dm cache policy mq: implement writeback_work() and mq_{set,clear}_dirty()
[deliverable/linux.git] / drivers / md / dm-cache-policy-mq.c
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-cache-policy.h"
8 #include "dm.h"
9
10 #include <linux/hash.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15
16 #define DM_MSG_PREFIX "cache-policy-mq"
17
18 static struct kmem_cache *mq_entry_cache;
19
20 /*----------------------------------------------------------------*/
21
22 static unsigned next_power(unsigned n, unsigned min)
23 {
24 return roundup_pow_of_two(max(n, min));
25 }
26
27 /*----------------------------------------------------------------*/
28
29 static unsigned long *alloc_bitset(unsigned nr_entries)
30 {
31 size_t s = sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
32 return vzalloc(s);
33 }
34
35 static void free_bitset(unsigned long *bits)
36 {
37 vfree(bits);
38 }
39
40 /*----------------------------------------------------------------*/
41
42 /*
43 * Large, sequential ios are probably better left on the origin device since
44 * spindles tend to have good bandwidth.
45 *
46 * The io_tracker tries to spot when the io is in one of these sequential
47 * modes.
48 *
49 * Two thresholds to switch between random and sequential io mode are defaulting
50 * as follows and can be adjusted via the constructor and message interfaces.
51 */
52 #define RANDOM_THRESHOLD_DEFAULT 4
53 #define SEQUENTIAL_THRESHOLD_DEFAULT 512
54
55 enum io_pattern {
56 PATTERN_SEQUENTIAL,
57 PATTERN_RANDOM
58 };
59
60 struct io_tracker {
61 enum io_pattern pattern;
62
63 unsigned nr_seq_samples;
64 unsigned nr_rand_samples;
65 unsigned thresholds[2];
66
67 dm_oblock_t last_end_oblock;
68 };
69
70 static void iot_init(struct io_tracker *t,
71 int sequential_threshold, int random_threshold)
72 {
73 t->pattern = PATTERN_RANDOM;
74 t->nr_seq_samples = 0;
75 t->nr_rand_samples = 0;
76 t->last_end_oblock = 0;
77 t->thresholds[PATTERN_RANDOM] = random_threshold;
78 t->thresholds[PATTERN_SEQUENTIAL] = sequential_threshold;
79 }
80
81 static enum io_pattern iot_pattern(struct io_tracker *t)
82 {
83 return t->pattern;
84 }
85
86 static void iot_update_stats(struct io_tracker *t, struct bio *bio)
87 {
88 if (bio->bi_sector == from_oblock(t->last_end_oblock) + 1)
89 t->nr_seq_samples++;
90 else {
91 /*
92 * Just one non-sequential IO is enough to reset the
93 * counters.
94 */
95 if (t->nr_seq_samples) {
96 t->nr_seq_samples = 0;
97 t->nr_rand_samples = 0;
98 }
99
100 t->nr_rand_samples++;
101 }
102
103 t->last_end_oblock = to_oblock(bio->bi_sector + bio_sectors(bio) - 1);
104 }
105
106 static void iot_check_for_pattern_switch(struct io_tracker *t)
107 {
108 switch (t->pattern) {
109 case PATTERN_SEQUENTIAL:
110 if (t->nr_rand_samples >= t->thresholds[PATTERN_RANDOM]) {
111 t->pattern = PATTERN_RANDOM;
112 t->nr_seq_samples = t->nr_rand_samples = 0;
113 }
114 break;
115
116 case PATTERN_RANDOM:
117 if (t->nr_seq_samples >= t->thresholds[PATTERN_SEQUENTIAL]) {
118 t->pattern = PATTERN_SEQUENTIAL;
119 t->nr_seq_samples = t->nr_rand_samples = 0;
120 }
121 break;
122 }
123 }
124
125 static void iot_examine_bio(struct io_tracker *t, struct bio *bio)
126 {
127 iot_update_stats(t, bio);
128 iot_check_for_pattern_switch(t);
129 }
130
131 /*----------------------------------------------------------------*/
132
133
134 /*
135 * This queue is divided up into different levels. Allowing us to push
136 * entries to the back of any of the levels. Think of it as a partially
137 * sorted queue.
138 */
139 #define NR_QUEUE_LEVELS 16u
140
141 struct queue {
142 struct list_head qs[NR_QUEUE_LEVELS];
143 };
144
145 static void queue_init(struct queue *q)
146 {
147 unsigned i;
148
149 for (i = 0; i < NR_QUEUE_LEVELS; i++)
150 INIT_LIST_HEAD(q->qs + i);
151 }
152
153 /*
154 * Insert an entry to the back of the given level.
155 */
156 static void queue_push(struct queue *q, unsigned level, struct list_head *elt)
157 {
158 list_add_tail(elt, q->qs + level);
159 }
160
161 static void queue_remove(struct list_head *elt)
162 {
163 list_del(elt);
164 }
165
166 /*
167 * Shifts all regions down one level. This has no effect on the order of
168 * the queue.
169 */
170 static void queue_shift_down(struct queue *q)
171 {
172 unsigned level;
173
174 for (level = 1; level < NR_QUEUE_LEVELS; level++)
175 list_splice_init(q->qs + level, q->qs + level - 1);
176 }
177
178 /*
179 * Gives us the oldest entry of the lowest popoulated level. If the first
180 * level is emptied then we shift down one level.
