dm cache policy mq: reduce memory requirements
[deliverable/linux.git] / drivers / md / dm-cache-policy-mq.c
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-cache-policy.h"
8 #include "dm.h"
9
10 #include <linux/hash.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15
16 #define DM_MSG_PREFIX "cache-policy-mq"
17
18 static struct kmem_cache *mq_entry_cache;
19
20 /*----------------------------------------------------------------*/
21
22 static unsigned next_power(unsigned n, unsigned min)
23 {
24 return roundup_pow_of_two(max(n, min));
25 }
26
27 /*----------------------------------------------------------------*/
28
29 /*
30 * Large, sequential ios are probably better left on the origin device since
31 * spindles tend to have good bandwidth.
32 *
33 * The io_tracker tries to spot when the io is in one of these sequential
34 * modes.
35 *
36 * Two thresholds to switch between random and sequential io mode are defaulting
37 * as follows and can be adjusted via the constructor and message interfaces.
38 */
39 #define RANDOM_THRESHOLD_DEFAULT 4
40 #define SEQUENTIAL_THRESHOLD_DEFAULT 512
41
42 enum io_pattern {
43 PATTERN_SEQUENTIAL,
44 PATTERN_RANDOM
45 };
46
47 struct io_tracker {
48 enum io_pattern pattern;
49
50 unsigned nr_seq_samples;
51 unsigned nr_rand_samples;
52 unsigned thresholds[2];
53
54 dm_oblock_t last_end_oblock;
55 };
56
57 static void iot_init(struct io_tracker *t,
58 int sequential_threshold, int random_threshold)
59 {
60 t->pattern = PATTERN_RANDOM;
61 t->nr_seq_samples = 0;
62 t->nr_rand_samples = 0;
63 t->last_end_oblock = 0;
64 t->thresholds[PATTERN_RANDOM] = random_threshold;
65 t->thresholds[PATTERN_SEQUENTIAL] = sequential_threshold;
66 }
67
68 static enum io_pattern iot_pattern(struct io_tracker *t)
69 {
70 return t->pattern;
71 }
72
73 static void iot_update_stats(struct io_tracker *t, struct bio *bio)
74 {
75 if (bio->bi_sector == from_oblock(t->last_end_oblock) + 1)
76 t->nr_seq_samples++;
77 else {
78 /*
79 * Just one non-sequential IO is enough to reset the
80 * counters.
81 */
82 if (t->nr_seq_samples) {
83 t->nr_seq_samples = 0;
84 t->nr_rand_samples = 0;
85 }
86
87 t->nr_rand_samples++;
88 }
89
90 t->last_end_oblock = to_oblock(bio->bi_sector + bio_sectors(bio) - 1);
91 }
92
93 static void iot_check_for_pattern_switch(struct io_tracker *t)
94 {
95 switch (t->pattern) {
96 case PATTERN_SEQUENTIAL:
97 if (t->nr_rand_samples >= t->thresholds[PATTERN_RANDOM]) {
98 t->pattern = PATTERN_RANDOM;
99 t->nr_seq_samples = t->nr_rand_samples = 0;
100 }
101 break;
102
103 case PATTERN_RANDOM:
104 if (t->nr_seq_samples >= t->thresholds[PATTERN_SEQUENTIAL]) {
105 t->pattern = PATTERN_SEQUENTIAL;
106 t->nr_seq_samples = t->nr_rand_samples = 0;
107 }
108 break;
109 }
110 }
111
112 static void iot_examine_bio(struct io_tracker *t, struct bio *bio)
113 {
114 iot_update_stats(t, bio);
115 iot_check_for_pattern_switch(t);
116 }
117
118 /*----------------------------------------------------------------*/
119
120
121 /*
122 * This queue is divided up into different levels. Allowing us to push
123 * entries to the back of any of the levels. Think of it as a partially
124 * sorted queue.
125 */
126 #define NR_QUEUE_LEVELS 16u
127
128 struct queue {
129 struct list_head qs[NR_QUEUE_LEVELS];
130 };
131
132 static void queue_init(struct queue *q)
133 {
134 unsigned i;
135
136 for (i = 0; i < NR_QUEUE_LEVELS; i++)
137 INIT_LIST_HEAD(q->qs + i);
138 }
139
140 /*
141 * Checks to see if the queue is empty.
142 * FIXME: reduce cpu usage.
143 */
144 static bool queue_empty(struct queue *q)
145 {
146 unsigned i;
147
148 for (i = 0; i < NR_QUEUE_LEVELS; i++)
149 if (!list_empty(q->qs + i))
150 return false;
151
152 return true;
153 }
154
155 /*
156 * Insert an entry to the back of the given level.
157 */
158 static void queue_push(struct queue *q, unsigned level, struct list_head *elt)
159 {
160 list_add_tail(elt, q->qs + level);
161 }
162
163 static void queue_remove(struct list_head *elt)
164 {
165 list_del(elt);
166 }
167
168 /*
169 * Shifts all regions down one level. This has no effect on the order of
170 * the queue.
