_KERNEL);
1211 if (!d)
1212 return -ENOMEM;
1213
1214 closure_init(&d->cl, NULL);
1215 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1216
1217 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1218
1219 if (bcache_device_init(d, block_bytes(c), u->sectors))
1220 goto err;
1221
1222 bcache_device_attach(d, c, u - c->uuids);
1223 bch_flash_dev_request_init(d);
1224 add_disk(d->disk);
1225
1226 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1227 goto err;
1228
1229 bcache_device_link(d, c, "volume");
1230
1231 return 0;
1232 err:
1233 kobject_put(&d->kobj);
1234 return -ENOMEM;
1235 }
1236
1237 static int flash_devs_run(struct cache_set *c)
1238 {
1239 int ret = 0;
1240 struct uuid_entry *u;
1241
1242 for (u = c->uuids;
1243 u < c->uuids + c->nr_uuids && !ret;
1244 u++)
1245 if (UUID_FLASH_ONLY(u))
1246 ret = flash_dev_run(c, u);
1247
1248 return ret;
1249 }
1250
1251 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1252 {
1253 struct uuid_entry *u;
1254
1255 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1256 return -EINTR;
1257
1258 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1259 return -EPERM;
1260
1261 u = uuid_find_empty(c);
1262 if (!u) {
1263 pr_err("Can't create volume, no room for UUID");
1264 return -EINVAL;
1265 }
1266
1267 get_random_bytes(u->uuid, 16);
1268 memset(u->label, 0, 32);
1269 u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1270
1271 SET_UUID_FLASH_ONLY(u, 1);
1272 u->sectors = size >> 9;
1273
1274 bch_uuid_write(c);
1275
1276 return flash_dev_run(c, u);
1277 }
1278
1279 /* Cache set */
1280
1281 __printf(2, 3)
1282 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1283 {
1284 va_list args;
1285
1286 if (c->on_error != ON_ERROR_PANIC &&
1287 test_bit(CACHE_SET_STOPPING, &c->flags))
1288 return false;
1289
1290 /* XXX: we can be called from atomic context
1291 acquire_console_sem();
1292 */
1293
1294 printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1295
1296 va_start(args, fmt);
1297 vprintk(fmt, args);
1298 va_end(args);
1299
1300 printk(", disabling caching\n");
1301
1302 if (c->on_error == ON_ERROR_PANIC)
1303 panic("panic forced after error\n");
1304
1305 bch_cache_set_unregister(c);
1306 return true;
1307 }
1308
1309 void bch_cache_set_release(struct kobject *kobj)
1310 {
1311 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1312 kfree(c);
1313 module_put(THIS_MODULE);
1314 }
1315
1316 static void cache_set_free(struct closure *cl)
1317 {
1318 struct cache_set *c = container_of(cl, struct cache_set, cl);
1319 struct cache *ca;
1320 unsigned i;
1321
1322 if (!IS_ERR_OR_NULL(c->debug))
1323 debugfs_remove(c->debug);
1324
1325 bch_open_buckets_free(c);
1326 bch_btree_cache_free(c);
1327 bch_journal_free(c);
1328
1329 for_each_cache(ca, c, i)
1330 if (ca) {
1331 ca->set = NULL;
1332 c->cache[ca->sb.nr_this_dev] = NULL;
1333 kobject_put(&ca->kobj);
1334 }
1335
1336 bch_bset_sort_state_free(&c->sort);
1337 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1338
1339 if (c->moving_gc_wq)
1340 destroy_workqueue(c->moving_gc_wq);
1341 if (c->bio_split)
1342 bioset_free(c->bio_split);
1343 if (c->fill_iter)
1344 mempool_destroy(c->fill_iter);
1345 if (c->bio_meta)
1346 mempool_destroy(c->bio_meta);
1347 if (c->search)
