bcache: Move keylist out of btree_op
[deliverable/linux.git] / drivers / md / bcache / writeback.c
1 /*
2 * background writeback - scan btree for dirty data and write it to the backing
3 * device
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "writeback.h"
13
14 #include <trace/events/bcache.h>
15
16 static struct workqueue_struct *dirty_wq;
17
18 static void read_dirty(struct closure *);
19
20 struct dirty_io {
21 struct closure cl;
22 struct cached_dev *dc;
23 struct bio bio;
24 };
25
26 /* Rate limiting */
27
28 static void __update_writeback_rate(struct cached_dev *dc)
29 {
30 struct cache_set *c = dc->disk.c;
31 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
32 uint64_t cache_dirty_target =
33 div_u64(cache_sectors * dc->writeback_percent, 100);
34
35 int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
36 c->cached_dev_sectors);
37
38 /* PD controller */
39
40 int change = 0;
41 int64_t error;
42 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
43 int64_t derivative = dirty - dc->disk.sectors_dirty_last;
44
45 dc->disk.sectors_dirty_last = dirty;
46
47 derivative *= dc->writeback_rate_d_term;
48 derivative = clamp(derivative, -dirty, dirty);
49
50 derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
51 dc->writeback_rate_d_smooth, 0);
52
53 /* Avoid divide by zero */
54 if (!target)
55 goto out;
56
57 error = div64_s64((dirty + derivative - target) << 8, target);
58
59 change = div_s64((dc->writeback_rate.rate * error) >> 8,
60 dc->writeback_rate_p_term_inverse);
61
62 /* Don't increase writeback rate if the device isn't keeping up */
63 if (change > 0 &&
64 time_after64(local_clock(),
65 dc->writeback_rate.next + 10 * NSEC_PER_MSEC))
66 change = 0;
67
68 dc->writeback_rate.rate =
69 clamp_t(int64_t, dc->writeback_rate.rate + change,
70 1, NSEC_PER_MSEC);
71 out:
72 dc->writeback_rate_derivative = derivative;
73 dc->writeback_rate_change = change;
74 dc->writeback_rate_target = target;
75
76 schedule_delayed_work(&dc->writeback_rate_update,
77 dc->writeback_rate_update_seconds * HZ);
78 }
79
80 static void update_writeback_rate(struct work_struct *work)
81 {
82 struct cached_dev *dc = container_of(to_delayed_work(work),
83 struct cached_dev,
84 writeback_rate_update);
85
86 down_read(&dc->writeback_lock);
87
88 if (atomic_read(&dc->has_dirty) &&
89 dc->writeback_percent)
90 __update_writeback_rate(dc);
91
92 up_read(&dc->writeback_lock);
93 }
94
95 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
96 {
97 uint64_t ret;
98
99 if (atomic_read(&dc->disk.detaching) ||
100 !dc->writeback_percent)
101 return 0;
102
103 ret = bch_next_delay(&dc->writeback_rate, sectors * 10000000ULL);
104
105 return min_t(uint64_t, ret, HZ);
106 }
107
108 /* Background writeback */
109
110 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
111 {
112 return KEY_DIRTY(k);
113 }
114
115 static bool dirty_full_stripe_pred(struct keybuf *buf, struct bkey *k)
116 {
117 uint64_t stripe = KEY_START(k);
118 unsigned nr_sectors = KEY_SIZE(k);
119 struct cached_dev *dc = container_of(buf, struct cached_dev,
120 writeback_keys);
121
122 if (!KEY_DIRTY(k))
123 return false;
124
125 do_div(stripe, dc->disk.stripe_size);
126
127 while (1) {
128 if (atomic_read(dc->disk.stripe_sectors_dirty + stripe) ==
129 dc->disk.stripe_size)
130 return true;
131
132 if (nr_sectors <= dc->disk.stripe_size)
133 return false;
134
135 nr_sectors -= dc->disk.stripe_size;