171 */
172 static void queue_shift_down(struct queue *q)
173 {
174 unsigned level;
175
176 for (level = 1; level < NR_QUEUE_LEVELS; level++)
177 list_splice_init(q->qs + level, q->qs + level - 1);
178 }
179
180 /*
181 * Gives us the oldest entry of the lowest popoulated level. If the first
182 * level is emptied then we shift down one level.
183 */
184 static struct list_head *queue_pop(struct queue *q)
185 {
186 unsigned level;
187 struct list_head *r;
188
189 for (level = 0; level < NR_QUEUE_LEVELS; level++)
190 if (!list_empty(q->qs + level)) {
191 r = q->qs[level].next;
192 list_del(r);
193
194 /* have we just emptied the bottom level? */
195 if (level == 0 && list_empty(q->qs))
196 queue_shift_down(q);
197
198 return r;
199 }
200
201 return NULL;
202 }
203
204 static struct list_head *list_pop(struct list_head *lh)
205 {
206 struct list_head *r = lh->next;
207
208 BUG_ON(!r);
209 list_del_init(r);
210
211 return r;
212 }
213
214 /*----------------------------------------------------------------*/
215
216 /*
217 * Describes a cache entry. Used in both the cache and the pre_cache.
218 */
219 struct entry {
220 struct hlist_node hlist;
221 struct list_head list;
222 dm_oblock_t oblock;
223
224 /*
225 * FIXME: pack these better
226 */
227 bool dirty:1;
228 unsigned hit_count;
229 unsigned generation;
230 unsigned tick;
231 };
232
233 /*
234 * Rather than storing the cblock in an entry, we allocate all entries in
235 * an array, and infer the cblock from the entry position.
236 *
237 * Free entries are linked together into a list.
238 */
239 struct entry_pool {
240 struct entry *entries, *entries_end;
241 struct list_head free;
242 unsigned nr_allocated;
243 };
244
245 static int epool_init(struct entry_pool *ep, unsigned nr_entries)
246 {
247 unsigned i;
248
249 ep->entries = vzalloc(sizeof(struct entry) * nr_entries);
250 if (!ep->entries)
251 return -ENOMEM;
252
253 ep->entries_end = ep->entries + nr_entries;
254
255 INIT_LIST_HEAD(&ep->free);
256 for (i = 0; i < nr_entries; i++)
257 list_add(&ep->entries[i].list, &ep->free);
258
259 ep->nr_allocated = 0;
260
261 return 0;
262 }
263
264 static void epool_exit(struct entry_pool *ep)
265 {
266 vfree(ep->entries);
267 }
268
269 static struct entry *alloc_entry(struct entry_pool *ep)
270 {
271 struct entry *e;
272
273 if (list_empty(&ep->free))
274 return NULL;
275
276 e = list_entry(list_pop(&ep->free), struct entry, list);
277 INIT_LIST_HEAD(&e->list);
278 INIT_HLIST_NODE(&e->hlist);
279 ep->nr_allocated++;
280
281 return e;
282 }
283
284 /*
285 * This assumes the cblock hasn't already been allocated.
286 */
287 static struct entry *alloc_particular_entry(struct entry_pool *ep, dm_cblock_t cblock)
288 {
289 struct entry *e = ep->entries + from_cblock(cblock);
290 list_del(&e->list);
291
292 INIT_LIST_HEAD(&e->list);
293 INIT_HLIST_NODE(&e->hlist);
294 ep->nr_allocated++;
295
296 return e;
297 }
298
299 static void free_entry(struct entry_pool *ep, struct entry *e)
300 {
301 BUG_ON(!ep->nr_allocated);
302 ep->nr_allocated--;
303 INIT_HLIST_NODE(&e->hlist);
304 list_add(&e->list, &ep->free);
305 }
306
307 static bool epool_empty(struct entry_pool *ep)
308 {
309 return list_empty(&ep->free);
310 }
311
312 static bool in_pool(struct entry_pool *ep, struct entry *e)
313 {
314 return e >= ep->entries && e < ep->entries_end;
315 }
316
317 static dm_cblock_t infer_cblock(struct entry_pool *ep, struct entry *e)
318 {
319 return to_cblock(e - ep->entries);
320 }
321
322 /*----------------------------------------------------------------*/
323
324 struct mq_policy {
325 struct dm_cache_policy policy;
326
327 /* protects everything */
328 struct mutex lock;
329 dm_cblock_t cache_size;
330 struct io_tracker tracker;
331
332 /*
333 * Entries come from two pools, one of pre-cache entries, and one
334 * for the cache proper.
335 */
336 struct entry_pool pre_cache_pool;
337 struct entry_pool cache_pool;
338
339 /*
340 * We maintain three queues of entries. The cache proper,
341 * consisting of a clean and dirty queue, contains the currently
342 * active mappings. Whereas the pre_cache tracks blocks that
343 * are being hit frequently and potential candidates for promotion
344 * to the cache.