1348 mempool_destroy(c->search);
1349 kfree(c->devices);
1350
1351 mutex_lock(&bch_register_lock);
1352 list_del(&c->list);
1353 mutex_unlock(&bch_register_lock);
1354
1355 pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1356 wake_up(&unregister_wait);
1357
1358 closure_debug_destroy(&c->cl);
1359 kobject_put(&c->kobj);
1360 }
1361
1362 static void cache_set_flush(struct closure *cl)
1363 {
1364 struct cache_set *c = container_of(cl, struct cache_set, caching);
1365 struct cache *ca;
1366 struct btree *b;
1367 unsigned i;
1368
1369 bch_cache_accounting_destroy(&c->accounting);
1370
1371 kobject_put(&c->internal);
1372 kobject_del(&c->kobj);
1373
1374 if (c->gc_thread)
1375 kthread_stop(c->gc_thread);
1376
1377 if (!IS_ERR_OR_NULL(c->root))
1378 list_add(&c->root->list, &c->btree_cache);
1379
1380 /* Should skip this if we're unregistering because of an error */
1381 list_for_each_entry(b, &c->btree_cache, list) {
1382 mutex_lock(&b->write_lock);
1383 if (btree_node_dirty(b))
1384 __bch_btree_node_write(b, NULL);
1385 mutex_unlock(&b->write_lock);
1386 }
1387
1388 for_each_cache(ca, c, i)
1389 if (ca->alloc_thread)
1390 kthread_stop(ca->alloc_thread);
1391
1392 if (c->journal.cur) {
1393 cancel_delayed_work_sync(&c->journal.work);
1394 /* flush last journal entry if needed */
1395 c->journal.work.work.func(&c->journal.work.work);
1396 }
1397
1398 closure_return(cl);
1399 }
1400
1401 static void __cache_set_unregister(struct closure *cl)
1402 {
1403 struct cache_set *c = container_of(cl, struct cache_set, caching);
1404 struct cached_dev *dc;
1405 size_t i;
1406
1407 mutex_lock(&bch_register_lock);
1408
1409 for (i = 0; i < c->nr_uuids; i++)
1410 if (c->devices[i]) {
1411 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1412 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1413 dc = container_of(c->devices[i],
1414 struct cached_dev, disk);
1415 bch_cached_dev_detach(dc);
1416 } else {
1417 bcache_device_stop(c->devices[i]);
1418 }
1419 }
1420
1421 mutex_unlock(&bch_register_lock);
1422
1423 continue_at(cl, cache_set_flush, system_wq);
1424 }
1425
1426 void bch_cache_set_stop(struct cache_set *c)
1427 {
1428 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1429 closure_queue(&c->caching);
1430 }
1431
1432 void bch_cache_set_unregister(struct cache_set *c)
1433 {
1434 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1435 bch_cache_set_stop(c);
1436 }
1437
1438 #define alloc_bucket_pages(gfp, c) \
1439 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1440
1441 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1442 {
1443 int iter_size;
1444 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1445 if (!c)
1446 return NULL;
1447
1448 __module_get(THIS_MODULE);
1449 closure_init(&c->cl, NULL);
1450 set_closure_fn(&c->cl, cache_set_free, system_wq);
1451
1452 closure_init(&c->caching, &c->cl);
1453 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1454
1455 /* Maybe create continue_at_noreturn() and use it here? */
1456 closure_set_stopped(&c->cl);
1457 closure_put(&c->cl);
1458
1459 kobject_init(&c->kobj, &bch_cache_set_ktype);
1460 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1461
1462 bch_cache_accounting_init(&c->accounting, &c->cl);
1463
