drm/i915: Keep the CRC values into a circular buffer
[deliverable/linux.git] / drivers / md / dm-cache-target.c
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19
20 #define DM_MSG_PREFIX "cache"
21
22 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
23 "A percentage of time allocated for copying to and/or from cache");
24
25 /*----------------------------------------------------------------*/
26
27 /*
28 * Glossary:
29 *
30 * oblock: index of an origin block
31 * cblock: index of a cache block
32 * promotion: movement of a block from origin to cache
33 * demotion: movement of a block from cache to origin
34 * migration: movement of a block between the origin and cache device,
35 * either direction
36 */
37
38 /*----------------------------------------------------------------*/
39
40 static size_t bitset_size_in_bytes(unsigned nr_entries)
41 {
42 return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
43 }
44
45 static unsigned long *alloc_bitset(unsigned nr_entries)
46 {
47 size_t s = bitset_size_in_bytes(nr_entries);
48 return vzalloc(s);
49 }
50
51 static void clear_bitset(void *bitset, unsigned nr_entries)
52 {
53 size_t s = bitset_size_in_bytes(nr_entries);
54 memset(bitset, 0, s);
55 }
56
57 static void free_bitset(unsigned long *bits)
58 {
59 vfree(bits);
60 }
61
62 /*----------------------------------------------------------------*/
63
64 #define PRISON_CELLS 1024
65 #define MIGRATION_POOL_SIZE 128
66 #define COMMIT_PERIOD HZ
67 #define MIGRATION_COUNT_WINDOW 10
68
69 /*
70 * The block size of the device holding cache data must be
71 * between 32KB and 1GB.
72 */
73 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
74 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
75
76 /*
77 * FIXME: the cache is read/write for the time being.
78 */
79 enum cache_mode {
80 CM_WRITE, /* metadata may be changed */
81 CM_READ_ONLY, /* metadata may not be changed */
82 };
83
84 struct cache_features {
85 enum cache_mode mode;
86 bool write_through:1;
87 };
88
89 struct cache_stats {
90 atomic_t read_hit;
91 atomic_t read_miss;
92 atomic_t write_hit;
93 atomic_t write_miss;
94 atomic_t demotion;
95 atomic_t promotion;
96 atomic_t copies_avoided;
97 atomic_t cache_cell_clash;
98 atomic_t commit_count;
99 atomic_t discard_count;
100 };
101
102 struct cache {
103 struct dm_target *ti;
104 struct dm_target_callbacks callbacks;
105
106 struct dm_cache_metadata *cmd;
107
108 /*
109 * Metadata is written to this device.
110 */
111 struct dm_dev *metadata_dev;
112
113 /*
114 * The slower of the two data devices. Typically a spindle.
115 */
116 struct dm_dev *origin_dev;
117
118 /*
119 * The faster of the two data devices. Typically an SSD.
120 */
121 struct dm_dev *cache_dev;
122
123 /*
124 * Size of the origin device in _complete_ blocks and native sectors.
125 */
126 dm_oblock_t origin_blocks;
127 sector_t origin_sectors;
128
129 /*
130 * Size of the cache device in blocks.
131 */
132 dm_cblock_t cache_size;
133
134 /*
135 * Fields for converting from sectors to blocks.
136 */
137 uint32_t sectors_per_block;
138 int sectors_per_block_shift;
139
140 spinlock_t lock;
141 struct bio_list deferred_bios;
142 struct bio_list deferred_flush_bios;
143 struct bio_list deferred_writethrough_bios;
144 struct list_head quiesced_migrations;
145 struct list_head completed_migrations;
146 struct list_head need_commit_migrations;
147 sector_t migration_threshold;
148 wait_queue_head_t migration_wait;
149 atomic_t nr_migrations;
150
151 /*
152 * cache_size entries, dirty if set
153 */
154 dm_cblock_t nr_dirty;
155 unsigned long *dirty_bitset;
156
157 /*
158 * origin_blocks entries, discarded if set.
159 */
160 dm_dblock_t discard_nr_blocks;
161 unsigned long *discard_bitset;
162 uint32_t discard_block_size; /* a power of 2 times sectors per block */
163
164 /*
165 * Rather than reconstructing the table line for the status we just
166 * save it and regurgitate.
167 */
168 unsigned nr_ctr_args;
169 const char **ctr_args;
170
171 struct dm_kcopyd_client *copier;
172 struct workqueue_struct *wq;
173 struct work_struct worker;
174
175 struct delayed_work waker;
176 unsigned long last_commit_jiffies;
177
178 struct dm_bio_prison *prison;
179 struct dm_deferred_set *all_io_ds;
180
181 mempool_t *migration_pool;
182 struct dm_cache_migration *next_migration;
183
184 struct dm_cache_policy *policy;
185 unsigned policy_nr_args;
186
187 bool need_tick_bio:1;
188 bool sized:1;
189 bool quiescing:1;
190 bool commit_requested:1;
191 bool loaded_mappings:1;
192 bool loaded_discards:1;
193
194 /*
195 * Cache features such as write-through.
196 */
197 struct cache_features features;
198
199 struct cache_stats stats;
200 };
201
202 struct per_bio_data {
203 bool tick:1;
204 unsigned req_nr:2;
205 struct dm_deferred_entry *all_io_entry;
206
207 /*
208 * writethrough fields. These MUST remain at the end of this
209 * structure and the 'cache' member must be the first as it
210 * is used to determine the offset of the writethrough fields.
211 */
212 struct cache *cache;
213 dm_cblock_t cblock;
214 bio_end_io_t *saved_bi_end_io;
215 struct dm_bio_details bio_details;
216 };
217
218 struct dm_cache_migration {
219 struct list_head list;
220 struct cache *cache;
221
222 unsigned long start_jiffies;
223 dm_oblock_t old_oblock;
224 dm_oblock_t new_oblock;
225 dm_cblock_t cblock;
226
227 bool err:1;
228 bool writeback:1;
229 bool demote:1;
230 bool promote:1;
231
232 struct dm_bio_prison_cell *old_ocell;
233 struct dm_bio_prison_cell *new_ocell;
234 };
235
236 /*
237 * Processing a bio in the worker thread may require these memory
238 * allocations. We prealloc to avoid deadlocks (the same worker thread
239 * frees them back to the mempool).
240 */
241 struct prealloc {
242 struct dm_cache_migration *mg;
243 struct dm_bio_prison_cell *cell1;
244 struct dm_bio_prison_cell *cell2;
245 };
246
247 static void wake_worker(struct cache *cache)
248 {
249 queue_work(cache->wq, &cache->worker);
250 }
251
252 /*----------------------------------------------------------------*/
253
254 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
255 {
256 /* FIXME: change to use a local slab. */
257 return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
258 }
259
260 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
261 {
262 dm_bio_prison_free_cell(cache->prison, cell);
263 }
264
265 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
266 {
267 if (!p->mg) {
268 p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
269 if (!p->mg)
270 return -ENOMEM;
271 }
272
273 if (!p->cell1) {
274 p->cell1 = alloc_prison_cell(cache);
275 if (!p->cell1)
276 return -ENOMEM;
277 }
278
279 if (!p->cell2) {
280 p->cell2 = alloc_prison_cell(cache);
281 if (!p->cell2)
282 return -ENOMEM;
283 }
284
285 return 0;
286 }
287
288 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
289 {
290 if (p->cell2)
291 free_prison_cell(cache, p->cell2);
292
293 if (p->cell1)
294 free_prison_cell(cache, p->cell1);
295
296 if (p->mg)
297 mempool_free(p->mg, cache->migration_pool);
298 }
299
300 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
301 {
302 struct dm_cache_migration *mg = p->mg;
303
304 BUG_ON(!mg);
305 p->mg = NULL;
306
307 return mg;
308 }
309
310 /*
311 * You must have a cell within the prealloc struct to return. If not this
312 * function will BUG() rather than returning NULL.