181 */
182 static struct list_head *queue_pop(struct queue *q)
183 {
184 unsigned level;
185 struct list_head *r;
186
187 for (level = 0; level < NR_QUEUE_LEVELS; level++)
188 if (!list_empty(q->qs + level)) {
189 r = q->qs[level].next;
190 list_del(r);
191
192 /* have we just emptied the bottom level? */
193 if (level == 0 && list_empty(q->qs))
194 queue_shift_down(q);
195
196 return r;
197 }
198
199 return NULL;
200 }
201
202 static struct list_head *list_pop(struct list_head *lh)
203 {
204 struct list_head *r = lh->next;
205
206 BUG_ON(!r);
207 list_del_init(r);
208
209 return r;
210 }
211
212 /*----------------------------------------------------------------*/
213
214 /*
215 * Describes a cache entry. Used in both the cache and the pre_cache.
216 */
217 struct entry {
218 struct hlist_node hlist;
219 struct list_head list;
220 dm_oblock_t oblock;
221 dm_cblock_t cblock; /* valid iff in_cache */
222
223 /*
224 * FIXME: pack these better
225 */
226 bool in_cache:1;
227 bool dirty:1;
228 unsigned hit_count;
229 unsigned generation;
230 unsigned tick;
231 };
232
233 struct mq_policy {
234 struct dm_cache_policy policy;
235
236 /* protects everything */
237 struct mutex lock;
238 dm_cblock_t cache_size;
239 struct io_tracker tracker;
240
241 /*
242 * We maintain three queues of entries. The cache proper,
243 * consisting of a clean and dirty queue, contains the currently
244 * active mappings. Whereas the pre_cache tracks blocks that
245 * are being hit frequently and potential candidates for promotion
246 * to the cache.
247 */
248 struct queue pre_cache;
249 struct queue cache_clean;
250 struct queue cache_dirty;
251
252 /*
253 * Keeps track of time, incremented by the core. We use this to
254 * avoid attributing multiple hits within the same tick.
255 *
256 * Access to tick_protected should be done with the spin lock held.
257 * It's copied to tick at the start of the map function (within the
258 * mutex).
259 */
260 spinlock_t tick_lock;
261 unsigned tick_protected;
262 unsigned tick;
263
264 /*
265 * A count of the number of times the map function has been called
266 * and found an entry in the pre_cache or cache. Currently used to
267 * calculate the generation.
268 */
269 unsigned hit_count;
270
271 /*
272 * A generation is a longish period that is used to trigger some
273 * book keeping effects. eg, decrementing hit counts on entries.
274 * This is needed to allow the cache to evolve as io patterns
275 * change.
276 */
277 unsigned generation;
278 unsigned generation_period; /* in lookups (will probably change) */
279
280 /*
281 * Entries in the pre_cache whose hit count passes the promotion
282 * threshold move to the cache proper. Working out the correct
283 * value for the promotion_threshold is crucial to this policy.
284 */
285 unsigned promote_threshold;
286
287 /*
288 * We need cache_size entries for the cache, and choose to have
289 * cache_size entries for the pre_cache too. One motivation for
290 * using the same size is to make the hit counts directly
291 * comparable between pre_cache and cache.
292 */
293 unsigned nr_entries;
294 unsigned nr_entries_allocated;
295 struct list_head free;
296
297 /*
298 * Cache blocks may be unallocated. We store this info in a
299 * bitset.
300 */
301 unsigned long *allocation_bitset;
302 unsigned nr_cblocks_allocated;
303 unsigned find_free_nr_words;
304 unsigned find_free_last_word;
305
306 /*
307 * The hash table allows us to quickly find an entry by origin
308 * block. Both pre_cache and cache entries are in here.
309 */
310 unsigned nr_buckets;
311 dm_block_t hash_bits;
312 struct hlist_head *table;
313 };
314
315 /*----------------------------------------------------------------*/
316 /* Free/alloc mq cache entry structures. */
317 static void concat_queue(struct list_head *lh, struct queue *q)
318 {
319 unsigned level;
320
321 for (level = 0; level < NR_QUEUE_LEVELS; level++)
322 list_splice(q->qs + level, lh);
323 }
324
325 static void free_entries(struct mq_policy *mq)
326 {
327 struct entry *e, *tmp;
328
329 concat_queue(&mq->free, &mq->pre_cache);
330 concat_queue(&mq->free, &mq->cache_clean);
331 concat_queue(&mq->free, &mq->cache_dirty);
332
333 list_for_each_entry_safe(e, tmp, &mq->free, list)
334 kmem_cache_free(mq_entry_cache, e);
335 }
336
337 static int alloc_entries(struct mq_policy *mq, unsigned elts)
338 {
339 unsigned u = mq->nr_entries;
340
341 INIT_LIST_HEAD(&mq->free);
342 mq->nr_entries_allocated = 0;
343
344 while (u--) {
345 struct entry *e = kmem_cache_zalloc(mq_entry_cache, GFP_KERNEL);
346
347 if (!e) {
348 free_entries(mq);
349 return -ENOMEM;
350 }
351
352
353 list_add(&e->list, &mq->free);
354 }
355
356 return 0;
357 }
358
359 /*----------------------------------------------------------------*/
360
361 /*
362 * Simple hash table implementation. Should replace with the standard hash
363 * table that's making its way upstream.