345 */
346 struct queue pre_cache;
347 struct queue cache_clean;
348 struct queue cache_dirty;
349
350 /*
351 * Keeps track of time, incremented by the core. We use this to
352 * avoid attributing multiple hits within the same tick.
353 *
354 * Access to tick_protected should be done with the spin lock held.
355 * It's copied to tick at the start of the map function (within the
356 * mutex).
357 */
358 spinlock_t tick_lock;
359 unsigned tick_protected;
360 unsigned tick;
361
362 /*
363 * A count of the number of times the map function has been called
364 * and found an entry in the pre_cache or cache. Currently used to
365 * calculate the generation.
366 */
367 unsigned hit_count;
368
369 /*
370 * A generation is a longish period that is used to trigger some
371 * book keeping effects. eg, decrementing hit counts on entries.
372 * This is needed to allow the cache to evolve as io patterns
373 * change.
374 */
375 unsigned generation;
376 unsigned generation_period; /* in lookups (will probably change) */
377
378 /*
379 * Entries in the pre_cache whose hit count passes the promotion
380 * threshold move to the cache proper. Working out the correct
381 * value for the promotion_threshold is crucial to this policy.
382 */
383 unsigned promote_threshold;
384
385 /*
386 * The hash table allows us to quickly find an entry by origin
387 * block. Both pre_cache and cache entries are in here.
388 */
389 unsigned nr_buckets;
390 dm_block_t hash_bits;
391 struct hlist_head *table;
392 };
393
394 /*----------------------------------------------------------------*/
395
396 /*
397 * Simple hash table implementation. Should replace with the standard hash
398 * table that's making its way upstream.
399 */
400 static void hash_insert(struct mq_policy *mq, struct entry *e)
401 {
402 unsigned h = hash_64(from_oblock(e->oblock), mq->hash_bits);
403
404 hlist_add_head(&e->hlist, mq->table + h);
405 }
406
407 static struct entry *hash_lookup(struct mq_policy *mq, dm_oblock_t oblock)
408 {
409 unsigned h = hash_64(from_oblock(oblock), mq->hash_bits);
410 struct hlist_head *bucket = mq->table + h;
411 struct entry *e;
412
413 hlist_for_each_entry(e, bucket, hlist)
414 if (e->oblock == oblock) {
415 hlist_del(&e->hlist);
416 hlist_add_head(&e->hlist, bucket);
417 return e;
418 }
419
420 return NULL;
421 }
422
423 static void hash_remove(struct entry *e)
424 {
425 hlist_del(&e->hlist);
426 }
427
428 /*----------------------------------------------------------------*/
429
430 static bool any_free_cblocks(struct mq_policy *mq)
431 {
432 return !epool_empty(&mq->cache_pool);
433 }
434
435 static bool any_clean_cblocks(struct mq_policy *mq)
436 {
437 return !queue_empty(&mq->cache_clean);
438 }
439
440 /*----------------------------------------------------------------*/
441
442 /*
443 * Now we get to the meat of the policy. This section deals with deciding
444 * when to to add entries to the pre_cache and cache, and move between
445 * them.
446 */
447
448 /*
449 * The queue level is based on the log2 of the hit count.
450 */
451 static unsigned queue_level(struct entry *e)
452 {
453 return min((unsigned) ilog2(e->hit_count), NR_QUEUE_LEVELS - 1u);
454 }
455
456 static bool in_cache(struct mq_policy *mq, struct entry *e)
457 {
458 return in_pool(&mq->cache_pool, e);
459 }
460
461 /*
462 * Inserts the entry into the pre_cache or the cache. Ensures the cache
463 * block is marked as allocated if necc. Inserts into the hash table.
464 * Sets the tick which records when the entry was last moved about.
465 */
466 static void push(struct mq_policy *mq, struct entry *e)
467 {
468 e->tick = mq->tick;
469 hash_insert(mq, e);
470
471 if (in_cache(mq, e))
472 queue_push(e->dirty ? &mq->cache_dirty : &mq->cache_clean,
473 queue_level(e), &e->list);
474 else
475 queue_push(&mq->pre_cache, queue_level(e), &e->list);
476 }
477
478 /*
479 * Removes an entry from pre_cache or cache. Removes from the hash table.
480 */
481 static void del(struct mq_policy *mq, struct entry *e)
482 {
483 queue_remove(&e->list);
484 hash_remove(e);
485 }
486
487 /*
488 * Like del, except it removes the first entry in the queue (ie. the least
489 * recently used).
490 */
491 static struct entry *pop(struct mq_policy *mq, struct queue *q)
492 {
493 struct entry *e;
494 struct list_head *h = queue_pop(q);
495
496 if (!h)
497 return NULL;
498
499 e = container_of(h, struct entry, list);
500 hash_remove(e);
501
502 return e;
503 }
504
505 /*
506 * Has this entry already been updated?
507 */
508 static bool updated_this_tick(struct mq_policy *mq, struct entry *e)
509 {
510 return mq->tick == e->tick;
511 }
512
513 /*
514 * The promotion threshold is adjusted every generation. As are the counts
515 * of the entries.