313 */
314 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
315 {
316 struct dm_bio_prison_cell *r = NULL;
317
318 if (p->cell1) {
319 r = p->cell1;
320 p->cell1 = NULL;
321
322 } else if (p->cell2) {
323 r = p->cell2;
324 p->cell2 = NULL;
325 } else
326 BUG();
327
328 return r;
329 }
330
331 /*
332 * You can't have more than two cells in a prealloc struct. BUG() will be
333 * called if you try and overfill.
334 */
335 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
336 {
337 if (!p->cell2)
338 p->cell2 = cell;
339
340 else if (!p->cell1)
341 p->cell1 = cell;
342
343 else
344 BUG();
345 }
346
347 /*----------------------------------------------------------------*/
348
349 static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
350 {
351 key->virtual = 0;
352 key->dev = 0;
353 key->block = from_oblock(oblock);
354 }
355
356 /*
357 * The caller hands in a preallocated cell, and a free function for it.
358 * The cell will be freed if there's an error, or if it wasn't used because
359 * a cell with that key already exists.
360 */
361 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
362
363 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
364 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
365 cell_free_fn free_fn, void *free_context,
366 struct dm_bio_prison_cell **cell_result)
367 {
368 int r;
369 struct dm_cell_key key;
370
371 build_key(oblock, &key);
372 r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
373 if (r)
374 free_fn(free_context, cell_prealloc);
375
376 return r;
377 }
378
379 static int get_cell(struct cache *cache,
380 dm_oblock_t oblock,
381 struct prealloc *structs,
382 struct dm_bio_prison_cell **cell_result)
383 {
384 int r;
385 struct dm_cell_key key;
386 struct dm_bio_prison_cell *cell_prealloc;
387
388 cell_prealloc = prealloc_get_cell(structs);
389
390 build_key(oblock, &key);
391 r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
392 if (r)
393 prealloc_put_cell(structs, cell_prealloc);
394
395 return r;
396 }
397
398 /*----------------------------------------------------------------*/
399
400 static bool is_dirty(struct cache *cache, dm_cblock_t b)
401 {
402 return test_bit(from_cblock(b), cache->dirty_bitset);
403 }
404
405 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
406 {
407 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
408 cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1);
409 policy_set_dirty(cache->policy, oblock);
410 }
411 }
412
413 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
414 {
415 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
416 policy_clear_dirty(cache->policy, oblock);
417 cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1);
418 if (!from_cblock(cache->nr_dirty))
419 dm_table_event(cache->ti->table);
420 }
421 }
422
423 /*----------------------------------------------------------------*/
424
425 static bool block_size_is_power_of_two(struct cache *cache)
426 {
427 return cache->sectors_per_block_shift >= 0;
428 }
429
430 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
431 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
432 __always_inline
433 #endif
434 static dm_block_t block_div(dm_block_t b, uint32_t n)
435 {
436 do_div(b, n);
437
438 return b;
439 }
440
441 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
442 {
443 uint32_t discard_blocks = cache->discard_block_size;
444 dm_block_t b = from_oblock(oblock);
445
446 if (!block_size_is_power_of_two(cache))
447 discard_blocks = discard_blocks / cache->sectors_per_block;
448 else
449 discard_blocks >>= cache->sectors_per_block_shift;
450
451 b = block_div(b, discard_blocks);
452
453 return to_dblock(b);
454 }
455
456 static void set_discard(struct cache *cache, dm_dblock_t b)
457 {
458 unsigned long flags;
459
460 atomic_inc(&cache->stats.discard_count);
461
462 spin_lock_irqsave(&cache->lock, flags);
463 set_bit(from_dblock(b), cache->discard_bitset);
464 spin_unlock_irqrestore(&cache->lock, flags);
465 }
466
467 static void clear_discard(struct cache *cache, dm_dblock_t b)
468 {
469 unsigned long flags;
470
471 spin_lock_irqsave(&cache->lock, flags);
472 clear_bit(from_dblock(b), cache->discard_bitset);
473 spin_unlock_irqrestore(&cache->lock, flags);
474 }
475
476 static bool is_discarded(struct cache *cache, dm_dblock_t b)
477 {
478 int r;
479 unsigned long flags;
480
481 spin_lock_irqsave(&cache->lock, flags);
482 r = test_bit(from_dblock(b), cache->discard_bitset);
483 spin_unlock_irqrestore(&cache->lock, flags);
484
485 return r;
486 }
487
488 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
489 {
490 int r;
491 unsigned long flags;
492
493 spin_lock_irqsave(&cache->lock, flags);
494 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
495 cache->discard_bitset);
496 spin_unlock_irqrestore(&cache->lock, flags);
497
498 return r;
499 }
500
501 /*----------------------------------------------------------------*/
502
503 static void load_stats(struct cache *cache)
504 {
505 struct dm_cache_statistics stats;
506
507 dm_cache_metadata_get_stats(cache->cmd, &stats);
508 atomic_set(&cache->stats.read_hit, stats.read_hits);
509 atomic_set(&cache->stats.read_miss, stats.read_misses);
510 atomic_set(&cache->stats.write_hit, stats.write_hits);
511 atomic_set(&cache->stats.write_miss, stats.write_misses);
512 }
513
514 static void save_stats(struct cache *cache)
515 {
516 struct dm_cache_statistics stats;
517
518 stats.read_hits = atomic_read(&cache->stats.read_hit);
519 stats.read_misses = atomic_read(&cache->stats.read_miss);
520 stats.write_hits = atomic_read(&cache->stats.write_hit);
521 stats.write_misses = atomic_read(&cache->stats.write_miss);
522
523 dm_cache_metadata_set_stats(cache->cmd, &stats);
524 }
525
526 /*----------------------------------------------------------------
527 * Per bio data
528 *--------------------------------------------------------------*/
529
530 /*
531 * If using writeback, leave out struct per_bio_data's writethrough fields.
532 */
533 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
534 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
535
536 static size_t get_per_bio_data_size(struct cache *cache)
537 {
538 return cache->features.write_through ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
539 }
540
541 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
542 {
543 struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
544 BUG_ON(!pb);
545 return pb;
546 }
547
548 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
549 {
550 struct per_bio_data *pb = get_per_bio_data(bio, data_size);
551
552 pb->tick = false;
553 pb->req_nr = dm_bio_get_target_bio_nr(bio);
554 pb->all_io_entry = NULL;
555
556 return pb;
557 }
558
559 /*----------------------------------------------------------------
560 * Remapping
561 *--------------------------------------------------------------*/
562 static void remap_to_origin(struct cache *cache, struct bio *bio)
563 {
564 bio->bi_bdev = cache->origin_dev->bdev;
565 }
566
567 static void remap_to_cache(struct cache *cache, struct bio *bio,
568 dm_cblock_t cblock)
569 {
570 sector_t bi_sector = bio->bi_sector;
571
572 bio->bi_bdev = cache->cache_dev->bdev;
573 if (!block_size_is_power_of_two(cache))
574 bio->bi_sector = (from_cblock(cblock) * cache->sectors_per_block) +
575 sector_div(bi_sector, cache->sectors_per_block);
576 else
577 bio->bi_sector = (from_cblock(cblock) << cache->sectors_per_block_shift) |
578 (bi_sector & (cache->sectors_per_block - 1));
579 }
580
581 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
582 {
583 unsigned long flags;
584 size_t pb_data_size = get_per_bio_data_size(cache);
585 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
586
587 spin_lock_irqsave(&cache->lock, flags);
588 if (cache->need_tick_bio &&
589 !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
590 pb->tick = true;
591 cache->need_tick_bio = false;
592 }
593 spin_unlock_irqrestore(&cache->lock, flags);
594 }
595
596 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
597 dm_oblock_t oblock)
598 {
599 check_if_tick_bio_needed(cache, bio);
600 remap_to_origin(cache, bio);
601 if (bio_data_dir(bio) == WRITE)
602 clear_discard(cache, oblock_to_dblock(cache, oblock));
603 }
604
605 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
606 dm_oblock_t oblock, dm_cblock_t cblock)
607 {
608 remap_to_cache(cache, bio, cblock);
609 if (bio_data_dir(bio) == WRITE) {
610 set_dirty(cache, oblock, cblock);
611 clear_discard(cache, oblock_to_dblock(cache, oblock));
612 }
613 }
614
615 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
616 {
617 sector_t block_nr = bio->bi_sector;
618
619 if (!block_size_is_power_of_two(cache))
620 (void) sector_div(block_nr, cache->sectors_per_block);
621 else
622 block_nr >>= cache->sectors_per_block_shift;
623
624 return to_oblock(block_nr);
625 }
626
627 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
628 {
629 return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
630 }
631
632 static void issue(struct cache *cache, struct bio *bio)
633 {
634 unsigned long flags;
635
636 if (!bio_triggers_commit(cache, bio)) {
637 generic_make_request(bio);
638 return;
639 }
640
641 /*
642 * Batch together any bios that trigger commits and then issue a
643 * single commit for them in do_worker().