364 */
365 static void hash_insert(struct mq_policy *mq, struct entry *e)
366 {
367 unsigned h = hash_64(from_oblock(e->oblock), mq->hash_bits);
368
369 hlist_add_head(&e->hlist, mq->table + h);
370 }
371
372 static struct entry *hash_lookup(struct mq_policy *mq, dm_oblock_t oblock)
373 {
374 unsigned h = hash_64(from_oblock(oblock), mq->hash_bits);
375 struct hlist_head *bucket = mq->table + h;
376 struct entry *e;
377
378 hlist_for_each_entry(e, bucket, hlist)
379 if (e->oblock == oblock) {
380 hlist_del(&e->hlist);
381 hlist_add_head(&e->hlist, bucket);
382 return e;
383 }
384
385 return NULL;
386 }
387
388 static void hash_remove(struct entry *e)
389 {
390 hlist_del(&e->hlist);
391 }
392
393 /*----------------------------------------------------------------*/
394
395 /*
396 * Allocates a new entry structure. The memory is allocated in one lump,
397 * so we just handing it out here. Returns NULL if all entries have
398 * already been allocated. Cannot fail otherwise.
399 */
400 static struct entry *alloc_entry(struct mq_policy *mq)
401 {
402 struct entry *e;
403
404 if (mq->nr_entries_allocated >= mq->nr_entries) {
405 BUG_ON(!list_empty(&mq->free));
406 return NULL;
407 }
408
409 e = list_entry(list_pop(&mq->free), struct entry, list);
410 INIT_LIST_HEAD(&e->list);
411 INIT_HLIST_NODE(&e->hlist);
412
413 mq->nr_entries_allocated++;
414 return e;
415 }
416
417 /*----------------------------------------------------------------*/
418
419 /*
420 * Mark cache blocks allocated or not in the bitset.
421 */
422 static void alloc_cblock(struct mq_policy *mq, dm_cblock_t cblock)
423 {
424 BUG_ON(from_cblock(cblock) > from_cblock(mq->cache_size));
425 BUG_ON(test_bit(from_cblock(cblock), mq->allocation_bitset));
426
427 set_bit(from_cblock(cblock), mq->allocation_bitset);
428 mq->nr_cblocks_allocated++;
429 }
430
431 static void free_cblock(struct mq_policy *mq, dm_cblock_t cblock)
432 {
433 BUG_ON(from_cblock(cblock) > from_cblock(mq->cache_size));
434 BUG_ON(!test_bit(from_cblock(cblock), mq->allocation_bitset));
435
436 clear_bit(from_cblock(cblock), mq->allocation_bitset);
437 mq->nr_cblocks_allocated--;
438 }
439
440 static bool any_free_cblocks(struct mq_policy *mq)
441 {
442 return mq->nr_cblocks_allocated < from_cblock(mq->cache_size);
443 }
444
445 /*
446 * Fills result out with a cache block that isn't in use, or return
447 * -ENOSPC. This does _not_ mark the cblock as allocated, the caller is
448 * reponsible for that.
449 */
450 static int __find_free_cblock(struct mq_policy *mq, unsigned begin, unsigned end,
451 dm_cblock_t *result, unsigned *last_word)
452 {
453 int r = -ENOSPC;
454 unsigned w;
455
456 for (w = begin; w < end; w++) {
457 /*
458 * ffz is undefined if no zero exists
459 */
460 if (mq->allocation_bitset[w] != ~0UL) {
461 *last_word = w;
462 *result = to_cblock((w * BITS_PER_LONG) + ffz(mq->allocation_bitset[w]));
463 if (from_cblock(*result) < from_cblock(mq->cache_size))
464 r = 0;
465
466 break;
467 }
468 }
469
470 return r;
471 }
472
473 static int find_free_cblock(struct mq_policy *mq, dm_cblock_t *result)
474 {
475 int r;
476
477 if (!any_free_cblocks(mq))
478 return -ENOSPC;
479
480 r = __find_free_cblock(mq, mq->find_free_last_word, mq->find_free_nr_words, result, &mq->find_free_last_word);
481 if (r == -ENOSPC && mq->find_free_last_word)
482 r = __find_free_cblock(mq, 0, mq->find_free_last_word, result, &mq->find_free_last_word);
483
484 return r;
485 }
486
487 /*----------------------------------------------------------------*/
488
489 /*
490 * Now we get to the meat of the policy. This section deals with deciding
491 * when to to add entries to the pre_cache and cache, and move between
492 * them.
493 */
494
495 /*
496 * The queue level is based on the log2 of the hit count.
497 */
498 static unsigned queue_level(struct entry *e)
499 {
500 return min((unsigned) ilog2(e->hit_count), NR_QUEUE_LEVELS - 1u);
501 }
502
503 /*
504 * Inserts the entry into the pre_cache or the cache. Ensures the cache
505 * block is marked as allocated if necc. Inserts into the hash table. Sets the
506 * tick which records when the entry was last moved about.