136 stripe++;
137 }
138 }
139
140 static void dirty_init(struct keybuf_key *w)
141 {
142 struct dirty_io *io = w->private;
143 struct bio *bio = &io->bio;
144
145 bio_init(bio);
146 if (!io->dc->writeback_percent)
147 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
148
149 bio->bi_size = KEY_SIZE(&w->key) << 9;
150 bio->bi_max_vecs = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
151 bio->bi_private = w;
152 bio->bi_io_vec = bio->bi_inline_vecs;
153 bch_bio_map(bio, NULL);
154 }
155
156 static void refill_dirty(struct closure *cl)
157 {
158 struct cached_dev *dc = container_of(cl, struct cached_dev,
159 writeback.cl);
160 struct keybuf *buf = &dc->writeback_keys;
161 bool searched_from_start = false;
162 struct bkey end = MAX_KEY;
163 SET_KEY_INODE(&end, dc->disk.id);
164
165 if (!atomic_read(&dc->disk.detaching) &&
166 !dc->writeback_running)
167 closure_return(cl);
168
169 down_write(&dc->writeback_lock);
170
171 if (!atomic_read(&dc->has_dirty)) {
172 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
173 bch_write_bdev_super(dc, NULL);
174
175 up_write(&dc->writeback_lock);
176 closure_return(cl);
177 }
178
179 if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
180 buf->last_scanned = KEY(dc->disk.id, 0, 0);
181 searched_from_start = true;
182 }
183
184 if (dc->partial_stripes_expensive) {
185 uint64_t i;
186
187 for (i = 0; i < dc->disk.nr_stripes; i++)
188 if (atomic_read(dc->disk.stripe_sectors_dirty + i) ==
189 dc->disk.stripe_size)
190 goto full_stripes;
191
192 goto normal_refill;
193 full_stripes:
194 searched_from_start = false; /* not searching entire btree */
195 bch_refill_keybuf(dc->disk.c, buf, &end,
196 dirty_full_stripe_pred);
197 } else {
198 normal_refill:
199 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
200 }
201
202 if (bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start) {
203 /* Searched the entire btree - delay awhile */
204
205 if (RB_EMPTY_ROOT(&buf->keys)) {
206 atomic_set(&dc->has_dirty, 0);
207 cached_dev_put(dc);
208 }
209
210 if (!atomic_read(&dc->disk.detaching))
211 closure_delay(&dc->writeback, dc->writeback_delay * HZ);
212 }
213
214 up_write(&dc->writeback_lock);
215
216 bch_ratelimit_reset(&dc->writeback_rate);
217
218 /* Punt to workqueue only so we don't recurse and blow the stack */
219 continue_at(cl, read_dirty, dirty_wq);
220 }
221
222 void bch_writeback_queue(struct cached_dev *dc)
223 {
224 if (closure_trylock(&dc->writeback.cl, &dc->disk.cl)) {
225 if (!atomic_read(&dc->disk.detaching))
226 closure_delay(&dc->writeback, dc->writeback_delay * HZ);
227
228 continue_at(&dc->writeback.cl, refill_dirty, dirty_wq);
229 }
230 }
231
232 void bch_writeback_add(struct cached_dev *dc)
233 {
234 if (!atomic_read(&dc->has_dirty) &&
235 !atomic_xchg(&dc->has_dirty, 1)) {
236 atomic_inc(&dc->count);
237
238 if (BDEV_STATE(&dc->sb) != BDEV_STATE_DIRTY) {
239 SET_BDEV_STATE(&dc->sb, BDEV_STATE_DIRTY);
240 /* XXX: should do this synchronously */
241 bch_write_bdev_super(dc, NULL);
242 }
243
244 bch_writeback_queue(dc);
245
246 if (dc->writeback_percent)
247 schedule_delayed_work(&dc->writeback_rate_update,
248 dc->writeback_rate_update_seconds * HZ);
249 }
250 }
251
252 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
253 uint64_t offset, int nr_sectors)
254 {
255 struct bcache_device *d = c->devices[inode];
256 unsigned stripe_offset;
