ASoC: wm8997: Add inputs for noise and mic mixers
[deliverable/linux.git] / drivers / md / bcache / writeback.c
1 /*
2 * background writeback - scan btree for dirty data and write it to the backing
3 * device
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12
13 static struct workqueue_struct *dirty_wq;
14
15 static void read_dirty(struct closure *);
16
17 struct dirty_io {
18 struct closure cl;
19 struct cached_dev *dc;
20 struct bio bio;
21 };
22
23 /* Rate limiting */
24
25 static void __update_writeback_rate(struct cached_dev *dc)
26 {
27 struct cache_set *c = dc->disk.c;
28 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
29 uint64_t cache_dirty_target =
30 div_u64(cache_sectors * dc->writeback_percent, 100);
31
32 int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
33 c->cached_dev_sectors);
34
35 /* PD controller */
36
37 int change = 0;
38 int64_t error;
39 int64_t dirty = atomic_long_read(&dc->disk.sectors_dirty);
40 int64_t derivative = dirty - dc->disk.sectors_dirty_last;
41
42 dc->disk.sectors_dirty_last = dirty;
43
44 derivative *= dc->writeback_rate_d_term;
45 derivative = clamp(derivative, -dirty, dirty);
46
47 derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
48 dc->writeback_rate_d_smooth, 0);
49
50 /* Avoid divide by zero */
51 if (!target)
52 goto out;
53
54 error = div64_s64((dirty + derivative - target) << 8, target);
55
56 change = div_s64((dc->writeback_rate.rate * error) >> 8,
57 dc->writeback_rate_p_term_inverse);
58
59 /* Don't increase writeback rate if the device isn't keeping up */
60 if (change > 0 &&
61 time_after64(local_clock(),
62 dc->writeback_rate.next + 10 * NSEC_PER_MSEC))
63 change = 0;
64
65 dc->writeback_rate.rate =
66 clamp_t(int64_t, dc->writeback_rate.rate + change,
67 1, NSEC_PER_MSEC);
68 out:
69 dc->writeback_rate_derivative = derivative;
70 dc->writeback_rate_change = change;
71 dc->writeback_rate_target = target;
72
73 schedule_delayed_work(&dc->writeback_rate_update,
74 dc->writeback_rate_update_seconds * HZ);
75 }
76
77 static void update_writeback_rate(struct work_struct *work)
78 {
79 struct cached_dev *dc = container_of(to_delayed_work(work),
80 struct cached_dev,
81 writeback_rate_update);
82
83 down_read(&dc->writeback_lock);
84
85 if (atomic_read(&dc->has_dirty) &&
86 dc->writeback_percent)
87 __update_writeback_rate(dc);
88
89 up_read(&dc->writeback_lock);
90 }
91
92 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
93 {
94 if (atomic_read(&dc->disk.detaching) ||
95 !dc->writeback_percent)
96 return 0;
97
98 return bch_next_delay(&dc->writeback_rate, sectors * 10000000ULL);
99 }
100
101 /* Background writeback */
102
103 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
104 {
105 return KEY_DIRTY(k);
106 }
107
108 static void dirty_init(struct keybuf_key *w)
109 {
110 struct dirty_io *io = w->private;
111 struct bio *bio = &io->bio;
112
113 bio_init(bio);
114 if (!io->dc->writeback_percent)
115 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
116
117 bio->bi_size = KEY_SIZE(&w->key) << 9;
118 bio->bi_max_vecs = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
119 bio->bi_private = w;
120 bio->bi_io_vec = bio->bi_inline_vecs;
121 bch_bio_map(bio, NULL);
122 }
123
124 static void refill_dirty(struct closure *cl)
125 {
126 struct cached_dev *dc = container_of(cl, struct cached_dev,
127 writeback.cl);
128 struct keybuf *buf = &dc->writeback_keys;
129 bool searched_from_start = false;
130 struct bkey end = MAX_KEY;
131 SET_KEY_INODE(&end, dc->disk.id);
132
133 if (!atomic_read(&dc->disk.detaching) &&
134 !dc->writeback_running)
135 closure_return(cl);
136
137 down_write(&dc->writeback_lock);
138
139 if (!atomic_read(&dc->has_dirty)) {