507 */
508 static void push(struct mq_policy *mq, struct entry *e)
509 {
510 e->tick = mq->tick;
511 hash_insert(mq, e);
512
513 if (e->in_cache) {
514 alloc_cblock(mq, e->cblock);
515 queue_push(e->dirty ? &mq->cache_dirty : &mq->cache_clean,
516 queue_level(e), &e->list);
517 } else
518 queue_push(&mq->pre_cache, queue_level(e), &e->list);
519 }
520
521 /*
522 * Removes an entry from pre_cache or cache. Removes from the hash table.
523 * Frees off the cache block if necc.
524 */
525 static void del(struct mq_policy *mq, struct entry *e)
526 {
527 queue_remove(&e->list);
528 hash_remove(e);
529 if (e->in_cache)
530 free_cblock(mq, e->cblock);
531 }
532
533 /*
534 * Like del, except it removes the first entry in the queue (ie. the least
535 * recently used).
536 */
537 static struct entry *pop(struct mq_policy *mq, struct queue *q)
538 {
539 struct entry *e;
540 struct list_head *h = queue_pop(q);
541
542 if (!h)
543 return NULL;
544
545 e = container_of(h, struct entry, list);
546 hash_remove(e);
547 if (e->in_cache)
548 free_cblock(mq, e->cblock);
549
550 return e;
551 }
552
553 /*
554 * Has this entry already been updated?
555 */
556 static bool updated_this_tick(struct mq_policy *mq, struct entry *e)
557 {
558 return mq->tick == e->tick;
559 }
560
561 /*
562 * The promotion threshold is adjusted every generation. As are the counts
563 * of the entries.
564 *
565 * At the moment the threshold is taken by averaging the hit counts of some
566 * of the entries in the cache (the first 20 entries across all levels in
567 * ascending order, giving preference to the clean entries at each level).
568 *
569 * We can be much cleverer than this though. For example, each promotion
570 * could bump up the threshold helping to prevent churn. Much more to do
571 * here.
572 */
573
574 #define MAX_TO_AVERAGE 20
575
576 static void check_generation(struct mq_policy *mq)
577 {
578 unsigned total = 0, nr = 0, count = 0, level;
579 struct list_head *head;
580 struct entry *e;
581
582 if ((mq->hit_count >= mq->generation_period) &&
583 (mq->nr_cblocks_allocated == from_cblock(mq->cache_size))) {
584
585 mq->hit_count = 0;
586 mq->generation++;
587
588 for (level = 0; level < NR_QUEUE_LEVELS && count < MAX_TO_AVERAGE; level++) {
589 head = mq->cache_clean.qs + level;
590 list_for_each_entry(e, head, list) {
591 nr++;
592 total += e->hit_count;
593
594 if (++count >= MAX_TO_AVERAGE)
595 break;
596 }
597
598 head = mq->cache_dirty.qs + level;
599 list_for_each_entry(e, head, list) {
600 nr++;
601 total += e->hit_count;
602
603 if (++count >= MAX_TO_AVERAGE)
604 break;
605 }
606 }
607
608 mq->promote_threshold = nr ? total / nr : 1;
609 if (mq->promote_threshold * nr < total)
610 mq->promote_threshold++;
611 }
612 }
613
614 /*
615 * Whenever we use an entry we bump up it's hit counter, and push it to the
616 * back to it's current level.
617 */
618 static void requeue_and_update_tick(struct mq_policy *mq, struct entry *e)
619 {
620 if (updated_this_tick(mq, e))
621 return;
622
623 e->hit_count++;
624 mq->hit_count++;
625 check_generation(mq);
626
627 /* generation adjustment, to stop the counts increasing forever. */
628 /* FIXME: divide? */
629 /* e->hit_count -= min(e->hit_count - 1, mq->generation - e->generation); */
630 e->generation = mq->generation;
631
632 del(mq, e);
633 push(mq, e);
634 }
635
636 /*
637 * Demote the least recently used entry from the cache to the pre_cache.
638 * Returns the new cache entry to use, and the old origin block it was
639 * mapped to.
640 *
641 * We drop the hit count on the demoted entry back to 1 to stop it bouncing
642 * straight back into the cache if it's subsequently hit. There are
643 * various options here, and more experimentation would be good:
644 *
645 * - just forget about the demoted entry completely (ie. don't insert it
646 into the pre_cache).
647 * - divide the hit count rather that setting to some hard coded value.
648 * - set the hit count to a hard coded value other than 1, eg, is it better
649 * if it goes in at level 2?
650 */
651 static int demote_cblock(struct mq_policy *mq, dm_oblock_t *oblock, dm_cblock_t *cblock)
652 {
653 struct entry *demoted = pop(mq, &mq->cache_clean);
654
655 if (!demoted)
656 /*
657 * We could get a block from mq->cache_dirty, but that
658 * would add extra latency to the triggering bio as it
659 * waits for the writeback. Better to not promote this
660 * time and hope there's a clean block next time this block
661 * is hit.
662 */
663 return -ENOSPC;
664
665 *cblock = demoted->cblock;
666 *oblock = demoted->oblock;
667 demoted->in_cache = false;
668 demoted->dirty = false;
669 demoted->hit_count = 1;
670 push(mq, demoted);
671
672 return 0;
673 }
674
675 /*
676 * We modify the basic promotion_threshold depending on the specific io.