516 *
517 * At the moment the threshold is taken by averaging the hit counts of some
518 * of the entries in the cache (the first 20 entries across all levels in
519 * ascending order, giving preference to the clean entries at each level).
520 *
521 * We can be much cleverer than this though. For example, each promotion
522 * could bump up the threshold helping to prevent churn. Much more to do
523 * here.
524 */
525
526 #define MAX_TO_AVERAGE 20
527
528 static void check_generation(struct mq_policy *mq)
529 {
530 unsigned total = 0, nr = 0, count = 0, level;
531 struct list_head *head;
532 struct entry *e;
533
534 if ((mq->hit_count >= mq->generation_period) && (epool_empty(&mq->cache_pool))) {
535 mq->hit_count = 0;
536 mq->generation++;
537
538 for (level = 0; level < NR_QUEUE_LEVELS && count < MAX_TO_AVERAGE; level++) {
539 head = mq->cache_clean.qs + level;
540 list_for_each_entry(e, head, list) {
541 nr++;
542 total += e->hit_count;
543
544 if (++count >= MAX_TO_AVERAGE)
545 break;
546 }
547
548 head = mq->cache_dirty.qs + level;
549 list_for_each_entry(e, head, list) {
550 nr++;
551 total += e->hit_count;
552
553 if (++count >= MAX_TO_AVERAGE)
554 break;
555 }
556 }
557
558 mq->promote_threshold = nr ? total / nr : 1;
559 if (mq->promote_threshold * nr < total)
560 mq->promote_threshold++;
561 }
562 }
563
564 /*
565 * Whenever we use an entry we bump up it's hit counter, and push it to the
566 * back to it's current level.
567 */
568 static void requeue_and_update_tick(struct mq_policy *mq, struct entry *e)
569 {
570 if (updated_this_tick(mq, e))
571 return;
572
573 e->hit_count++;
574 mq->hit_count++;
575 check_generation(mq);
576
577 /* generation adjustment, to stop the counts increasing forever. */
578 /* FIXME: divide? */
579 /* e->hit_count -= min(e->hit_count - 1, mq->generation - e->generation); */
580 e->generation = mq->generation;
581
582 del(mq, e);
583 push(mq, e);
584 }
585
586 /*
587 * Demote the least recently used entry from the cache to the pre_cache.
588 * Returns the new cache entry to use, and the old origin block it was
589 * mapped to.
590 *
591 * We drop the hit count on the demoted entry back to 1 to stop it bouncing
592 * straight back into the cache if it's subsequently hit. There are
593 * various options here, and more experimentation would be good:
594 *
595 * - just forget about the demoted entry completely (ie. don't insert it
596 into the pre_cache).
597 * - divide the hit count rather that setting to some hard coded value.
598 * - set the hit count to a hard coded value other than 1, eg, is it better
599 * if it goes in at level 2?
600 */
601 static int demote_cblock(struct mq_policy *mq, dm_oblock_t *oblock)
602 {
603 struct entry *demoted = pop(mq, &mq->cache_clean);
604
605 if (!demoted)
606 /*
607 * We could get a block from mq->cache_dirty, but that
608 * would add extra latency to the triggering bio as it
609 * waits for the writeback. Better to not promote this
610 * time and hope there's a clean block next time this block
611 * is hit.
612 */
613 return -ENOSPC;
614
615 *oblock = demoted->oblock;
616 free_entry(&mq->cache_pool, demoted);
617
618 /*
619 * We used to put the demoted block into the pre-cache, but I think
620 * it's simpler to just let it work it's way up from zero again.
621 * Stops blocks flickering in and out of the cache.
622 */
623
624 return 0;
625 }
626
627 /*
628 * We modify the basic promotion_threshold depending on the specific io.
629 *
630 * If the origin block has been discarded then there's no cost to copy it
631 * to the cache.
632 *
633 * We bias towards reads, since they can be demoted at no cost if they
634 * haven't been dirtied.
635 */
636 #define DISCARDED_PROMOTE_THRESHOLD 1
637 #define READ_PROMOTE_THRESHOLD 4
638 #define WRITE_PROMOTE_THRESHOLD 8
639
640 static unsigned adjusted_promote_threshold(struct mq_policy *mq,
641 bool discarded_oblock, int data_dir)
642 {
643 if (data_dir == READ)
644 return mq->promote_threshold + READ_PROMOTE_THRESHOLD;
645
646 if (discarded_oblock && (any_free_cblocks(mq) || any_clean_cblocks(mq))) {
647 /*
648 * We don't need to do any copying at all, so give this a
649 * very low threshold.