140 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
141 bch_write_bdev_super(dc, NULL);
142
143 up_write(&dc->writeback_lock);
144 closure_return(cl);
145 }
146
147 if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
148 buf->last_scanned = KEY(dc->disk.id, 0, 0);
149 searched_from_start = true;
150 }
151
152 bch_refill_keybuf(dc->disk.c, buf, &end);
153
154 if (bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start) {
155 /* Searched the entire btree - delay awhile */
156
157 if (RB_EMPTY_ROOT(&buf->keys)) {
158 atomic_set(&dc->has_dirty, 0);
159 cached_dev_put(dc);
160 }
161
162 if (!atomic_read(&dc->disk.detaching))
163 closure_delay(&dc->writeback, dc->writeback_delay * HZ);
164 }
165
166 up_write(&dc->writeback_lock);
167
168 ratelimit_reset(&dc->writeback_rate);
169
170 /* Punt to workqueue only so we don't recurse and blow the stack */
171 continue_at(cl, read_dirty, dirty_wq);
172 }
173
174 void bch_writeback_queue(struct cached_dev *dc)
175 {
176 if (closure_trylock(&dc->writeback.cl, &dc->disk.cl)) {
177 if (!atomic_read(&dc->disk.detaching))
178 closure_delay(&dc->writeback, dc->writeback_delay * HZ);
179
180 continue_at(&dc->writeback.cl, refill_dirty, dirty_wq);
181 }
182 }
183
184 void bch_writeback_add(struct cached_dev *dc, unsigned sectors)
185 {
186 atomic_long_add(sectors, &dc->disk.sectors_dirty);
187
188 if (!atomic_read(&dc->has_dirty) &&
189 !atomic_xchg(&dc->has_dirty, 1)) {
190 atomic_inc(&dc->count);
191
192 if (BDEV_STATE(&dc->sb) != BDEV_STATE_DIRTY) {
193 SET_BDEV_STATE(&dc->sb, BDEV_STATE_DIRTY);
194 /* XXX: should do this synchronously */
195 bch_write_bdev_super(dc, NULL);
196 }
197
198 bch_writeback_queue(dc);
199
200 if (dc->writeback_percent)
201 schedule_delayed_work(&dc->writeback_rate_update,
202 dc->writeback_rate_update_seconds * HZ);
203 }
204 }
205
206 /* Background writeback - IO loop */
207
208 static void dirty_io_destructor(struct closure *cl)
209 {
210 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
211 kfree(io);
212 }
213
214 static void write_dirty_finish(struct closure *cl)
215 {
216 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
217 struct keybuf_key *w = io->bio.bi_private;
218 struct cached_dev *dc = io->dc;
219 struct bio_vec *bv = bio_iovec_idx(&io->bio, io->bio.bi_vcnt);
220
221 while (bv-- != io->bio.bi_io_vec)
222 __free_page(bv->bv_page);
223
224 /* This is kind of a dumb way of signalling errors. */
225 if (KEY_DIRTY(&w->key)) {
226 unsigned i;
227 struct btree_op op;
228 bch_btree_op_init_stack(&op);
229
230 op.type = BTREE_REPLACE;
231 bkey_copy(&op.replace, &w->key);
232
233 SET_KEY_DIRTY(&w->key, false);
234 bch_keylist_add(&op.keys, &w->key);
235
236 for (i = 0; i < KEY_PTRS(&w->key); i++)
237 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
238
239 pr_debug("clearing %s", pkey(&w->key));
240 bch_btree_insert(&op, dc->disk.c);
241 closure_sync(&op.cl);
242
243 atomic_long_inc(op.insert_collision
244 ? &dc->disk.c->writeback_keys_failed
245 : &dc->disk.c->writeback_keys_done);
246 }
247
248 bch_keybuf_del(&dc->writeback_keys, w);
249 atomic_dec_bug(&dc->in_flight);
250
251 closure_wake_up(&dc->writeback_wait);
252
253 closure_return_with_destructor(cl, dirty_io_destructor);
254 }
255
256 static void dirty_endio(struct bio *bio, int error)
257 {
258 struct keybuf_key *w = bio->bi_private;
259 struct dirty_io *io = w->private;
260
261 if (error)
262 SET_KEY_DIRTY(&w->key, false);
263
264 closure_put(&io->cl);
265 }
266
267 static void write_dirty(struct closure *cl)
268 {
269 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
270 struct keybuf_key *w = io->bio.bi_private;
271
272 dirty_init(w);