677 *
678 * If the origin block has been discarded then there's no cost to copy it
679 * to the cache.
680 *
681 * We bias towards reads, since they can be demoted at no cost if they
682 * haven't been dirtied.
683 */
684 #define DISCARDED_PROMOTE_THRESHOLD 1
685 #define READ_PROMOTE_THRESHOLD 4
686 #define WRITE_PROMOTE_THRESHOLD 8
687
688 static unsigned adjusted_promote_threshold(struct mq_policy *mq,
689 bool discarded_oblock, int data_dir)
690 {
691 if (discarded_oblock && any_free_cblocks(mq) && data_dir == WRITE)
692 /*
693 * We don't need to do any copying at all, so give this a
694 * very low threshold. In practice this only triggers
695 * during initial population after a format.
696 */
697 return DISCARDED_PROMOTE_THRESHOLD;
698
699 return data_dir == READ ?
700 (mq->promote_threshold + READ_PROMOTE_THRESHOLD) :
701 (mq->promote_threshold + WRITE_PROMOTE_THRESHOLD);
702 }
703
704 static bool should_promote(struct mq_policy *mq, struct entry *e,
705 bool discarded_oblock, int data_dir)
706 {
707 return e->hit_count >=
708 adjusted_promote_threshold(mq, discarded_oblock, data_dir);
709 }
710
711 static int cache_entry_found(struct mq_policy *mq,
712 struct entry *e,
713 struct policy_result *result)
714 {
715 requeue_and_update_tick(mq, e);
716
717 if (e->in_cache) {
718 result->op = POLICY_HIT;
719 result->cblock = e->cblock;
720 }
721
722 return 0;
723 }
724
725 /*
726 * Moves an entry from the pre_cache to the cache. The main work is
727 * finding which cache block to use.
728 */
729 static int pre_cache_to_cache(struct mq_policy *mq, struct entry *e,
730 struct policy_result *result)
731 {
732 int r;
733 dm_cblock_t cblock;
734
735 if (find_free_cblock(mq, &cblock) == -ENOSPC) {
736 result->op = POLICY_REPLACE;
737 r = demote_cblock(mq, &result->old_oblock, &cblock);
738 if (r) {
739 result->op = POLICY_MISS;
740 return 0;
741 }
742 } else
743 result->op = POLICY_NEW;
744
745 result->cblock = e->cblock = cblock;
746
747 del(mq, e);
748 e->in_cache = true;
749 e->dirty = false;
750 push(mq, e);
751
752 return 0;
753 }
754
755 static int pre_cache_entry_found(struct mq_policy *mq, struct entry *e,
756 bool can_migrate, bool discarded_oblock,
757 int data_dir, struct policy_result *result)
758 {
759 int r = 0;
760 bool updated = updated_this_tick(mq, e);
761
762 requeue_and_update_tick(mq, e);
763
764 if ((!discarded_oblock && updated) ||
765 !should_promote(mq, e, discarded_oblock, data_dir))
766 result->op = POLICY_MISS;
767 else if (!can_migrate)
768 r = -EWOULDBLOCK;
769 else
770 r = pre_cache_to_cache(mq, e, result);
771
772 return r;
773 }
774
775 static void insert_in_pre_cache(struct mq_policy *mq,
776 dm_oblock_t oblock)
777 {
778 struct entry *e = alloc_entry(mq);
779
780 if (!e)
781 /*
782 * There's no spare entry structure, so we grab the least
783 * used one from the pre_cache.
784 */
785 e = pop(mq, &mq->pre_cache);
786
787 if (unlikely(!e)) {
788 DMWARN("couldn't pop from pre cache");
789 return;
790 }
791
792 e->in_cache = false;
793 e->dirty = false;
794 e->oblock = oblock;
795 e->hit_count = 1;
796 e->generation = mq->generation;
797 push(mq, e);
798 }
799
800 static void insert_in_cache(struct mq_policy *mq, dm_oblock_t oblock,
801 struct policy_result *result)
802 {
803 struct entry *e;
804 dm_cblock_t cblock;
805
806 if (find_free_cblock(mq, &cblock) == -ENOSPC) {
807 result->op = POLICY_MISS;
808 insert_in_pre_cache(mq, oblock);
809 return;
810 }
811
812 e = alloc_entry(mq);
813 if (unlikely(!e)) {
814 result->op = POLICY_MISS;
815 return;
816 }
817
818 e->oblock = oblock;
819 e->cblock = cblock;
820 e->in_cache = true;
821 e->dirty = false;
822 e->hit_count = 1;
823 e->generation = mq->generation;
824 push(mq, e);
825
826 result->op = POLICY_NEW;
827 result->cblock = e->cblock;
828 }
829
830 static int no_entry_found(struct mq_policy *mq, dm_oblock_t oblock,
831 bool can_migrate, bool discarded_oblock,
832 int data_dir, struct policy_result *result)
833 {
834 if (adjusted_promote_threshold(mq, discarded_oblock, data_dir) == 1) {
835 if (can_migrate)
836 insert_in_cache(mq, oblock, result);
837 else
838 return -EWOULDBLOCK;
839 } else {
840 insert_in_pre_cache(mq, oblock);
841 result->op = POLICY_MISS;
842 }
843
844 return 0;
845 }
846
847 /*
848 * Looks the oblock up in the hash table, then decides whether to put in
849 * pre_cache, or cache etc.