650 */
651 return DISCARDED_PROMOTE_THRESHOLD;
652 }
653
654 return mq->promote_threshold + WRITE_PROMOTE_THRESHOLD;
655 }
656
657 static bool should_promote(struct mq_policy *mq, struct entry *e,
658 bool discarded_oblock, int data_dir)
659 {
660 return e->hit_count >=
661 adjusted_promote_threshold(mq, discarded_oblock, data_dir);
662 }
663
664 static int cache_entry_found(struct mq_policy *mq,
665 struct entry *e,
666 struct policy_result *result)
667 {
668 requeue_and_update_tick(mq, e);
669
670 if (in_cache(mq, e)) {
671 result->op = POLICY_HIT;
672 result->cblock = infer_cblock(&mq->cache_pool, e);
673 }
674
675 return 0;
676 }
677
678 /*
679 * Moves an entry from the pre_cache to the cache. The main work is
680 * finding which cache block to use.
681 */
682 static int pre_cache_to_cache(struct mq_policy *mq, struct entry *e,
683 struct policy_result *result)
684 {
685 int r;
686 struct entry *new_e;
687
688 /* Ensure there's a free cblock in the cache */
689 if (epool_empty(&mq->cache_pool)) {
690 result->op = POLICY_REPLACE;
691 r = demote_cblock(mq, &result->old_oblock);
692 if (r) {
693 result->op = POLICY_MISS;
694 return 0;
695 }
696 } else
697 result->op = POLICY_NEW;
698
699 new_e = alloc_entry(&mq->cache_pool);
700 BUG_ON(!new_e);
701
702 new_e->oblock = e->oblock;
703 new_e->dirty = false;
704 new_e->hit_count = e->hit_count;
705 new_e->generation = e->generation;
706 new_e->tick = e->tick;
707
708 del(mq, e);
709 free_entry(&mq->pre_cache_pool, e);
710 push(mq, new_e);
711
712 result->cblock = infer_cblock(&mq->cache_pool, new_e);
713
714 return 0;
715 }
716
717 static int pre_cache_entry_found(struct mq_policy *mq, struct entry *e,
718 bool can_migrate, bool discarded_oblock,
719 int data_dir, struct policy_result *result)
720 {
721 int r = 0;
722 bool updated = updated_this_tick(mq, e);
723
724 requeue_and_update_tick(mq, e);
725
726 if ((!discarded_oblock && updated) ||
727 !should_promote(mq, e, discarded_oblock, data_dir))
728 result->op = POLICY_MISS;
729 else if (!can_migrate)
730 r = -EWOULDBLOCK;
731 else
732 r = pre_cache_to_cache(mq, e, result);
733
734 return r;
735 }
736
737 static void insert_in_pre_cache(struct mq_policy *mq,
738 dm_oblock_t oblock)
739 {
740 struct entry *e = alloc_entry(&mq->pre_cache_pool);
741
742 if (!e)
743 /*
744 * There's no spare entry structure, so we grab the least
745 * used one from the pre_cache.
746 */
747 e = pop(mq, &mq->pre_cache);
748
749 if (unlikely(!e)) {
750 DMWARN("couldn't pop from pre cache");
751 return;
752 }
753
754 e->dirty = false;
755 e->oblock = oblock;
756 e->hit_count = 1;
757 e->generation = mq->generation;
758 push(mq, e);
759 }
760
761 static void insert_in_cache(struct mq_policy *mq, dm_oblock_t oblock,
762 struct policy_result *result)
763 {
764 int r;
765 struct entry *e;
766
767 if (epool_empty(&mq->cache_pool)) {
768 result->op = POLICY_REPLACE;
769 r = demote_cblock(mq, &result->old_oblock);
770 if (unlikely(r)) {
771 result->op = POLICY_MISS;
772 insert_in_pre_cache(mq, oblock);
773 return;
774 }
775
776 /*
777 * This will always succeed, since we've just demoted.
778 */
779 e = alloc_entry(&mq->cache_pool);
780 BUG_ON(!e);
781
782 } else {
783 e = alloc_entry(&mq->cache_pool);
784 result->op = POLICY_NEW;
785 }
786
787 e->oblock = oblock;
788 e->dirty = false;
789 e->hit_count = 1;
790 e->generation = mq->generation;
791 push(mq, e);
792
793 result->cblock = infer_cblock(&mq->cache_pool, e);
794 }
795
796 static int no_entry_found(struct mq_policy *mq, dm_oblock_t oblock,
797 bool can_migrate, bool discarded_oblock,
798 int data_dir, struct policy_result *result)
799 {
800 if (adjusted_promote_threshold(mq, discarded_oblock, data_dir) == 1) {
801 if (can_migrate)
802 insert_in_cache(mq, oblock, result);
803 else
804 return -EWOULDBLOCK;
805 } else {
806 insert_in_pre_cache(mq, oblock);
807 result->op = POLICY_MISS;
808 }
809
810 return 0;
811 }
812
813 /*
814 * Looks the oblock up in the hash table, then decides whether to put in
815 * pre_cache, or cache etc.