1464 memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1465 c->sb.block_size = sb->block_size;
1466 c->sb.bucket_size = sb->bucket_size;
1467 c->sb.nr_in_set = sb->nr_in_set;
1468 c->sb.last_mount = sb->last_mount;
1469 c->bucket_bits = ilog2(sb->bucket_size);
1470 c->block_bits = ilog2(sb->block_size);
1471 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
1472
1473 c->btree_pages = bucket_pages(c);
1474 if (c->btree_pages > BTREE_MAX_PAGES)
1475 c->btree_pages = max_t(int, c->btree_pages / 4,
1476 BTREE_MAX_PAGES);
1477
1478 sema_init(&c->sb_write_mutex, 1);
1479 mutex_init(&c->bucket_lock);
1480 init_waitqueue_head(&c->btree_cache_wait);
1481 init_waitqueue_head(&c->bucket_wait);
1482 sema_init(&c->uuid_write_mutex, 1);
1483
1484 spin_lock_init(&c->btree_gc_time.lock);
1485 spin_lock_init(&c->btree_split_time.lock);
1486 spin_lock_init(&c->btree_read_time.lock);
1487
1488 bch_moving_init_cache_set(c);
1489
1490 INIT_LIST_HEAD(&c->list);
1491 INIT_LIST_HEAD(&c->cached_devs);
1492 INIT_LIST_HEAD(&c->btree_cache);
1493 INIT_LIST_HEAD(&c->btree_cache_freeable);
1494 INIT_LIST_HEAD(&c->btree_cache_freed);
1495 INIT_LIST_HEAD(&c->data_buckets);
1496
1497 c->search = mempool_create_slab_pool(32, bch_search_cache);
1498 if (!c->search)
1499 goto err;
1500
1501 iter_size = (sb->bucket_size / sb->block_size + 1) *
1502 sizeof(struct btree_iter_set);
1503
1504 if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1505 !(c->bio_meta = mempool_create_kmalloc_pool(2,
1506 sizeof(struct bbio) + sizeof(struct bio_vec) *
1507 bucket_pages(c))) ||
1508 !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1509 !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1510 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1511 !(c->moving_gc_wq = create_workqueue("bcache_gc")) ||
1512 bch_journal_alloc(c) ||
1513 bch_btree_cache_alloc(c) ||
1514 bch_open_buckets_alloc(c) ||
1515 bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1516 goto err;
1517
1518 c->congested_read_threshold_us = 2000;
1519 c->congested_write_threshold_us = 20000;
1520 c->error_limit = 8 << IO_ERROR_SHIFT;
1521
1522 return c;
1523 err:
1524 bch_cache_set_unregister(c);
1525 return NULL;
1526 }
1527
1528 static void run_cache_set(struct cache_set *c)
1529 {
1530 const char *err = "cannot allocate memory";
1531 struct cached_dev *dc, *t;
1532 struct cache *ca;
1533 struct closure cl;
1534 unsigned i;
1535
1536 closure_init_stack(&cl);
1537
1538 for_each_cache(ca, c, i)
1539 c->nbuckets += ca->sb.nbuckets;
1540
1541 if (CACHE_SYNC(&c->sb)) {
1542 LIST_HEAD(journal);
1543 struct bkey *k;
1544 struct jset *j;
1545
1546 err = "cannot allocate memory for journal";
1547 if (bch_journal_read(c, &journal))
1548 goto err;
1549
1550 pr_debug("btree_journal_read() done");
1551
1552 err = "no journal entries found";
1553 if (list_empty(&journal))
1554 goto err;
1555
1556 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1557
1558 err = "IO error reading priorities";
1559 for_each_cache(ca, c, i)
1560 prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1561
1562 /*
1563 * If prio_read() fails it'll call cache_set_error and we'll
1564 * tear everything down right away, but if we perhaps checked
1565 * sooner we could avoid journal replay.