644 */
645 spin_lock_irqsave(&cache->lock, flags);
646 cache->commit_requested = true;
647 bio_list_add(&cache->deferred_flush_bios, bio);
648 spin_unlock_irqrestore(&cache->lock, flags);
649 }
650
651 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
652 {
653 unsigned long flags;
654
655 spin_lock_irqsave(&cache->lock, flags);
656 bio_list_add(&cache->deferred_writethrough_bios, bio);
657 spin_unlock_irqrestore(&cache->lock, flags);
658
659 wake_worker(cache);
660 }
661
662 static void writethrough_endio(struct bio *bio, int err)
663 {
664 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
665 bio->bi_end_io = pb->saved_bi_end_io;
666
667 if (err) {
668 bio_endio(bio, err);
669 return;
670 }
671
672 dm_bio_restore(&pb->bio_details, bio);
673 remap_to_cache(pb->cache, bio, pb->cblock);
674
675 /*
676 * We can't issue this bio directly, since we're in interrupt
677 * context. So it gets put on a bio list for processing by the
678 * worker thread.
679 */
680 defer_writethrough_bio(pb->cache, bio);
681 }
682
683 /*
684 * When running in writethrough mode we need to send writes to clean blocks
685 * to both the cache and origin devices. In future we'd like to clone the
686 * bio and send them in parallel, but for now we're doing them in
687 * series as this is easier.
688 */
689 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
690 dm_oblock_t oblock, dm_cblock_t cblock)
691 {
692 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
693
694 pb->cache = cache;
695 pb->cblock = cblock;
696 pb->saved_bi_end_io = bio->bi_end_io;
697 dm_bio_record(&pb->bio_details, bio);
698 bio->bi_end_io = writethrough_endio;
699
700 remap_to_origin_clear_discard(pb->cache, bio, oblock);
701 }
702
703 /*----------------------------------------------------------------
704 * Migration processing
705 *
706 * Migration covers moving data from the origin device to the cache, or
707 * vice versa.
708 *--------------------------------------------------------------*/
709 static void free_migration(struct dm_cache_migration *mg)
710 {
711 mempool_free(mg, mg->cache->migration_pool);
712 }
713
714 static void inc_nr_migrations(struct cache *cache)
715 {
716 atomic_inc(&cache->nr_migrations);
717 }
718
719 static void dec_nr_migrations(struct cache *cache)
720 {
721 atomic_dec(&cache->nr_migrations);
722
723 /*
724 * Wake the worker in case we're suspending the target.
725 */
726 wake_up(&cache->migration_wait);
727 }
728
729 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
730 bool holder)
731 {
732 (holder ? dm_cell_release : dm_cell_release_no_holder)
733 (cache->prison, cell, &cache->deferred_bios);
734 free_prison_cell(cache, cell);
735 }
736
737 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
738 bool holder)
739 {
740 unsigned long flags;
741
742 spin_lock_irqsave(&cache->lock, flags);
743 __cell_defer(cache, cell, holder);
744 spin_unlock_irqrestore(&cache->lock, flags);
745
746 wake_worker(cache);
747 }
748
749 static void cleanup_migration(struct dm_cache_migration *mg)
750 {
751 dec_nr_migrations(mg->cache);
752 free_migration(mg);
753 }
754
755 static void migration_failure(struct dm_cache_migration *mg)
756 {
757 struct cache *cache = mg->cache;
758
759 if (mg->writeback) {
760 DMWARN_LIMIT("writeback failed; couldn't copy block");
761 set_dirty(cache, mg->old_oblock, mg->cblock);
762 cell_defer(cache, mg->old_ocell, false);
763
764 } else if (mg->demote) {
765 DMWARN_LIMIT("demotion failed; couldn't copy block");
766 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
767
768 cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1);
769 if (mg->promote)
770 cell_defer(cache, mg->new_ocell, 1);
771 } else {
772 DMWARN_LIMIT("promotion failed; couldn't copy block");
773 policy_remove_mapping(cache->policy, mg->new_oblock);
774 cell_defer(cache, mg->new_ocell, 1);
775 }
776
777 cleanup_migration(mg);
778 }
779
780 static void migration_success_pre_commit(struct dm_cache_migration *mg)
781 {
782 unsigned long flags;
783 struct cache *cache = mg->cache;
784
785 if (mg->writeback) {
786 cell_defer(cache, mg->old_ocell, false);
787 clear_dirty(cache, mg->old_oblock, mg->cblock);
788 cleanup_migration(mg);
789 return;
790
791 } else if (mg->demote) {
792 if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
793 DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
794 policy_force_mapping(cache->policy, mg->new_oblock,
795 mg->old_oblock);
796 if (mg->promote)
797 cell_defer(cache, mg->new_ocell, true);
798 cleanup_migration(mg);
799 return;
800 }
801 } else {
802 if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
803 DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
804 policy_remove_mapping(cache->policy, mg->new_oblock);
805 cleanup_migration(mg);
806 return;
807 }
808 }
809
810 spin_lock_irqsave(&cache->lock, flags);
811 list_add_tail(&mg->list, &cache->need_commit_migrations);
812 cache->commit_requested = true;
813 spin_unlock_irqrestore(&cache->lock, flags);
814 }
815
816 static void migration_success_post_commit(struct dm_cache_migration *mg)
817 {
818 unsigned long flags;
819 struct cache *cache = mg->cache;
820
821 if (mg->writeback) {
822 DMWARN("writeback unexpectedly triggered commit");
823 return;
824
825 } else if (mg->demote) {
826 cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1);
827
828 if (mg->promote) {
829 mg->demote = false;
830
831 spin_lock_irqsave(&cache->lock, flags);
832 list_add_tail(&mg->list, &cache->quiesced_migrations);
833 spin_unlock_irqrestore(&cache->lock, flags);
834
835 } else
836 cleanup_migration(mg);
837
838 } else {
839 cell_defer(cache, mg->new_ocell, true);
840 clear_dirty(cache, mg->new_oblock, mg->cblock);
841 cleanup_migration(mg);
842 }
843 }
844
845 static void copy_complete(int read_err, unsigned long write_err, void *context)
846 {
847 unsigned long flags;
848 struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
849 struct cache *cache = mg->cache;
850
851 if (read_err || write_err)
852 mg->err = true;
853
854 spin_lock_irqsave(&cache->lock, flags);
855 list_add_tail(&mg->list, &cache->completed_migrations);
856 spin_unlock_irqrestore(&cache->lock, flags);
857
858 wake_worker(cache);
859 }
860
861 static void issue_copy_real(struct dm_cache_migration *mg)
862 {
863 int r;
864 struct dm_io_region o_region, c_region;
865 struct cache *cache = mg->cache;
866
867 o_region.bdev = cache->origin_dev->bdev;
868 o_region.count = cache->sectors_per_block;
869
870 c_region.bdev = cache->cache_dev->bdev;
871 c_region.sector = from_cblock(mg->cblock) * cache->sectors_per_block;
872 c_region.count = cache->sectors_per_block;
873
874 if (mg->writeback || mg->demote) {
875 /* demote */
876 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
877 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
878 } else {
879 /* promote */
880 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