816 */
817 static int map(struct mq_policy *mq, dm_oblock_t oblock,
818 bool can_migrate, bool discarded_oblock,
819 int data_dir, struct policy_result *result)
820 {
821 int r = 0;
822 struct entry *e = hash_lookup(mq, oblock);
823
824 if (e && in_cache(mq, e))
825 r = cache_entry_found(mq, e, result);
826
827 else if (iot_pattern(&mq->tracker) == PATTERN_SEQUENTIAL)
828 result->op = POLICY_MISS;
829
830 else if (e)
831 r = pre_cache_entry_found(mq, e, can_migrate, discarded_oblock,
832 data_dir, result);
833
834 else
835 r = no_entry_found(mq, oblock, can_migrate, discarded_oblock,
836 data_dir, result);
837
838 if (r == -EWOULDBLOCK)
839 result->op = POLICY_MISS;
840
841 return r;
842 }
843
844 /*----------------------------------------------------------------*/
845
846 /*
847 * Public interface, via the policy struct. See dm-cache-policy.h for a
848 * description of these.
849 */
850
851 static struct mq_policy *to_mq_policy(struct dm_cache_policy *p)
852 {
853 return container_of(p, struct mq_policy, policy);
854 }
855
856 static void mq_destroy(struct dm_cache_policy *p)
857 {
858 struct mq_policy *mq = to_mq_policy(p);
859
860 kfree(mq->table);
861 epool_exit(&mq->cache_pool);
862 epool_exit(&mq->pre_cache_pool);
863 kfree(mq);
864 }
865
866 static void copy_tick(struct mq_policy *mq)
867 {
868 unsigned long flags;
869
870 spin_lock_irqsave(&mq->tick_lock, flags);
871 mq->tick = mq->tick_protected;
872 spin_unlock_irqrestore(&mq->tick_lock, flags);
873 }
874
875 static int mq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
876 bool can_block, bool can_migrate, bool discarded_oblock,
877 struct bio *bio, struct policy_result *result)
878 {
879 int r;
880 struct mq_policy *mq = to_mq_policy(p);
881
882 result->op = POLICY_MISS;
883
884 if (can_block)
885 mutex_lock(&mq->lock);
886 else if (!mutex_trylock(&mq->lock))
887 return -EWOULDBLOCK;
888
889 copy_tick(mq);
890
891 iot_examine_bio(&mq->tracker, bio);
892 r = map(mq, oblock, can_migrate, discarded_oblock,
893 bio_data_dir(bio), result);
894
895 mutex_unlock(&mq->lock);
896
897 return r;
898 }
899
900 static int mq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
901 {
902 int r;
903 struct mq_policy *mq = to_mq_policy(p);
904 struct entry *e;
905
906 if (!mutex_trylock(&mq->lock))
907 return -EWOULDBLOCK;
908
909 e = hash_lookup(mq, oblock);
910 if (e && in_cache(mq, e)) {
911 *cblock = infer_cblock(&mq->cache_pool, e);
912 r = 0;
913 } else
914 r = -ENOENT;
915
916 mutex_unlock(&mq->lock);
917
918 return r;
919 }
920
921 static void __mq_set_clear_dirty(struct mq_policy *mq, dm_oblock_t oblock, bool set)
922 {
923 struct entry *e;
924
925 e = hash_lookup(mq, oblock);
926 BUG_ON(!e || !in_cache(mq, e));
927
928 del(mq, e);
929 e->dirty = set;
930 push(mq, e);
931 }
932
933 static void mq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
934 {
935 struct mq_policy *mq = to_mq_policy(p);
936
937 mutex_lock(&mq->lock);
938 __mq_set_clear_dirty(mq, oblock, true);
939 mutex_unlock(&mq->lock);
940 }
941
942 static void mq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
943 {
944 struct mq_policy *mq = to_mq_policy(p);
945
946 mutex_lock(&mq->lock);
947 __mq_set_clear_dirty(mq, oblock, false);
948 mutex_unlock(&mq->lock);
949 }
950
951 static int mq_load_mapping(struct dm_cache_policy *p,
952 dm_oblock_t oblock, dm_cblock_t cblock,
953 uint32_t hint, bool hint_valid)
954 {
955 struct mq_policy *mq = to_mq_policy(p);
956 struct entry *e;
957
958 e = alloc_particular_entry(&mq->cache_pool, cblock);
959 e->oblock = oblock;
960 e->dirty = false; /* this gets corrected in a minute */
961 e->hit_count = hint_valid ? hint : 1;
962 e->generation = mq->generation;
963 push(mq, e);
964
965 return 0;
966 }
967
968 static int mq_save_hints(struct mq_policy *mq, struct queue *q,
969 policy_walk_fn fn, void *context)
970 {
971 int r;
972 unsigned level;
973 struct entry *e;
974
975 for (level = 0; level < NR_QUEUE_LEVELS; level++)