1566 */
1567
1568 k = &j->btree_root;
1569
1570 err = "bad btree root";
1571 if (__bch_btree_ptr_invalid(c, k))
1572 goto err;
1573
1574 err = "error reading btree root";
1575 c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1576 if (IS_ERR_OR_NULL(c->root))
1577 goto err;
1578
1579 list_del_init(&c->root->list);
1580 rw_unlock(true, c->root);
1581
1582 err = uuid_read(c, j, &cl);
1583 if (err)
1584 goto err;
1585
1586 err = "error in recovery";
1587 if (bch_btree_check(c))
1588 goto err;
1589
1590 bch_journal_mark(c, &journal);
1591 bch_initial_gc_finish(c);
1592 pr_debug("btree_check() done");
1593
1594 /*
1595 * bcache_journal_next() can't happen sooner, or
1596 * btree_gc_finish() will give spurious errors about last_gc >
1597 * gc_gen - this is a hack but oh well.
1598 */
1599 bch_journal_next(&c->journal);
1600
1601 err = "error starting allocator thread";
1602 for_each_cache(ca, c, i)
1603 if (bch_cache_allocator_start(ca))
1604 goto err;
1605
1606 /*
1607 * First place it's safe to allocate: btree_check() and
1608 * btree_gc_finish() have to run before we have buckets to
1609 * allocate, and bch_bucket_alloc_set() might cause a journal
1610 * entry to be written so bcache_journal_next() has to be called
1611 * first.
1612 *
1613 * If the uuids were in the old format we have to rewrite them
1614 * before the next journal entry is written:
1615 */
1616 if (j->version < BCACHE_JSET_VERSION_UUID)
1617 __uuid_write(c);
1618
1619 bch_journal_replay(c, &journal);
1620 } else {
1621 pr_notice("invalidating existing data");
1622
1623 for_each_cache(ca, c, i) {
1624 unsigned j;
1625
1626 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1627 2, SB_JOURNAL_BUCKETS);
1628
1629 for (j = 0; j < ca->sb.keys; j++)
1630 ca->sb.d[j] = ca->sb.first_bucket + j;
1631 }
1632
1633 bch_initial_gc_finish(c);
1634
1635 err = "error starting allocator thread";
1636 for_each_cache(ca, c, i)
1637 if (bch_cache_allocator_start(ca))
1638 goto err;
1639
1640 mutex_lock(&c->bucket_lock);
1641 for_each_cache(ca, c, i)
1642 bch_prio_write(ca);
1643 mutex_unlock(&c->bucket_lock);
1644
1645 err = "cannot allocate new UUID bucket";
1646 if (__uuid_write(c))
1647 goto err;
1648
1649 err = "cannot allocate new btree root";
1650 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1651 if (IS_ERR_OR_NULL(c->root))
1652 goto err;
1653
1654 mutex_lock(&c->root->write_lock);
1655 bkey_copy_key(&c->root->key, &MAX_KEY);
1656 bch_btree_node_write(c->root, &cl);
1657 mutex_unlock(&c->root->write_lock);
1658
1659 bch_btree_set_root(c->root);
1660 rw_unlock(true, c->root);
1661
1662 /*
1663 * We don't want to write the first journal entry until
1664 * everything is set up - fortunately journal entries won't be
1665 * written until the SET_CACHE_SYNC() here:
1666 */
1667 SET_CACHE_SYNC(&c->sb, true);
1668
1669 bch_journal_next(&c->journal);
1670 bch_journal_meta(c, &cl);
1671 }
1672
1673 err = "error starting gc thread";
1674 if (bch_gc_thread_start(c))
1675 goto err;
1676
1677 closure_sync(&cl);
1678 c->sb.last_mount = get_seconds();
1679 bcache_write_super(c);
1680
1681 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1682 bch_cached_dev_attach(dc, c);
1683
1684 flash_devs_run(c);
1685
1686 set_bit(CACHE_SET_RUNNING, &c->flags);
1687 return;
1688 err:
1689 closure_sync(&cl);
1690 /* XXX: test this, it's broken */
1691 bch_cache_set_error(c, "%s", err);
1692 }
1693
1694 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1695 {
1696 return ca->sb.block_size == c->sb.block_size &&
1697 ca->sb.bucket_size == c->sb.bucket_size &&
1698 ca->sb.nr_in_set == c->sb.nr_in_set;