850 */
851 static int map(struct mq_policy *mq, dm_oblock_t oblock,
852 bool can_migrate, bool discarded_oblock,
853 int data_dir, struct policy_result *result)
854 {
855 int r = 0;
856 struct entry *e = hash_lookup(mq, oblock);
857
858 if (e && e->in_cache)
859 r = cache_entry_found(mq, e, result);
860 else if (iot_pattern(&mq->tracker) == PATTERN_SEQUENTIAL)
861 result->op = POLICY_MISS;
862 else if (e)
863 r = pre_cache_entry_found(mq, e, can_migrate, discarded_oblock,
864 data_dir, result);
865 else
866 r = no_entry_found(mq, oblock, can_migrate, discarded_oblock,
867 data_dir, result);
868
869 if (r == -EWOULDBLOCK)
870 result->op = POLICY_MISS;
871
872 return r;
873 }
874
875 /*----------------------------------------------------------------*/
876
877 /*
878 * Public interface, via the policy struct. See dm-cache-policy.h for a
879 * description of these.
880 */
881
882 static struct mq_policy *to_mq_policy(struct dm_cache_policy *p)
883 {
884 return container_of(p, struct mq_policy, policy);
885 }
886
887 static void mq_destroy(struct dm_cache_policy *p)
888 {
889 struct mq_policy *mq = to_mq_policy(p);
890
891 free_bitset(mq->allocation_bitset);
892 kfree(mq->table);
893 free_entries(mq);
894 kfree(mq);
895 }
896
897 static void copy_tick(struct mq_policy *mq)
898 {
899 unsigned long flags;
900
901 spin_lock_irqsave(&mq->tick_lock, flags);
902 mq->tick = mq->tick_protected;
903 spin_unlock_irqrestore(&mq->tick_lock, flags);
904 }
905
906 static int mq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
907 bool can_block, bool can_migrate, bool discarded_oblock,
908 struct bio *bio, struct policy_result *result)
909 {
910 int r;
911 struct mq_policy *mq = to_mq_policy(p);
912
913 result->op = POLICY_MISS;
914
915 if (can_block)
916 mutex_lock(&mq->lock);
917 else if (!mutex_trylock(&mq->lock))
918 return -EWOULDBLOCK;
919
920 copy_tick(mq);
921
922 iot_examine_bio(&mq->tracker, bio);
923 r = map(mq, oblock, can_migrate, discarded_oblock,
924 bio_data_dir(bio), result);
925
926 mutex_unlock(&mq->lock);
927
928 return r;
929 }
930
931 static int mq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
932 {
933 int r;
934 struct mq_policy *mq = to_mq_policy(p);
935 struct entry *e;
936
937 if (!mutex_trylock(&mq->lock))
938 return -EWOULDBLOCK;
939
940 e = hash_lookup(mq, oblock);
941 if (e && e->in_cache) {
942 *cblock = e->cblock;
943 r = 0;
944 } else
945 r = -ENOENT;
946
947 mutex_unlock(&mq->lock);
948
949 return r;
950 }
951
952 /*
953 * FIXME: __mq_set_clear_dirty can block due to mutex.
954 * Ideally a policy should not block in functions called
955 * from the map() function. Explore using RCU.
956 */
957 static void __mq_set_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock, bool set)
958 {
959 struct mq_policy *mq = to_mq_policy(p);
960 struct entry *e;
961
962 mutex_lock(&mq->lock);
963 e = hash_lookup(mq, oblock);
964 if (!e)
965 DMWARN("__mq_set_clear_dirty called for a block that isn't in the cache");
966 else {
967 BUG_ON(!e->in_cache);
968
969 del(mq, e);
970 e->dirty = set;
971 push(mq, e);
972 }
973 mutex_unlock(&mq->lock);
974 }
975
976 static void mq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
977 {
978 __mq_set_clear_dirty(p, oblock, true);
979 }
980
981 static void mq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
982 {
983 __mq_set_clear_dirty(p, oblock, false);
984 }
985
986 static int mq_load_mapping(struct dm_cache_policy *p,
987 dm_oblock_t oblock, dm_cblock_t cblock,
988 uint32_t hint, bool hint_valid)
989 {
990 struct mq_policy *mq = to_mq_policy(p);
991 struct entry *e;
992
993 e = alloc_entry(mq);
994 if (!e)
995 return -ENOMEM;
996
997 e->cblock = cblock;
998 e->oblock = oblock;
999 e->in_cache = true;
1000 e->dirty = false; /* this gets corrected in a minute */
1001 e->hit_count = hint_valid ? hint : 1;
1002 e->generation = mq->generation;
1003 push(mq, e);
1004
1005 return 0;
1006 }
1007
1008 static int mq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn,
1009 void *context)
1010 {