976 list_for_each_entry(e, q->qs + level, list) {
977 r = fn(context, infer_cblock(&mq->cache_pool, e),
978 e->oblock, e->hit_count);
979 if (r)
980 return r;
981 }
982
983 return 0;
984 }
985
986 static int mq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn,
987 void *context)
988 {
989 struct mq_policy *mq = to_mq_policy(p);
990 int r = 0;
991
992 mutex_lock(&mq->lock);
993
994 r = mq_save_hints(mq, &mq->cache_clean, fn, context);
995 if (!r)
996 r = mq_save_hints(mq, &mq->cache_dirty, fn, context);
997
998 mutex_unlock(&mq->lock);
999
1000 return r;
1001 }
1002
1003 static void __remove_mapping(struct mq_policy *mq, dm_oblock_t oblock)
1004 {
1005 struct entry *e;
1006
1007 e = hash_lookup(mq, oblock);
1008 BUG_ON(!e || !in_cache(mq, e));
1009
1010 del(mq, e);
1011 free_entry(&mq->cache_pool, e);
1012 }
1013
1014 static void mq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
1015 {
1016 struct mq_policy *mq = to_mq_policy(p);
1017
1018 mutex_lock(&mq->lock);
1019 __remove_mapping(mq, oblock);
1020 mutex_unlock(&mq->lock);
1021 }
1022
1023 static int __mq_writeback_work(struct mq_policy *mq, dm_oblock_t *oblock,
1024 dm_cblock_t *cblock)
1025 {
1026 struct entry *e = pop(mq, &mq->cache_dirty);
1027
1028 if (!e)
1029 return -ENODATA;
1030
1031 *oblock = e->oblock;
1032 *cblock = infer_cblock(&mq->cache_pool, e);
1033 e->dirty = false;
1034 push(mq, e);
1035
1036 return 0;
1037 }
1038
1039 static int mq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock,
1040 dm_cblock_t *cblock)
1041 {
1042 int r;
1043 struct mq_policy *mq = to_mq_policy(p);
1044
1045 mutex_lock(&mq->lock);
1046 r = __mq_writeback_work(mq, oblock, cblock);
1047 mutex_unlock(&mq->lock);
1048
1049 return r;
1050 }
1051
1052 static void __force_mapping(struct mq_policy *mq,
1053 dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1054 {
1055 struct entry *e = hash_lookup(mq, current_oblock);
1056
1057 if (e && in_cache(mq, e)) {
1058 del(mq, e);
1059 e->oblock = new_oblock;
1060 e->dirty = true;
1061 push(mq, e);
1062 }
1063 }
1064
1065 static void mq_force_mapping(struct dm_cache_policy *p,
1066 dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1067 {
1068 struct mq_policy *mq = to_mq_policy(p);
1069
1070 mutex_lock(&mq->lock);
1071 __force_mapping(mq, current_oblock, new_oblock);
1072 mutex_unlock(&mq->lock);
1073 }
1074
1075 static dm_cblock_t mq_residency(struct dm_cache_policy *p)
1076 {
1077 dm_cblock_t r;
1078 struct mq_policy *mq = to_mq_policy(p);
1079
1080 mutex_lock(&mq->lock);
1081 r = to_cblock(mq->cache_pool.nr_allocated);
1082 mutex_unlock(&mq->lock);
1083
1084 return r;
1085 }
1086
1087 static void mq_tick(struct dm_cache_policy *p)
1088 {
1089 struct mq_policy *mq = to_mq_policy(p);
1090 unsigned long flags;
1091
1092 spin_lock_irqsave(&mq->tick_lock, flags);
1093 mq->tick_protected++;
1094 spin_unlock_irqrestore(&mq->tick_lock, flags);
1095 }
1096
1097 static int mq_set_config_value(struct dm_cache_policy *p,
1098 const char *key, const char *value)
1099 {
1100 struct mq_policy *mq = to_mq_policy(p);
1101 enum io_pattern pattern;
1102 unsigned long tmp;
1103
1104 if (!strcasecmp(key, "random_threshold"))
1105 pattern = PATTERN_RANDOM;
1106 else if (!strcasecmp(key, "sequential_threshold"))
1107 pattern = PATTERN_SEQUENTIAL;
1108 else
1109 return -EINVAL;
1110
1111 if (kstrtoul(value, 10, &tmp))
1112 return -EINVAL;
1113
1114 mq->tracker.thresholds[pattern] = tmp;
1115
1116 return 0;
1117 }
1118
1119 static int mq_emit_config_values(struct dm_cache_policy *p, char *result, unsigned maxlen)
1120 {
1121 ssize_t sz = 0;
1122 struct mq_policy *mq = to_mq_policy(p);
1123
1124 DMEMIT("4 random_threshold %u sequential_threshold %u",
1125 mq->tracker.thresholds[PATTERN_RANDOM],
1126 mq->tracker.thresholds[PATTERN_SEQUENTIAL]);
1127
1128 return 0;
1129 }
1130
1131 /* Init the policy plugin interface function pointers. */
1132 static void init_policy_functions(struct mq_policy *mq)
1133 {
1134 mq->policy.destroy = mq_destroy;