257 uint64_t stripe = offset;
258
259 if (!d)
260 return;
261
262 do_div(stripe, d->stripe_size);
263
264 stripe_offset = offset & (d->stripe_size - 1);
265
266 while (nr_sectors) {
267 int s = min_t(unsigned, abs(nr_sectors),
268 d->stripe_size - stripe_offset);
269
270 if (nr_sectors < 0)
271 s = -s;
272
273 atomic_add(s, d->stripe_sectors_dirty + stripe);
274 nr_sectors -= s;
275 stripe_offset = 0;
276 stripe++;
277 }
278 }
279
280 /* Background writeback - IO loop */
281
282 static void dirty_io_destructor(struct closure *cl)
283 {
284 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
285 kfree(io);
286 }
287
288 static void write_dirty_finish(struct closure *cl)
289 {
290 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
291 struct keybuf_key *w = io->bio.bi_private;
292 struct cached_dev *dc = io->dc;
293 struct bio_vec *bv;
294 int i;
295
296 bio_for_each_segment_all(bv, &io->bio, i)
297 __free_page(bv->bv_page);
298
299 /* This is kind of a dumb way of signalling errors. */
300 if (KEY_DIRTY(&w->key)) {
301 unsigned i;
302 struct btree_op op;
303 struct keylist keys;
304
305 bch_btree_op_init_stack(&op);
306 bch_keylist_init(&keys);
307
308 op.type = BTREE_REPLACE;
309 bkey_copy(&op.replace, &w->key);
310
311 SET_KEY_DIRTY(&w->key, false);
312 bch_keylist_add(&keys, &w->key);
313
314 for (i = 0; i < KEY_PTRS(&w->key); i++)
315 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
316
317 bch_btree_insert(&op, dc->disk.c, &keys);
318 closure_sync(&op.cl);
319
320 if (op.insert_collision)
321 trace_bcache_writeback_collision(&w->key);
322
323 atomic_long_inc(op.insert_collision
324 ? &dc->disk.c->writeback_keys_failed
325 : &dc->disk.c->writeback_keys_done);
326 }
327
328 bch_keybuf_del(&dc->writeback_keys, w);
329 up(&dc->in_flight);
330
331 closure_return_with_destructor(cl, dirty_io_destructor);
332 }
333
334 static void dirty_endio(struct bio *bio, int error)
335 {
336 struct keybuf_key *w = bio->bi_private;
337 struct dirty_io *io = w->private;
338
339 if (error)
340 SET_KEY_DIRTY(&w->key, false);
341
342 closure_put(&io->cl);
343 }
344
345 static void write_dirty(struct closure *cl)
346 {
347 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
348 struct keybuf_key *w = io->bio.bi_private;
349
350 dirty_init(w);
351 io->bio.bi_rw = WRITE;
352 io->bio.bi_sector = KEY_START(&w->key);
353 io->bio.bi_bdev = io->dc->bdev;
354 io->bio.bi_end_io = dirty_endio;
355
356 closure_bio_submit(&io->bio, cl, &io->dc->disk);
357
358 continue_at(cl, write_dirty_finish, system_wq);
359 }
360
361 static void read_dirty_endio(struct bio *bio, int error)
362 {
363 struct keybuf_key *w = bio->bi_private;
364 struct dirty_io *io = w->private;
365
366 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
367 error, "reading dirty data from cache");
368
369 dirty_endio(bio, error);
370 }
371
372 static void read_dirty_submit(struct closure *cl)
373 {
374 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
375
376 closure_bio_submit(&io->bio, cl, &io->dc->disk);
377
378 continue_at(cl, write_dirty, system_wq);
379 }
380
381 static void read_dirty(struct closure *cl)
382 {
383 struct cached_dev *dc = container_of(cl, struct cached_dev,
384 writeback.cl);
385 unsigned delay = writeback_delay(dc, 0);
386 struct keybuf_key *w;
387 struct dirty_io *io;
388
389 /*
390 * XXX: if we error, background writeback just spins. Should use some
391 * mempools.