881 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
882 }
883
884 if (r < 0)
885 migration_failure(mg);
886 }
887
888 static void avoid_copy(struct dm_cache_migration *mg)
889 {
890 atomic_inc(&mg->cache->stats.copies_avoided);
891 migration_success_pre_commit(mg);
892 }
893
894 static void issue_copy(struct dm_cache_migration *mg)
895 {
896 bool avoid;
897 struct cache *cache = mg->cache;
898
899 if (mg->writeback || mg->demote)
900 avoid = !is_dirty(cache, mg->cblock) ||
901 is_discarded_oblock(cache, mg->old_oblock);
902 else
903 avoid = is_discarded_oblock(cache, mg->new_oblock);
904
905 avoid ? avoid_copy(mg) : issue_copy_real(mg);
906 }
907
908 static void complete_migration(struct dm_cache_migration *mg)
909 {
910 if (mg->err)
911 migration_failure(mg);
912 else
913 migration_success_pre_commit(mg);
914 }
915
916 static void process_migrations(struct cache *cache, struct list_head *head,
917 void (*fn)(struct dm_cache_migration *))
918 {
919 unsigned long flags;
920 struct list_head list;
921 struct dm_cache_migration *mg, *tmp;
922
923 INIT_LIST_HEAD(&list);
924 spin_lock_irqsave(&cache->lock, flags);
925 list_splice_init(head, &list);
926 spin_unlock_irqrestore(&cache->lock, flags);
927
928 list_for_each_entry_safe(mg, tmp, &list, list)
929 fn(mg);
930 }
931
932 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
933 {
934 list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
935 }
936
937 static void queue_quiesced_migration(struct dm_cache_migration *mg)
938 {
939 unsigned long flags;
940 struct cache *cache = mg->cache;
941
942 spin_lock_irqsave(&cache->lock, flags);
943 __queue_quiesced_migration(mg);
944 spin_unlock_irqrestore(&cache->lock, flags);
945
946 wake_worker(cache);
947 }
948
949 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
950 {
951 unsigned long flags;
952 struct dm_cache_migration *mg, *tmp;
953
954 spin_lock_irqsave(&cache->lock, flags);
955 list_for_each_entry_safe(mg, tmp, work, list)
956 __queue_quiesced_migration(mg);
957 spin_unlock_irqrestore(&cache->lock, flags);
958
959 wake_worker(cache);
960 }
961
962 static void check_for_quiesced_migrations(struct cache *cache,
963 struct per_bio_data *pb)
964 {
965 struct list_head work;
966
967 if (!pb->all_io_entry)
968 return;
969
970 INIT_LIST_HEAD(&work);
971 if (pb->all_io_entry)
972 dm_deferred_entry_dec(pb->all_io_entry, &work);
973
974 if (!list_empty(&work))
975 queue_quiesced_migrations(cache, &work);
976 }
977
978 static void quiesce_migration(struct dm_cache_migration *mg)
979 {
980 if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
981 queue_quiesced_migration(mg);
982 }
983
984 static void promote(struct cache *cache, struct prealloc *structs,
985 dm_oblock_t oblock, dm_cblock_t cblock,
986 struct dm_bio_prison_cell *cell)
987 {
988 struct dm_cache_migration *mg = prealloc_get_migration(structs);
989
990 mg->err = false;
991 mg->writeback = false;
992 mg->demote = false;
993 mg->promote = true;
994 mg->cache = cache;
995 mg->new_oblock = oblock;
996 mg->cblock = cblock;
997 mg->old_ocell = NULL;
998 mg->new_ocell = cell;
999 mg->start_jiffies = jiffies;
1000
1001 inc_nr_migrations(cache);
1002 quiesce_migration(mg);
1003 }
1004
1005 static void writeback(struct cache *cache, struct prealloc *structs,
1006 dm_oblock_t oblock, dm_cblock_t cblock,
1007 struct dm_bio_prison_cell *cell)
1008 {
1009 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1010
1011 mg->err = false;
1012 mg->writeback = true;
1013 mg->demote = false;
1014 mg->promote = false;
1015 mg->cache = cache;
1016 mg->old_oblock = oblock;
1017 mg->cblock = cblock;
1018 mg->old_ocell = cell;
1019 mg->new_ocell = NULL;
1020 mg->start_jiffies = jiffies;
1021
1022 inc_nr_migrations(cache);
1023 quiesce_migration(mg);
1024 }
1025
1026 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1027 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1028 dm_cblock_t cblock,
1029 struct dm_bio_prison_cell *old_ocell,
1030 struct dm_bio_prison_cell *new_ocell)
1031 {
1032 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1033
1034 mg->err = false;
1035 mg->writeback = false;
1036 mg->demote = true;
1037 mg->promote = true;
1038 mg->cache = cache;
1039 mg->old_oblock = old_oblock;
1040 mg->new_oblock = new_oblock;
1041 mg->cblock = cblock;
1042 mg->old_ocell = old_ocell;
1043 mg->new_ocell = new_ocell;
1044 mg->start_jiffies = jiffies;
1045
1046 inc_nr_migrations(cache);
1047 quiesce_migration(mg);
1048 }
1049
1050 /*----------------------------------------------------------------
1051 * bio processing
1052 *--------------------------------------------------------------*/
1053 static void defer_bio(struct cache *cache, struct bio *bio)
1054 {
1055 unsigned long flags;
1056
1057 spin_lock_irqsave(&cache->lock, flags);
1058 bio_list_add(&cache->deferred_bios, bio);
1059 spin_unlock_irqrestore(&cache->lock, flags);
1060
1061 wake_worker(cache);
1062 }
1063
1064 static void process_flush_bio(struct cache *cache, struct bio *bio)
1065 {
1066 size_t pb_data_size = get_per_bio_data_size(cache);
1067 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1068
1069 BUG_ON(bio->bi_size);
1070 if (!pb->req_nr)
1071 remap_to_origin(cache, bio);
1072 else
1073 remap_to_cache(cache, bio, 0);
1074
1075 issue(cache, bio);
1076 }
1077
1078 /*
1079 * People generally discard large parts of a device, eg, the whole device
1080 * when formatting. Splitting these large discards up into cache block
1081 * sized ios and then quiescing (always neccessary for discard) takes too
1082 * long.
1083 *
1084 * We keep it simple, and allow any size of discard to come in, and just
1085 * mark off blocks on the discard bitset. No passdown occurs!
1086 *
1087 * To implement passdown we need to change the bio_prison such that a cell
1088 * can have a key that spans many blocks.
1089 */
1090 static void process_discard_bio(struct cache *cache, struct bio *bio)
1091 {
1092 dm_block_t start_block = dm_sector_div_up(bio->bi_sector,
1093 cache->discard_block_size);
1094 dm_block_t end_block = bio->bi_sector + bio_sectors(bio);
1095 dm_block_t b;
1096
1097 end_block = block_div(end_block, cache->discard_block_size);
1098
1099 for (b = start_block; b < end_block; b++)
1100 set_discard(cache, to_dblock(b));
1101
1102 bio_endio(bio, 0);
1103 }
1104
1105 static bool spare_migration_bandwidth(struct cache *cache)
1106 {
1107 sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1108 cache->sectors_per_block;
1109 return current_volume < cache->migration_threshold;
1110 }
1111
1112 static bool is_writethrough_io(struct cache *cache, struct bio *bio,
1113 dm_cblock_t cblock)
1114 {
1115 return bio_data_dir(bio) == WRITE &&
1116 cache->features.write_through && !is_dirty(cache, cblock);
1117 }
1118
1119 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1120 {
1121 atomic_inc(bio_data_dir(bio) == READ ?