1699 }
1700
1701 static const char *register_cache_set(struct cache *ca)
1702 {
1703 char buf[12];
1704 const char *err = "cannot allocate memory";
1705 struct cache_set *c;
1706
1707 list_for_each_entry(c, &bch_cache_sets, list)
1708 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1709 if (c->cache[ca->sb.nr_this_dev])
1710 return "duplicate cache set member";
1711
1712 if (!can_attach_cache(ca, c))
1713 return "cache sb does not match set";
1714
1715 if (!CACHE_SYNC(&ca->sb))
1716 SET_CACHE_SYNC(&c->sb, false);
1717
1718 goto found;
1719 }
1720
1721 c = bch_cache_set_alloc(&ca->sb);
1722 if (!c)
1723 return err;
1724
1725 err = "error creating kobject";
1726 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1727 kobject_add(&c->internal, &c->kobj, "internal"))
1728 goto err;
1729
1730 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1731 goto err;
1732
1733 bch_debug_init_cache_set(c);
1734
1735 list_add(&c->list, &bch_cache_sets);
1736 found:
1737 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1738 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1739 sysfs_create_link(&c->kobj, &ca->kobj, buf))
1740 goto err;
1741
1742 if (ca->sb.seq > c->sb.seq) {
1743 c->sb.version = ca->sb.version;
1744 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1745 c->sb.flags = ca->sb.flags;
1746 c->sb.seq = ca->sb.seq;
1747 pr_debug("set version = %llu", c->sb.version);
1748 }
1749
1750 kobject_get(&ca->kobj);
1751 ca->set = c;
1752 ca->set->cache[ca->sb.nr_this_dev] = ca;
1753 c->cache_by_alloc[c->caches_loaded++] = ca;
1754
1755 if (c->caches_loaded == c->sb.nr_in_set)
1756 run_cache_set(c);
1757
1758 return NULL;
1759 err:
1760 bch_cache_set_unregister(c);
1761 return err;
1762 }
1763
1764 /* Cache device */
1765
1766 void bch_cache_release(struct kobject *kobj)
1767 {
1768 struct cache *ca = container_of(kobj, struct cache, kobj);
1769 unsigned i;
1770
1771 if (ca->set) {
1772 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1773 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1774 }
1775
1776 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1777 kfree(ca->prio_buckets);
1778 vfree(ca->buckets);
1779
1780 free_heap(&ca->heap);
1781 free_fifo(&ca->free_inc);
1782
1783 for (i = 0; i < RESERVE_NR; i++)
1784 free_fifo(&ca->free[i]);
1785
1786 if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1787 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1788
1789 if (!IS_ERR_OR_NULL(ca->bdev))
1790 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1791
1792 kfree(ca);
1793 module_put(THIS_MODULE);
1794 }
1795
1796 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1797 {
1798 size_t free;
1799 struct bucket *b;
1800
1801 __module_get(THIS_MODULE);
1802 kobject_init(&ca->kobj, &bch_cache_ktype);
1803
1804 bio_init(&ca->journal.bio);
1805 ca->journal.bio.bi_max_vecs = 8;
1806 ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1807
1808 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1809
1810 if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1811 !init_fifo(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1812 !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1813 !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1814 !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) ||
1815 !init_heap(&ca->heap, free << 3, GFP_KERNEL) ||
1816 !(ca->buckets = vzalloc(sizeof(struct bucket) *
1817 ca->sb.nbuckets)) ||
1818 !(ca->prio_buckets = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1819 2, GFP_KERNEL)) ||
1820 !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)))
1821 return -ENOMEM;