1011 struct mq_policy *mq = to_mq_policy(p);
1012 int r = 0;
1013 struct entry *e;
1014 unsigned level;
1015
1016 mutex_lock(&mq->lock);
1017
1018 for (level = 0; level < NR_QUEUE_LEVELS; level++)
1019 list_for_each_entry(e, &mq->cache_clean.qs[level], list) {
1020 r = fn(context, e->cblock, e->oblock, e->hit_count);
1021 if (r)
1022 goto out;
1023 }
1024
1025 for (level = 0; level < NR_QUEUE_LEVELS; level++)
1026 list_for_each_entry(e, &mq->cache_dirty.qs[level], list) {
1027 r = fn(context, e->cblock, e->oblock, e->hit_count);
1028 if (r)
1029 goto out;
1030 }
1031
1032 out:
1033 mutex_unlock(&mq->lock);
1034
1035 return r;
1036 }
1037
1038 static void mq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
1039 {
1040 struct mq_policy *mq = to_mq_policy(p);
1041 struct entry *e;
1042
1043 mutex_lock(&mq->lock);
1044
1045 e = hash_lookup(mq, oblock);
1046
1047 BUG_ON(!e || !e->in_cache);
1048
1049 del(mq, e);
1050 e->in_cache = false;
1051 e->dirty = false;
1052 push(mq, e);
1053
1054 mutex_unlock(&mq->lock);
1055 }
1056
1057 static int __mq_writeback_work(struct mq_policy *mq, dm_oblock_t *oblock,
1058 dm_cblock_t *cblock)
1059 {
1060 struct entry *e = pop(mq, &mq->cache_dirty);
1061
1062 if (!e)
1063 return -ENODATA;
1064
1065 *oblock = e->oblock;
1066 *cblock = e->cblock;
1067 e->dirty = false;
1068 push(mq, e);
1069
1070 return 0;
1071 }
1072
1073 static int mq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock,
1074 dm_cblock_t *cblock)
1075 {
1076 int r;
1077 struct mq_policy *mq = to_mq_policy(p);
1078
1079 mutex_lock(&mq->lock);
1080 r = __mq_writeback_work(mq, oblock, cblock);
1081 mutex_unlock(&mq->lock);
1082
1083 return r;
1084 }
1085
1086 static void force_mapping(struct mq_policy *mq,
1087 dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1088 {
1089 struct entry *e = hash_lookup(mq, current_oblock);
1090
1091 BUG_ON(!e || !e->in_cache);
1092
1093 del(mq, e);
1094 e->oblock = new_oblock;
1095 e->dirty = true;
1096 push(mq, e);
1097 }
1098
1099 static void mq_force_mapping(struct dm_cache_policy *p,
1100 dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1101 {
1102 struct mq_policy *mq = to_mq_policy(p);
1103
1104 mutex_lock(&mq->lock);
1105 force_mapping(mq, current_oblock, new_oblock);
1106 mutex_unlock(&mq->lock);
1107 }
1108
1109 static dm_cblock_t mq_residency(struct dm_cache_policy *p)
1110 {
1111 dm_cblock_t r;
1112 struct mq_policy *mq = to_mq_policy(p);
1113
1114 mutex_lock(&mq->lock);
1115 r = to_cblock(mq->nr_cblocks_allocated);
1116 mutex_unlock(&mq->lock);
1117
1118 return r;
1119 }
1120
1121 static void mq_tick(struct dm_cache_policy *p)
1122 {
1123 struct mq_policy *mq = to_mq_policy(p);
1124 unsigned long flags;
1125
1126 spin_lock_irqsave(&mq->tick_lock, flags);
1127 mq->tick_protected++;
1128 spin_unlock_irqrestore(&mq->tick_lock, flags);
1129 }
1130
1131 static int mq_set_config_value(struct dm_cache_policy *p,
1132 const char *key, const char *value)
1133 {
1134 struct mq_policy *mq = to_mq_policy(p);
1135 enum io_pattern pattern;
1136 unsigned long tmp;
1137
1138 if (!strcasecmp(key, "random_threshold"))
1139 pattern = PATTERN_RANDOM;
1140 else if (!strcasecmp(key, "sequential_threshold"))
1141 pattern = PATTERN_SEQUENTIAL;
1142 else
1143 return -EINVAL;
1144
1145 if (kstrtoul(value, 10, &tmp))
1146 return -EINVAL;
1147
1148 mq->tracker.thresholds[pattern] = tmp;
1149
1150 return 0;
1151 }
1152
1153 static int mq_emit_config_values(struct dm_cache_policy *p, char *result, unsigned maxlen)
1154 {
1155 ssize_t sz = 0;
1156 struct mq_policy *mq = to_mq_policy(p);
1157
1158 DMEMIT("4 random_threshold %u sequential_threshold %u",
1159 mq->tracker.thresholds[PATTERN_RANDOM],
1160 mq->tracker.thresholds[PATTERN_SEQUENTIAL]);
1161
1162 return 0;
1163 }
1164
1165 /* Init the policy plugin interface function pointers. */
1166 static void init_policy_functions(struct mq_policy *mq)
1167 {
1168 mq->policy.destroy = mq_destroy;
1169 mq->policy.map = mq_map;
1170 mq->policy.lookup = mq_lookup;
1171 mq->policy.set_dirty = mq_set_dirty;