1122 &cache->stats.read_hit : &cache->stats.write_hit);
1123 }
1124
1125 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1126 {
1127 atomic_inc(bio_data_dir(bio) == READ ?
1128 &cache->stats.read_miss : &cache->stats.write_miss);
1129 }
1130
1131 static void process_bio(struct cache *cache, struct prealloc *structs,
1132 struct bio *bio)
1133 {
1134 int r;
1135 bool release_cell = true;
1136 dm_oblock_t block = get_bio_block(cache, bio);
1137 struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1138 struct policy_result lookup_result;
1139 size_t pb_data_size = get_per_bio_data_size(cache);
1140 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1141 bool discarded_block = is_discarded_oblock(cache, block);
1142 bool can_migrate = discarded_block || spare_migration_bandwidth(cache);
1143
1144 /*
1145 * Check to see if that block is currently migrating.
1146 */
1147 cell_prealloc = prealloc_get_cell(structs);
1148 r = bio_detain(cache, block, bio, cell_prealloc,
1149 (cell_free_fn) prealloc_put_cell,
1150 structs, &new_ocell);
1151 if (r > 0)
1152 return;
1153
1154 r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1155 bio, &lookup_result);
1156
1157 if (r == -EWOULDBLOCK)
1158 /* migration has been denied */
1159 lookup_result.op = POLICY_MISS;
1160
1161 switch (lookup_result.op) {
1162 case POLICY_HIT:
1163 inc_hit_counter(cache, bio);
1164 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1165
1166 if (is_writethrough_io(cache, bio, lookup_result.cblock))
1167 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1168 else
1169 remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
1170
1171 issue(cache, bio);
1172 break;
1173
1174 case POLICY_MISS:
1175 inc_miss_counter(cache, bio);
1176 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1177 remap_to_origin_clear_discard(cache, bio, block);
1178 issue(cache, bio);
1179 break;
1180
1181 case POLICY_NEW:
1182 atomic_inc(&cache->stats.promotion);
1183 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1184 release_cell = false;
1185 break;
1186
1187 case POLICY_REPLACE:
1188 cell_prealloc = prealloc_get_cell(structs);
1189 r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1190 (cell_free_fn) prealloc_put_cell,
1191 structs, &old_ocell);
1192 if (r > 0) {
1193 /*
1194 * We have to be careful to avoid lock inversion of
1195 * the cells. So we back off, and wait for the
1196 * old_ocell to become free.
1197 */
1198 policy_force_mapping(cache->policy, block,
1199 lookup_result.old_oblock);
1200 atomic_inc(&cache->stats.cache_cell_clash);
1201 break;
1202 }
1203 atomic_inc(&cache->stats.demotion);
1204 atomic_inc(&cache->stats.promotion);
1205
1206 demote_then_promote(cache, structs, lookup_result.old_oblock,
1207 block, lookup_result.cblock,
1208 old_ocell, new_ocell);
1209 release_cell = false;
1210 break;
1211
1212 default:
1213 DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1214 (unsigned) lookup_result.op);
1215 bio_io_error(bio);
1216 }
1217
1218 if (release_cell)
1219 cell_defer(cache, new_ocell, false);
1220 }
1221
1222 static int need_commit_due_to_time(struct cache *cache)
1223 {
1224 return jiffies < cache->last_commit_jiffies ||
1225 jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1226 }
1227
1228 static int commit_if_needed(struct cache *cache)
1229 {
1230 if (dm_cache_changed_this_transaction(cache->cmd) &&
1231 (cache->commit_requested || need_commit_due_to_time(cache))) {
1232 atomic_inc(&cache->stats.commit_count);
1233 cache->last_commit_jiffies = jiffies;
1234 cache->commit_requested = false;
1235 return dm_cache_commit(cache->cmd, false);
1236 }
1237
1238 return 0;
1239 }
1240
1241 static void process_deferred_bios(struct cache *cache)
1242 {
1243 unsigned long flags;
1244 struct bio_list bios;
1245 struct bio *bio;
1246 struct prealloc structs;
1247
1248 memset(&structs, 0, sizeof(structs));
1249 bio_list_init(&bios);
1250
1251 spin_lock_irqsave(&cache->lock, flags);
1252 bio_list_merge(&bios, &cache->deferred_bios);
1253 bio_list_init(&cache->deferred_bios);
1254 spin_unlock_irqrestore(&cache->lock, flags);
1255
1256 while (!bio_list_empty(&bios)) {
1257 /*
1258 * If we've got no free migration structs, and processing
1259 * this bio might require one, we pause until there are some
1260 * prepared mappings to process.
1261 */
1262 if (prealloc_data_structs(cache, &structs)) {
1263 spin_lock_irqsave(&cache->lock, flags);
1264 bio_list_merge(&cache->deferred_bios, &bios);
1265 spin_unlock_irqrestore(&cache->lock, flags);
1266 break;
1267 }
1268
1269 bio = bio_list_pop(&bios);
1270
1271 if (bio->bi_rw & REQ_FLUSH)
1272 process_flush_bio(cache, bio);
1273 else if (bio->bi_rw & REQ_DISCARD)
1274 process_discard_bio(cache, bio);
1275 else
1276 process_bio(cache, &structs, bio);
1277 }
1278
1279 prealloc_free_structs(cache, &structs);
1280 }
1281
1282 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1283 {
1284 unsigned long flags;
1285 struct bio_list bios;
1286 struct bio *bio;
1287
1288 bio_list_init(&bios);
1289
1290 spin_lock_irqsave(&cache->lock, flags);
1291 bio_list_merge(&bios, &cache->deferred_flush_bios);
1292 bio_list_init(&cache->deferred_flush_bios);
1293 spin_unlock_irqrestore(&cache->lock, flags);
1294
1295 while ((bio = bio_list_pop(&bios)))
1296 submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1297 }
1298
1299 static void process_deferred_writethrough_bios(struct cache *cache)
1300 {
1301 unsigned long flags;
1302 struct bio_list bios;
1303 struct bio *bio;
1304
1305 bio_list_init(&bios);
1306
1307 spin_lock_irqsave(&cache->lock, flags);
1308 bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1309 bio_list_init(&cache->deferred_writethrough_bios);
1310 spin_unlock_irqrestore(&cache->lock, flags);
1311
1312 while ((bio = bio_list_pop(&bios)))
1313 generic_make_request(bio);
1314 }
1315
1316 static void writeback_some_dirty_blocks(struct cache *cache)
1317 {
1318 int r = 0;
1319 dm_oblock_t oblock;
1320 dm_cblock_t cblock;
1321 struct prealloc structs;
1322 struct dm_bio_prison_cell *old_ocell;
1323
1324 memset(&structs, 0, sizeof(structs));
1325
1326 while (spare_migration_bandwidth(cache)) {
1327 if (prealloc_data_structs(cache, &structs))
1328 break;
1329
1330 r = policy_writeback_work(cache->policy, &oblock, &cblock);
1331 if (r)
1332 break;
1333
1334 r = get_cell(cache, oblock, &structs, &old_ocell);
1335 if (r) {
1336 policy_set_dirty(cache->policy, oblock);
1337 break;
1338 }
1339
1340 writeback(cache, &structs, oblock, cblock, old_ocell);
1341 }
1342
1343 prealloc_free_structs(cache, &structs);
1344 }
1345
1346 /*----------------------------------------------------------------
1347 * Main worker loop
1348 *--------------------------------------------------------------*/
1349 static void start_quiescing(struct cache *cache)