1822
1823 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1824
1825 for_each_bucket(b, ca)
1826 atomic_set(&b->pin, 0);
1827
1828 return 0;
1829 }
1830
1831 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1832 struct block_device *bdev, struct cache *ca)
1833 {
1834 char name[BDEVNAME_SIZE];
1835 const char *err = "cannot allocate memory";
1836
1837 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1838 ca->bdev = bdev;
1839 ca->bdev->bd_holder = ca;
1840
1841 bio_init(&ca->sb_bio);
1842 ca->sb_bio.bi_max_vecs = 1;
1843 ca->sb_bio.bi_io_vec = ca->sb_bio.bi_inline_vecs;
1844 ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1845 get_page(sb_page);
1846
1847 if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1848 ca->discard = CACHE_DISCARD(&ca->sb);
1849
1850 if (cache_alloc(sb, ca) != 0)
1851 goto err;
1852
1853 err = "error creating kobject";
1854 if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1855 goto err;
1856
1857 mutex_lock(&bch_register_lock);
1858 err = register_cache_set(ca);
1859 mutex_unlock(&bch_register_lock);
1860
1861 if (err)
1862 goto err;
1863
1864 pr_info("registered cache device %s", bdevname(bdev, name));
1865 out:
1866 kobject_put(&ca->kobj);
1867 return;
1868 err:
1869 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1870 goto out;
1871 }
1872
1873 /* Global interfaces/init */
1874
1875 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1876 const char *, size_t);
1877
1878 kobj_attribute_write(register, register_bcache);
1879 kobj_attribute_write(register_quiet, register_bcache);
1880
1881 static bool bch_is_open_backing(struct block_device *bdev) {
1882 struct cache_set *c, *tc;
1883 struct cached_dev *dc, *t;
1884
1885 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1886 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1887 if (dc->bdev == bdev)
1888 return true;
1889 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1890 if (dc->bdev == bdev)
1891 return true;
1892 return false;
1893 }
1894
1895 static bool bch_is_open_cache(struct block_device *bdev) {
1896 struct cache_set *c, *tc;
1897 struct cache *ca;
1898 unsigned i;
1899
1900 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1901 for_each_cache(ca, c, i)
1902 if (ca->bdev == bdev)
1903 return true;
1904 return false;
1905 }
1906
1907 static bool bch_is_open(struct block_device *bdev) {
1908 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1909 }
1910
1911 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1912 const char *buffer, size_t size)
1913 {
1914 ssize_t ret = size;
1915 const char *err = "cannot allocate memory";
1916 char *path = NULL;
1917 struct cache_sb *sb = NULL;
1918 struct block_device *bdev = NULL;
1919 struct page *sb_page = NULL;
1920
1921 if (!try_module_get(THIS_MODULE))
1922 return -EBUSY;
1923
1924 if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1925 !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1926 goto err;
1927
1928 err = "failed to open device";
1929 bdev = blkdev_get_by_path(strim(path),
1930 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1931 sb);
1932 if (IS_ERR(bdev)) {
1933 if (bdev == ERR_PTR(-EBUSY)) {
1934 bdev = lookup_bdev(strim(path));
1935 mutex_lock(&bch_register_lock);
1936 if (!IS_ERR(bdev) && bch_is_open(bdev))
1937 err = "device already registered";
1938 else
1939 err = "device busy";
1940 mutex_unlock(&bch_register_lock);
1941 if (attr == &ksysfs_register_quiet)
1942 goto out;
1943 }
1944 goto err;
1945 }
1946
1947 err = "failed to set blocksize";
1948 if (set_blocksize(bdev, 4096))
1949 goto err_close;
1950