273 io->bio.bi_rw = WRITE;
274 io->bio.bi_sector = KEY_START(&w->key);
275 io->bio.bi_bdev = io->dc->bdev;
276 io->bio.bi_end_io = dirty_endio;
277
278 trace_bcache_write_dirty(&io->bio);
279 closure_bio_submit(&io->bio, cl, &io->dc->disk);
280
281 continue_at(cl, write_dirty_finish, dirty_wq);
282 }
283
284 static void read_dirty_endio(struct bio *bio, int error)
285 {
286 struct keybuf_key *w = bio->bi_private;
287 struct dirty_io *io = w->private;
288
289 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
290 error, "reading dirty data from cache");
291
292 dirty_endio(bio, error);
293 }
294
295 static void read_dirty_submit(struct closure *cl)
296 {
297 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
298
299 trace_bcache_read_dirty(&io->bio);
300 closure_bio_submit(&io->bio, cl, &io->dc->disk);
301
302 continue_at(cl, write_dirty, dirty_wq);
303 }
304
305 static void read_dirty(struct closure *cl)
306 {
307 struct cached_dev *dc = container_of(cl, struct cached_dev,
308 writeback.cl);
309 unsigned delay = writeback_delay(dc, 0);
310 struct keybuf_key *w;
311 struct dirty_io *io;
312
313 /*
314 * XXX: if we error, background writeback just spins. Should use some
315 * mempools.
316 */
317
318 while (1) {
319 w = bch_keybuf_next(&dc->writeback_keys);
320 if (!w)
321 break;
322
323 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
324
325 if (delay > 0 &&
326 (KEY_START(&w->key) != dc->last_read ||
327 jiffies_to_msecs(delay) > 50)) {
328 w->private = NULL;
329
330 closure_delay(&dc->writeback, delay);
331 continue_at(cl, read_dirty, dirty_wq);
332 }
333
334 dc->last_read = KEY_OFFSET(&w->key);
335
336 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
337 * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
338 GFP_KERNEL);
339 if (!io)
340 goto err;
341
342 w->private = io;
343 io->dc = dc;
344
345 dirty_init(w);
346 io->bio.bi_sector = PTR_OFFSET(&w->key, 0);
347 io->bio.bi_bdev = PTR_CACHE(dc->disk.c,
348 &w->key, 0)->bdev;
349 io->bio.bi_rw = READ;
350 io->bio.bi_end_io = read_dirty_endio;
351
352 if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
353 goto err_free;
354
355 pr_debug("%s", pkey(&w->key));
356
357 closure_call(&io->cl, read_dirty_submit, NULL, &dc->disk.cl);
358
359 delay = writeback_delay(dc, KEY_SIZE(&w->key));
360
361 atomic_inc(&dc->in_flight);
362
363 if (!closure_wait_event(&dc->writeback_wait, cl,
364 atomic_read(&dc->in_flight) < 64))
365 continue_at(cl, read_dirty, dirty_wq);
366 }
367
368 if (0) {
369 err_free:
370 kfree(w->private);
371 err:
372 bch_keybuf_del(&dc->writeback_keys, w);
373 }
374
375 refill_dirty(cl);
376 }
377
378 void bch_cached_dev_writeback_init(struct cached_dev *dc)
379 {
380 closure_init_unlocked(&dc->writeback);
381 init_rwsem(&dc->writeback_lock);
382
383 bch_keybuf_init(&dc->writeback_keys, dirty_pred);
384
385 dc->writeback_metadata = true;
386 dc->writeback_running = true;
387 dc->writeback_percent = 10;
388 dc->writeback_delay = 30;
389 dc->writeback_rate.rate = 1024;
390
391 dc->writeback_rate_update_seconds = 30;
392 dc->writeback_rate_d_term = 16;
393 dc->writeback_rate_p_term_inverse = 64;
394 dc->writeback_rate_d_smooth = 8;
395
396 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
397 schedule_delayed_work(&dc->writeback_rate_update,
398 dc->writeback_rate_update_seconds * HZ);
399 }
400
401 void bch_writeback_exit(void)
402 {
403 if (dirty_wq)
404 destroy_workqueue(dirty_wq);
405 }
406
407 int __init bch_writeback_init(void)
408 {
409 dirty_wq = create_singlethread_workqueue("bcache_writeback");
410 if (!dirty_wq)
411 return -ENOMEM;
412
413 return 0;
414 }
This page took 0.040816 seconds and 5 git commands to generate.