1350 {
1351 unsigned long flags;
1352
1353 spin_lock_irqsave(&cache->lock, flags);
1354 cache->quiescing = 1;
1355 spin_unlock_irqrestore(&cache->lock, flags);
1356 }
1357
1358 static void stop_quiescing(struct cache *cache)
1359 {
1360 unsigned long flags;
1361
1362 spin_lock_irqsave(&cache->lock, flags);
1363 cache->quiescing = 0;
1364 spin_unlock_irqrestore(&cache->lock, flags);
1365 }
1366
1367 static bool is_quiescing(struct cache *cache)
1368 {
1369 int r;
1370 unsigned long flags;
1371
1372 spin_lock_irqsave(&cache->lock, flags);
1373 r = cache->quiescing;
1374 spin_unlock_irqrestore(&cache->lock, flags);
1375
1376 return r;
1377 }
1378
1379 static void wait_for_migrations(struct cache *cache)
1380 {
1381 wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
1382 }
1383
1384 static void stop_worker(struct cache *cache)
1385 {
1386 cancel_delayed_work(&cache->waker);
1387 flush_workqueue(cache->wq);
1388 }
1389
1390 static void requeue_deferred_io(struct cache *cache)
1391 {
1392 struct bio *bio;
1393 struct bio_list bios;
1394
1395 bio_list_init(&bios);
1396 bio_list_merge(&bios, &cache->deferred_bios);
1397 bio_list_init(&cache->deferred_bios);
1398
1399 while ((bio = bio_list_pop(&bios)))
1400 bio_endio(bio, DM_ENDIO_REQUEUE);
1401 }
1402
1403 static int more_work(struct cache *cache)
1404 {
1405 if (is_quiescing(cache))
1406 return !list_empty(&cache->quiesced_migrations) ||
1407 !list_empty(&cache->completed_migrations) ||
1408 !list_empty(&cache->need_commit_migrations);
1409 else
1410 return !bio_list_empty(&cache->deferred_bios) ||
1411 !bio_list_empty(&cache->deferred_flush_bios) ||
1412 !bio_list_empty(&cache->deferred_writethrough_bios) ||
1413 !list_empty(&cache->quiesced_migrations) ||
1414 !list_empty(&cache->completed_migrations) ||
1415 !list_empty(&cache->need_commit_migrations);
1416 }
1417
1418 static void do_worker(struct work_struct *ws)
1419 {
1420 struct cache *cache = container_of(ws, struct cache, worker);
1421
1422 do {
1423 if (!is_quiescing(cache))
1424 process_deferred_bios(cache);
1425
1426 process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1427 process_migrations(cache, &cache->completed_migrations, complete_migration);
1428
1429 writeback_some_dirty_blocks(cache);
1430
1431 process_deferred_writethrough_bios(cache);
1432
1433 if (commit_if_needed(cache)) {
1434 process_deferred_flush_bios(cache, false);
1435
1436 /*
1437 * FIXME: rollback metadata or just go into a
1438 * failure mode and error everything
1439 */
1440 } else {
1441 process_deferred_flush_bios(cache, true);
1442 process_migrations(cache, &cache->need_commit_migrations,
1443 migration_success_post_commit);
1444 }
1445 } while (more_work(cache));
1446 }
1447
1448 /*
1449 * We want to commit periodically so that not too much
1450 * unwritten metadata builds up.
1451 */
1452 static void do_waker(struct work_struct *ws)
1453 {
1454 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1455 policy_tick(cache->policy);
1456 wake_worker(cache);
1457 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1458 }
1459
1460 /*----------------------------------------------------------------*/
1461
1462 static int is_congested(struct dm_dev *dev, int bdi_bits)
1463 {
1464 struct request_queue *q = bdev_get_queue(dev->bdev);
1465 return bdi_congested(&q->backing_dev_info, bdi_bits);
1466 }
1467
1468 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1469 {
1470 struct cache *cache = container_of(cb, struct cache, callbacks);
1471
1472 return is_congested(cache->origin_dev, bdi_bits) ||
1473 is_congested(cache->cache_dev, bdi_bits);
1474 }
1475
1476 /*----------------------------------------------------------------
1477 * Target methods
1478 *--------------------------------------------------------------*/
1479
1480 /*
1481 * This function gets called on the error paths of the constructor, so we
1482 * have to cope with a partially initialised struct.
1483 */
1484 static void destroy(struct cache *cache)
1485 {
1486 unsigned i;
1487
1488 if (cache->next_migration)
1489 mempool_free(cache->next_migration, cache->migration_pool);
1490
1491 if (cache->migration_pool)
1492 mempool_destroy(cache->migration_pool);
1493
1494 if (cache->all_io_ds)
1495 dm_deferred_set_destroy(cache->all_io_ds);
1496
1497 if (cache->prison)
1498 dm_bio_prison_destroy(cache->prison);
1499
1500 if (cache->wq)
1501 destroy_workqueue(cache->wq);
1502
1503 if (cache->dirty_bitset)
1504 free_bitset(cache->dirty_bitset);
1505
1506 if (cache->discard_bitset)
1507 free_bitset(cache->discard_bitset);
1508
1509 if (cache->copier)
1510 dm_kcopyd_client_destroy(cache->copier);
1511
1512 if (cache->cmd)
1513 dm_cache_metadata_close(cache->cmd);
1514
1515 if (cache->metadata_dev)
1516 dm_put_device(cache->ti, cache->metadata_dev);
1517
1518 if (cache->origin_dev)
1519 dm_put_device(cache->ti, cache->origin_dev);
1520
1521 if (cache->cache_dev)
1522 dm_put_device(cache->ti, cache->cache_dev);
1523
1524 if (cache->policy)
1525 dm_cache_policy_destroy(cache->policy);
1526
1527 for (i = 0; i < cache->nr_ctr_args ; i++)
1528 kfree(cache->ctr_args[i]);
1529 kfree(cache->ctr_args);
1530
1531 kfree(cache);
1532 }
1533
1534 static void cache_dtr(struct dm_target *ti)
1535 {
1536 struct cache *cache = ti->private;
1537
1538 destroy(cache);
1539 }
1540
1541 static sector_t get_dev_size(struct dm_dev *dev)
1542 {
1543 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1544 }
1545
1546 /*----------------------------------------------------------------*/
1547
1548 /*
1549 * Construct a cache device mapping.
1550 *
1551 * cache <metadata dev> <cache dev> <origin dev> <block size>
1552 * <#feature args> [<feature arg>]*
1553 * <policy> <#policy args> [<policy arg>]*
1554 *
1555 * metadata dev : fast device holding the persistent metadata
1556 * cache dev : fast device holding cached data blocks
1557 * origin dev : slow device holding original data blocks
1558 * block size : cache unit size in sectors
1559 *
1560 * #feature args : number of feature arguments passed
1561 * feature args : writethrough. (The default is writeback.)
1562 *
1563 * policy : the replacement policy to use
1564 * #policy args : an even number of policy arguments corresponding
1565 * to key/value pairs passed to the policy
1566 * policy args : key/value pairs passed to the policy
1567 * E.g. 'sequential_threshold 1024'
1568 * See cache-policies.txt for details.
1569 *
1570 * Optional feature arguments are:
1571 * writethrough : write through caching that prohibits cache block
1572 * content from being different from origin block content.
1573 * Without this argument, the default behaviour is to write
1574 * back cache block contents later for performance reasons,
1575 * so they may differ from the corresponding origin blocks.