1951 err = read_super(sb, bdev, &sb_page);
1952 if (err)
1953 goto err_close;
1954
1955 if (SB_IS_BDEV(sb)) {
1956 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1957 if (!dc)
1958 goto err_close;
1959
1960 mutex_lock(&bch_register_lock);
1961 register_bdev(sb, sb_page, bdev, dc);
1962 mutex_unlock(&bch_register_lock);
1963 } else {
1964 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1965 if (!ca)
1966 goto err_close;
1967
1968 register_cache(sb, sb_page, bdev, ca);
1969 }
1970 out:
1971 if (sb_page)
1972 put_page(sb_page);
1973 kfree(sb);
1974 kfree(path);
1975 module_put(THIS_MODULE);
1976 return ret;
1977
1978 err_close:
1979 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1980 err:
1981 pr_info("error opening %s: %s", path, err);
1982 ret = -EINVAL;
1983 goto out;
1984 }
1985
1986 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1987 {
1988 if (code == SYS_DOWN ||
1989 code == SYS_HALT ||
1990 code == SYS_POWER_OFF) {
1991 DEFINE_WAIT(wait);
1992 unsigned long start = jiffies;
1993 bool stopped = false;
1994
1995 struct cache_set *c, *tc;
1996 struct cached_dev *dc, *tdc;
1997
1998 mutex_lock(&bch_register_lock);
1999
2000 if (list_empty(&bch_cache_sets) &&
2001 list_empty(&uncached_devices))
2002 goto out;
2003
2004 pr_info("Stopping all devices:");
2005
2006 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2007 bch_cache_set_stop(c);
2008
2009 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2010 bcache_device_stop(&dc->disk);
2011
2012 /* What's a condition variable? */
2013 while (1) {
2014 long timeout = start + 2 * HZ - jiffies;
2015
2016 stopped = list_empty(&bch_cache_sets) &&
2017 list_empty(&uncached_devices);
2018
2019 if (timeout < 0 || stopped)
2020 break;
2021
2022 prepare_to_wait(&unregister_wait, &wait,
2023 TASK_UNINTERRUPTIBLE);
2024
2025 mutex_unlock(&bch_register_lock);
2026 schedule_timeout(timeout);
2027 mutex_lock(&bch_register_lock);
2028 }
2029
2030 finish_wait(&unregister_wait, &wait);
2031
2032 if (stopped)
2033 pr_info("All devices stopped");
2034 else
2035 pr_notice("Timeout waiting for devices to be closed");
2036 out:
2037 mutex_unlock(&bch_register_lock);
2038 }
2039
2040 return NOTIFY_DONE;
2041 }
2042
2043 static struct notifier_block reboot = {
2044 .notifier_call = bcache_reboot,
2045 .priority = INT_MAX, /* before any real devices */
2046 };
2047
2048 static void bcache_exit(void)
2049 {
2050 bch_debug_exit();
2051 bch_request_exit();
2052 if (bcache_kobj)
2053 kobject_put(bcache_kobj);
2054 if (bcache_wq)
2055 destroy_workqueue(bcache_wq);
2056 if (bcache_major)
2057 unregister_blkdev(bcache_major, "bcache");
2058 unregister_reboot_notifier(&reboot);
2059 }
2060
2061 static int __init bcache_init(void)
2062 {
2063 static const struct attribute *files[] = {
2064 &ksysfs_register.attr,
2065 &ksysfs_register_quiet.attr,
2066 NULL
2067 };
2068
2069 mutex_init(&bch_register_lock);
2070 init_waitqueue_head(&unregister_wait);
2071 register_reboot_notifier(&reboot);
2072 closure_debug_init();
2073
2074 bcache_major = register_blkdev(0, "bcache");
2075 if (bcache_major < 0) {
2076 unregister_reboot_notifier(&reboot);
2077 return bcache_major;
2078 }
2079
2080 if (!(bcache_wq = create_workqueue("bcache")) ||
2081 !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2082 sysfs_create_files(bcache_kobj, files) ||
2083 bch_request_init() ||
2084 bch_debug_init(bcache_kobj))
2085 goto err;
2086
2087 return 0;
2088 err:
2089 bcache_exit();
2090 return -ENOMEM;
2091 }
2092
2093 module_exit(bcache_exit);
2094 module_init(bcache_init);
This page took 0.099239 seconds and 5 git commands to generate.