1172 mq->policy.clear_dirty = mq_clear_dirty;
1173 mq->policy.load_mapping = mq_load_mapping;
1174 mq->policy.walk_mappings = mq_walk_mappings;
1175 mq->policy.remove_mapping = mq_remove_mapping;
1176 mq->policy.writeback_work = mq_writeback_work;
1177 mq->policy.force_mapping = mq_force_mapping;
1178 mq->policy.residency = mq_residency;
1179 mq->policy.tick = mq_tick;
1180 mq->policy.emit_config_values = mq_emit_config_values;
1181 mq->policy.set_config_value = mq_set_config_value;
1182 }
1183
1184 static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1185 sector_t origin_size,
1186 sector_t cache_block_size)
1187 {
1188 int r;
1189 struct mq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1190
1191 if (!mq)
1192 return NULL;
1193
1194 init_policy_functions(mq);
1195 iot_init(&mq->tracker, SEQUENTIAL_THRESHOLD_DEFAULT, RANDOM_THRESHOLD_DEFAULT);
1196
1197 mq->cache_size = cache_size;
1198 mq->tick_protected = 0;
1199 mq->tick = 0;
1200 mq->hit_count = 0;
1201 mq->generation = 0;
1202 mq->promote_threshold = 0;
1203 mutex_init(&mq->lock);
1204 spin_lock_init(&mq->tick_lock);
1205 mq->find_free_nr_words = dm_div_up(from_cblock(mq->cache_size), BITS_PER_LONG);
1206 mq->find_free_last_word = 0;
1207
1208 queue_init(&mq->pre_cache);
1209 queue_init(&mq->cache_clean);
1210 queue_init(&mq->cache_dirty);
1211
1212 mq->generation_period = max((unsigned) from_cblock(cache_size), 1024U);
1213
1214 mq->nr_entries = 2 * from_cblock(cache_size);
1215 r = alloc_entries(mq, mq->nr_entries);
1216 if (r)
1217 goto bad_cache_alloc;
1218
1219 mq->nr_entries_allocated = 0;
1220 mq->nr_cblocks_allocated = 0;
1221
1222 mq->nr_buckets = next_power(from_cblock(cache_size) / 2, 16);
1223 mq->hash_bits = ffs(mq->nr_buckets) - 1;
1224 mq->table = kzalloc(sizeof(*mq->table) * mq->nr_buckets, GFP_KERNEL);
1225 if (!mq->table)
1226 goto bad_alloc_table;
1227
1228 mq->allocation_bitset = alloc_bitset(from_cblock(cache_size));
1229 if (!mq->allocation_bitset)
1230 goto bad_alloc_bitset;
1231
1232 return &mq->policy;
1233
1234 bad_alloc_bitset:
1235 kfree(mq->table);
1236 bad_alloc_table:
1237 free_entries(mq);
1238 bad_cache_alloc:
1239 kfree(mq);
1240
1241 return NULL;
1242 }
1243
1244 /*----------------------------------------------------------------*/
1245
1246 static struct dm_cache_policy_type mq_policy_type = {
1247 .name = "mq",
1248 .version = {1, 0, 0},
1249 .hint_size = 4,
1250 .owner = THIS_MODULE,
1251 .create = mq_create
1252 };
1253
1254 static struct dm_cache_policy_type default_policy_type = {
1255 .name = "default",
1256 .version = {1, 0, 0},
1257 .hint_size = 4,
1258 .owner = THIS_MODULE,
1259 .create = mq_create
1260 };
1261
1262 static int __init mq_init(void)
1263 {
1264 int r;
1265
1266 mq_entry_cache = kmem_cache_create("dm_mq_policy_cache_entry",
1267 sizeof(struct entry),
1268 __alignof__(struct entry),
1269 0, NULL);
1270 if (!mq_entry_cache)
1271 goto bad;
1272
1273 r = dm_cache_policy_register(&mq_policy_type);
1274 if (r) {
1275 DMERR("register failed %d", r);
1276 goto bad_register_mq;
1277 }
1278
1279 r = dm_cache_policy_register(&default_policy_type);
1280 if (!r) {
1281 DMINFO("version %u.%u.%u loaded",
1282 mq_policy_type.version[0],
1283 mq_policy_type.version[1],
1284 mq_policy_type.version[2]);
1285 return 0;
1286 }
1287
1288 DMERR("register failed (as default) %d", r);
1289
1290 dm_cache_policy_unregister(&mq_policy_type);
1291 bad_register_mq:
1292 kmem_cache_destroy(mq_entry_cache);
1293 bad:
1294 return -ENOMEM;
1295 }
1296
1297 static void __exit mq_exit(void)
1298 {
1299 dm_cache_policy_unregister(&mq_policy_type);
1300 dm_cache_policy_unregister(&default_policy_type);
1301
1302 kmem_cache_destroy(mq_entry_cache);
1303 }
1304
1305 module_init(mq_init);
1306 module_exit(mq_exit);
1307
1308 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1309 MODULE_LICENSE("GPL");
1310 MODULE_DESCRIPTION("mq cache policy");
1311
1312 MODULE_ALIAS("dm-cache-default");
This page took 0.056847 seconds and 6 git commands to generate.