1576 */
1577 struct cache_args {
1578 struct dm_target *ti;
1579
1580 struct dm_dev *metadata_dev;
1581
1582 struct dm_dev *cache_dev;
1583 sector_t cache_sectors;
1584
1585 struct dm_dev *origin_dev;
1586 sector_t origin_sectors;
1587
1588 uint32_t block_size;
1589
1590 const char *policy_name;
1591 int policy_argc;
1592 const char **policy_argv;
1593
1594 struct cache_features features;
1595 };
1596
1597 static void destroy_cache_args(struct cache_args *ca)
1598 {
1599 if (ca->metadata_dev)
1600 dm_put_device(ca->ti, ca->metadata_dev);
1601
1602 if (ca->cache_dev)
1603 dm_put_device(ca->ti, ca->cache_dev);
1604
1605 if (ca->origin_dev)
1606 dm_put_device(ca->ti, ca->origin_dev);
1607
1608 kfree(ca);
1609 }
1610
1611 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1612 {
1613 if (!as->argc) {
1614 *error = "Insufficient args";
1615 return false;
1616 }
1617
1618 return true;
1619 }
1620
1621 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1622 char **error)
1623 {
1624 int r;
1625 sector_t metadata_dev_size;
1626 char b[BDEVNAME_SIZE];
1627
1628 if (!at_least_one_arg(as, error))
1629 return -EINVAL;
1630
1631 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1632 &ca->metadata_dev);
1633 if (r) {
1634 *error = "Error opening metadata device";
1635 return r;
1636 }
1637
1638 metadata_dev_size = get_dev_size(ca->metadata_dev);
1639 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1640 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1641 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1642
1643 return 0;
1644 }
1645
1646 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1647 char **error)
1648 {
1649 int r;
1650
1651 if (!at_least_one_arg(as, error))
1652 return -EINVAL;
1653
1654 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1655 &ca->cache_dev);
1656 if (r) {
1657 *error = "Error opening cache device";
1658 return r;
1659 }
1660 ca->cache_sectors = get_dev_size(ca->cache_dev);
1661
1662 return 0;
1663 }
1664
1665 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1666 char **error)
1667 {
1668 int r;
1669
1670 if (!at_least_one_arg(as, error))
1671 return -EINVAL;
1672
1673 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1674 &ca->origin_dev);
1675 if (r) {
1676 *error = "Error opening origin device";
1677 return r;
1678 }
1679
1680 ca->origin_sectors = get_dev_size(ca->origin_dev);
1681 if (ca->ti->len > ca->origin_sectors) {
1682 *error = "Device size larger than cached device";
1683 return -EINVAL;
1684 }
1685
1686 return 0;
1687 }
1688
1689 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1690 char **error)
1691 {
1692 unsigned long block_size;
1693
1694 if (!at_least_one_arg(as, error))
1695 return -EINVAL;
1696
1697 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
1698 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1699 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1700 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1701 *error = "Invalid data block size";
1702 return -EINVAL;
1703 }
1704
1705 if (block_size > ca->cache_sectors) {
1706 *error = "Data block size is larger than the cache device";
1707 return -EINVAL;
1708 }
1709
1710 ca->block_size = block_size;
1711
1712 return 0;
1713 }
1714
1715 static void init_features(struct cache_features *cf)
1716 {
1717 cf->mode = CM_WRITE;
1718 cf->write_through = false;
1719 }
1720
1721 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
1722 char **error)
1723 {
1724 static struct dm_arg _args[] = {
1725 {0, 1, "Invalid number of cache feature arguments"},
1726 };
1727
1728 int r;
1729 unsigned argc;
1730 const char *arg;
1731 struct cache_features *cf = &ca->features;
1732
1733 init_features(cf);
1734
1735 r = dm_read_arg_group(_args, as, &argc, error);
1736 if (r)
1737 return -EINVAL;
1738
1739 while (argc--) {
1740 arg = dm_shift_arg(as);
1741
1742 if (!strcasecmp(arg, "writeback"))
1743 cf->write_through = false;
1744
1745 else if (!strcasecmp(arg, "writethrough"))
1746 cf->write_through = true;
1747
1748 else {
1749 *error = "Unrecognised cache feature requested";
1750 return -EINVAL;
1751 }
1752 }
1753
1754 return 0;
1755 }
1756
1757 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
1758 char **error)
1759 {
1760 static struct dm_arg _args[] = {
1761 {0, 1024, "Invalid number of policy arguments"},
1762 };
1763
1764 int r;
1765
1766 if (!at_least_one_arg(as, error))
1767 return -EINVAL;
1768
1769 ca->policy_name = dm_shift_arg(as);
1770
1771 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
1772 if (r)
1773 return -EINVAL;
1774
1775 ca->policy_argv = (const char **)as->argv;
1776 dm_consume_args(as, ca->policy_argc);
1777
1778 return 0;
1779 }
1780
1781 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
1782 char **error)
1783 {
1784 int r;
1785 struct dm_arg_set as;
1786
1787 as.argc = argc;
1788 as.argv = argv;
1789
1790 r = parse_metadata_dev(ca, &as, error);
1791 if (r)
1792 return r;
1793
1794 r = parse_cache_dev(ca, &as, error);
1795 if (r)
1796 return r;
1797
1798 r = parse_origin_dev(ca, &as, error);
1799 if (r)
1800 return r;
1801
1802 r = parse_block_size(ca, &as, error);
1803 if (r)
1804 return r;
1805
1806 r = parse_features(ca, &as, error);
1807 if (r)
1808 return r;
1809
1810 r = parse_policy(ca, &as, error);
1811 if (r)
1812 return r;
1813
1814 return 0;
1815 }
1816
1817 /*----------------------------------------------------------------*/
1818
1819 static struct kmem_cache *migration_cache;
1820
1821 #define NOT_CORE_OPTION 1
1822
1823 static int process_config_option(struct cache *cache, const char *key, const char *value)
1824 {
1825 unsigned long tmp;
1826
1827 if (!strcasecmp(key, "migration_threshold")) {
1828 if (kstrtoul(value, 10, &tmp))
1829 return -EINVAL;
1830
1831 cache->migration_threshold = tmp;
1832 return 0;
1833 }
1834
1835 return NOT_CORE_OPTION;
1836 }
1837
1838 static int set_config_value(struct cache *cache, const char *key, const char *value)
1839 {
1840 int r = process_config_option(cache, key, value);
1841
1842 if (r == NOT_CORE_OPTION)
1843 r = policy_set_config_value(cache->policy, key, value);
1844
1845 if (r)
1846 DMWARN("bad config value for %s: %s", key, value);
1847
1848 return r;
1849 }
1850
1851 static int set_config_values(struct cache *cache, int argc, const char **argv)
1852 {
1853 int r = 0;
1854
1855 if (argc & 1) {
1856 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
1857 return -EINVAL;
1858 }
1859
1860 while (argc) {
1861 r = set_config_value(cache, argv[0], argv[1]);
1862 if (r)
1863 break;
1864
1865 argc -= 2;
1866 argv += 2;
1867 }
1868
1869 return r;
1870 }
1871
1872 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
1873 char **error)
1874 {
1875 cache->policy = dm_cache_policy_create(ca->policy_name,
1876 cache->cache_size,
1877 cache->origin_sectors,
1878 cache->sectors_per_block);
1879 if (!cache->policy) {
1880 *error = "Error creating cache's policy";
1881 return -ENOMEM;
1882 }
1883
1884 return 0;
1885 }
1886
1887 /*
1888 * We want the discard block size to be a power of two, at least the size
1889 * of the cache block size, and have no more than 2^14 discard blocks
1890 * across the origin.