392 */
393
394 while (1) {
395 w = bch_keybuf_next(&dc->writeback_keys);
396 if (!w)
397 break;
398
399 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
400
401 if (delay > 0 &&
402 (KEY_START(&w->key) != dc->last_read ||
403 jiffies_to_msecs(delay) > 50))
404 delay = schedule_timeout_uninterruptible(delay);
405
406 dc->last_read = KEY_OFFSET(&w->key);
407
408 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
409 * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
410 GFP_KERNEL);
411 if (!io)
412 goto err;
413
414 w->private = io;
415 io->dc = dc;
416
417 dirty_init(w);
418 io->bio.bi_sector = PTR_OFFSET(&w->key, 0);
419 io->bio.bi_bdev = PTR_CACHE(dc->disk.c,
420 &w->key, 0)->bdev;
421 io->bio.bi_rw = READ;
422 io->bio.bi_end_io = read_dirty_endio;
423
424 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
425 goto err_free;
426
427 trace_bcache_writeback(&w->key);
428
429 down(&dc->in_flight);
430 closure_call(&io->cl, read_dirty_submit, NULL, cl);
431
432 delay = writeback_delay(dc, KEY_SIZE(&w->key));
433 }
434
435 if (0) {
436 err_free:
437 kfree(w->private);
438 err:
439 bch_keybuf_del(&dc->writeback_keys, w);
440 }
441
442 /*
443 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
444 * freed) before refilling again
445 */
446 continue_at(cl, refill_dirty, dirty_wq);
447 }
448
449 /* Init */
450
451 static int bch_btree_sectors_dirty_init(struct btree *b, struct btree_op *op,
452 struct cached_dev *dc)
453 {
454 struct bkey *k;
455 struct btree_iter iter;
456
457 bch_btree_iter_init(b, &iter, &KEY(dc->disk.id, 0, 0));
458 while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad)))
459 if (!b->level) {
460 if (KEY_INODE(k) > dc->disk.id)
461 break;
462
463 if (KEY_DIRTY(k))
464 bcache_dev_sectors_dirty_add(b->c, dc->disk.id,
465 KEY_START(k),
466 KEY_SIZE(k));
467 } else {
468 btree(sectors_dirty_init, k, b, op, dc);
469 if (KEY_INODE(k) > dc->disk.id)
470 break;
471
472 cond_resched();
473 }
474
475 return 0;
476 }
477
478 void bch_sectors_dirty_init(struct cached_dev *dc)
479 {
480 struct btree_op op;
481
482 bch_btree_op_init_stack(&op);
483 btree_root(sectors_dirty_init, dc->disk.c, &op, dc);
484 }
485
486 void bch_cached_dev_writeback_init(struct cached_dev *dc)
487 {
488 sema_init(&dc->in_flight, 64);
489 closure_init_unlocked(&dc->writeback);
490 init_rwsem(&dc->writeback_lock);
491
492 bch_keybuf_init(&dc->writeback_keys);
493
494 dc->writeback_metadata = true;
495 dc->writeback_running = true;
496 dc->writeback_percent = 10;
497 dc->writeback_delay = 30;
498 dc->writeback_rate.rate = 1024;
499
500 dc->writeback_rate_update_seconds = 30;
501 dc->writeback_rate_d_term = 16;
502 dc->writeback_rate_p_term_inverse = 64;
503 dc->writeback_rate_d_smooth = 8;
504
505 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
506 schedule_delayed_work(&dc->writeback_rate_update,
507 dc->writeback_rate_update_seconds * HZ);
508 }
509
510 void bch_writeback_exit(void)
511 {
512 if (dirty_wq)
513 destroy_workqueue(dirty_wq);
514 }
515
516 int __init bch_writeback_init(void)
517 {
518 dirty_wq = create_workqueue("bcache_writeback");
519 if (!dirty_wq)
520 return -ENOMEM;
521
522 return 0;
523 }
This page took 0.078895 seconds and 6 git commands to generate.