1135 mq->policy.map = mq_map;
1136 mq->policy.lookup = mq_lookup;
1137 mq->policy.set_dirty = mq_set_dirty;
1138 mq->policy.clear_dirty = mq_clear_dirty;
1139 mq->policy.load_mapping = mq_load_mapping;
1140 mq->policy.walk_mappings = mq_walk_mappings;
1141 mq->policy.remove_mapping = mq_remove_mapping;
1142 mq->policy.writeback_work = mq_writeback_work;
1143 mq->policy.force_mapping = mq_force_mapping;
1144 mq->policy.residency = mq_residency;
1145 mq->policy.tick = mq_tick;
1146 mq->policy.emit_config_values = mq_emit_config_values;
1147 mq->policy.set_config_value = mq_set_config_value;
1148 }
1149
1150 static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1151 sector_t origin_size,
1152 sector_t cache_block_size)
1153 {
1154 struct mq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1155
1156 if (!mq)
1157 return NULL;
1158
1159 init_policy_functions(mq);
1160 iot_init(&mq->tracker, SEQUENTIAL_THRESHOLD_DEFAULT, RANDOM_THRESHOLD_DEFAULT);
1161 mq->cache_size = cache_size;
1162
1163 if (epool_init(&mq->pre_cache_pool, from_cblock(cache_size))) {
1164 DMERR("couldn't initialize pool of pre-cache entries");
1165 goto bad_pre_cache_init;
1166 }
1167
1168 if (epool_init(&mq->cache_pool, from_cblock(cache_size))) {
1169 DMERR("couldn't initialize pool of cache entries");
1170 goto bad_cache_init;
1171 }
1172
1173 mq->tick_protected = 0;
1174 mq->tick = 0;
1175 mq->hit_count = 0;
1176 mq->generation = 0;
1177 mq->promote_threshold = 0;
1178 mutex_init(&mq->lock);
1179 spin_lock_init(&mq->tick_lock);
1180
1181 queue_init(&mq->pre_cache);
1182 queue_init(&mq->cache_clean);
1183 queue_init(&mq->cache_dirty);
1184
1185 mq->generation_period = max((unsigned) from_cblock(cache_size), 1024U);
1186
1187 mq->nr_buckets = next_power(from_cblock(cache_size) / 2, 16);
1188 mq->hash_bits = ffs(mq->nr_buckets) - 1;
1189 mq->table = kzalloc(sizeof(*mq->table) * mq->nr_buckets, GFP_KERNEL);
1190 if (!mq->table)
1191 goto bad_alloc_table;
1192
1193 return &mq->policy;
1194
1195 bad_alloc_table:
1196 epool_exit(&mq->cache_pool);
1197 bad_cache_init:
1198 epool_exit(&mq->pre_cache_pool);
1199 bad_pre_cache_init:
1200 kfree(mq);
1201
1202 return NULL;
1203 }
1204
1205 /*----------------------------------------------------------------*/
1206
1207 static struct dm_cache_policy_type mq_policy_type = {
1208 .name = "mq",
1209 .version = {1, 1, 0},
1210 .hint_size = 4,
1211 .owner = THIS_MODULE,
1212 .create = mq_create
1213 };
1214
1215 static struct dm_cache_policy_type default_policy_type = {
1216 .name = "default",
1217 .version = {1, 1, 0},
1218 .hint_size = 4,
1219 .owner = THIS_MODULE,
1220 .create = mq_create
1221 };
1222
1223 static int __init mq_init(void)
1224 {
1225 int r;
1226
1227 mq_entry_cache = kmem_cache_create("dm_mq_policy_cache_entry",
1228 sizeof(struct entry),
1229 __alignof__(struct entry),
1230 0, NULL);
1231 if (!mq_entry_cache)
1232 goto bad;
1233
1234 r = dm_cache_policy_register(&mq_policy_type);
1235 if (r) {
1236 DMERR("register failed %d", r);
1237 goto bad_register_mq;
1238 }
1239
1240 r = dm_cache_policy_register(&default_policy_type);
1241 if (!r) {
1242 DMINFO("version %u.%u.%u loaded",
1243 mq_policy_type.version[0],
1244 mq_policy_type.version[1],
1245 mq_policy_type.version[2]);
1246 return 0;
1247 }
1248
1249 DMERR("register failed (as default) %d", r);
1250
1251 dm_cache_policy_unregister(&mq_policy_type);
1252 bad_register_mq:
1253 kmem_cache_destroy(mq_entry_cache);
1254 bad:
1255 return -ENOMEM;
1256 }
1257
1258 static void __exit mq_exit(void)
1259 {
1260 dm_cache_policy_unregister(&mq_policy_type);
1261 dm_cache_policy_unregister(&default_policy_type);
1262
1263 kmem_cache_destroy(mq_entry_cache);
1264 }
1265
1266 module_init(mq_init);
1267 module_exit(mq_exit);
1268
1269 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1270 MODULE_LICENSE("GPL");
1271 MODULE_DESCRIPTION("mq cache policy");
1272
1273 MODULE_ALIAS("dm-cache-default");
This page took 0.072142 seconds and 6 git commands to generate.