1891 */
1892 #define MAX_DISCARD_BLOCKS (1 << 14)
1893
1894 static bool too_many_discard_blocks(sector_t discard_block_size,
1895 sector_t origin_size)
1896 {
1897 (void) sector_div(origin_size, discard_block_size);
1898
1899 return origin_size > MAX_DISCARD_BLOCKS;
1900 }
1901
1902 static sector_t calculate_discard_block_size(sector_t cache_block_size,
1903 sector_t origin_size)
1904 {
1905 sector_t discard_block_size;
1906
1907 discard_block_size = roundup_pow_of_two(cache_block_size);
1908
1909 if (origin_size)
1910 while (too_many_discard_blocks(discard_block_size, origin_size))
1911 discard_block_size *= 2;
1912
1913 return discard_block_size;
1914 }
1915
1916 #define DEFAULT_MIGRATION_THRESHOLD 2048
1917
1918 static int cache_create(struct cache_args *ca, struct cache **result)
1919 {
1920 int r = 0;
1921 char **error = &ca->ti->error;
1922 struct cache *cache;
1923 struct dm_target *ti = ca->ti;
1924 dm_block_t origin_blocks;
1925 struct dm_cache_metadata *cmd;
1926 bool may_format = ca->features.mode == CM_WRITE;
1927
1928 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
1929 if (!cache)
1930 return -ENOMEM;
1931
1932 cache->ti = ca->ti;
1933 ti->private = cache;
1934 ti->num_flush_bios = 2;
1935 ti->flush_supported = true;
1936
1937 ti->num_discard_bios = 1;
1938 ti->discards_supported = true;
1939 ti->discard_zeroes_data_unsupported = true;
1940
1941 cache->features = ca->features;
1942 ti->per_bio_data_size = get_per_bio_data_size(cache);
1943
1944 cache->callbacks.congested_fn = cache_is_congested;
1945 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
1946
1947 cache->metadata_dev = ca->metadata_dev;
1948 cache->origin_dev = ca->origin_dev;
1949 cache->cache_dev = ca->cache_dev;
1950
1951 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
1952
1953 /* FIXME: factor out this whole section */
1954 origin_blocks = cache->origin_sectors = ca->origin_sectors;
1955 origin_blocks = block_div(origin_blocks, ca->block_size);
1956 cache->origin_blocks = to_oblock(origin_blocks);
1957
1958 cache->sectors_per_block = ca->block_size;
1959 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
1960 r = -EINVAL;
1961 goto bad;
1962 }
1963
1964 if (ca->block_size & (ca->block_size - 1)) {
1965 dm_block_t cache_size = ca->cache_sectors;
1966
1967 cache->sectors_per_block_shift = -1;
1968 cache_size = block_div(cache_size, ca->block_size);
1969 cache->cache_size = to_cblock(cache_size);
1970 } else {
1971 cache->sectors_per_block_shift = __ffs(ca->block_size);
1972 cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
1973 }
1974
1975 r = create_cache_policy(cache, ca, error);
1976 if (r)
1977 goto bad;
1978
1979 cache->policy_nr_args = ca->policy_argc;
1980 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
1981
1982 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
1983 if (r) {
1984 *error = "Error setting cache policy's config values";
1985 goto bad;
1986 }
1987
1988 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
1989 ca->block_size, may_format,
1990 dm_cache_policy_get_hint_size(cache->policy));
1991 if (IS_ERR(cmd)) {
1992 *error = "Error creating metadata object";
1993 r = PTR_ERR(cmd);
1994 goto bad;
1995 }
1996 cache->cmd = cmd;
1997
1998 spin_lock_init(&cache->lock);
1999 bio_list_init(&cache->deferred_bios);
2000 bio_list_init(&cache->deferred_flush_bios);
2001 bio_list_init(&cache->deferred_writethrough_bios);
2002 INIT_LIST_HEAD(&cache->quiesced_migrations);
2003 INIT_LIST_HEAD(&cache->completed_migrations);
2004 INIT_LIST_HEAD(&cache->need_commit_migrations);
2005 atomic_set(&cache->nr_migrations, 0);
2006 init_waitqueue_head(&cache->migration_wait);
2007
2008 r = -ENOMEM;
2009 cache->nr_dirty = 0;
2010 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2011 if (!cache->dirty_bitset) {
2012 *error = "could not allocate dirty bitset";
2013 goto bad;
2014 }
2015 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2016
2017 cache->discard_block_size =
2018 calculate_discard_block_size(cache->sectors_per_block,
2019 cache->origin_sectors);
2020 cache->discard_nr_blocks = oblock_to_dblock(cache, cache->origin_blocks);
2021 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2022 if (!cache->discard_bitset) {
2023 *error = "could not allocate discard bitset";
2024 goto bad;
2025 }
2026 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2027
2028 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2029 if (IS_ERR(cache->copier)) {
2030 *error = "could not create kcopyd client";
2031 r = PTR_ERR(cache->copier);
2032 goto bad;
2033 }
2034
2035 cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2036 if (!cache->wq) {
2037 *error = "could not create workqueue for metadata object";
2038 goto bad;
2039 }
2040 INIT_WORK(&cache->worker, do_worker);
2041 INIT_DELAYED_WORK(&cache->waker, do_waker);
2042 cache->last_commit_jiffies = jiffies;
2043
2044 cache->prison = dm_bio_prison_create(PRISON_CELLS);
2045 if (!cache->prison) {
2046 *error = "could not create bio prison";
2047 goto bad;
2048 }
2049
2050 cache->all_io_ds = dm_deferred_set_create();
2051 if (!cache->all_io_ds) {
2052 *error = "could not create all_io deferred set";
2053 goto bad;
2054 }
2055
2056 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2057 migration_cache);
2058 if (!cache->migration_pool) {
2059 *error = "Error creating cache's migration mempool";
2060 goto bad;
2061 }
2062
2063 cache->next_migration = NULL;
2064
2065 cache->need_tick_bio = true;
2066 cache->sized = false;
2067 cache->quiescing = false;
2068 cache->commit_requested = false;
2069 cache->loaded_mappings = false;
2070 cache->loaded_discards = false;
2071
2072 load_stats(cache);
2073
2074 atomic_set(&cache->stats.demotion, 0);
2075 atomic_set(&cache->stats.promotion, 0);
2076 atomic_set(&cache->stats.copies_avoided, 0);
2077 atomic_set(&cache->stats.cache_cell_clash, 0);
2078 atomic_set(&cache->stats.commit_count, 0);
2079 atomic_set(&cache->stats.discard_count, 0);
2080
2081 *result = cache;
2082 return 0;
2083
2084 bad:
2085 destroy(cache);
2086 return r;
2087 }
2088
2089 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2090 {
2091 unsigned i;
2092 const char **copy;
2093
2094 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2095 if (!copy)
2096 return -ENOMEM;
2097 for (i = 0; i < argc; i++) {
2098 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2099 if (!copy[i]) {
2100 while (i--)
2101 kfree(copy[i]);
2102 kfree(copy);
2103 return -ENOMEM;
2104 }
2105 }
2106
2107 cache->nr_ctr_args = argc;
2108 cache->ctr_args = copy;
2109
2110 return 0;
2111 }
2112
2113 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2114 {
2115 int r = -EINVAL;
2116 struct cache_args *ca;
2117 struct cache *cache = NULL;
2118
2119 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2120 if (!ca) {
2121 ti->error = "Error allocating memory for cache";
2122 return -ENOMEM;
2123 }
2124 ca->ti = ti;
2125
2126 r = parse_cache_args(ca, argc, argv, &ti->error);
2127 if (r)
2128 goto out;
2129
2130 r = cache_create(ca, &cache);
2131 if (r)
2132 goto out;
2133
2134 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2135 if (r) {
2136 destroy(cache);
2137 goto out;
2138 }
2139
2140 ti->private = cache;
2141
2142 out:
2143 destroy_cache_args(ca);
2144 return r;
2145 }
2146
2147 static int cache_map(struct dm_target *ti, struct bio *bio)
2148 {
2149 struct cache *cache = ti->private;
2150
2151 int r;
2152 dm_oblock_t block = get_bio_block(cache, bio);
2153 size_t pb_data_size = get_per_bio_data_size(cache);
2154 bool can_migrate = false;
2155 bool discarded_block;
2156 struct dm_bio_prison_cell *cell;
2157 struct policy_result lookup_result;
2158 struct per_bio_data *pb;
2159
2160 if (from_oblock(block) > from_oblock(cache->origin_blocks)) {
2161 /*
2162 * This can only occur if the io goes to a partial block at
2163 * the end of the origin device. We don't cache these.
2164 * Just remap to the origin and carry on.
2165 */
2166 remap_to_origin_clear_discard(cache, bio, block);
2167 return DM_MAPIO_REMAPPED;
2168 }
2169
2170 pb = init_per_bio_data(bio, pb_data_size);
2171
2172 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2173 defer_bio(cache, bio);
2174 return DM_MAPIO_SUBMITTED;
2175 }
2176
2177 /*
2178 * Check to see if that block is currently migrating.
2179 */
2180 cell = alloc_prison_cell(cache);
2181 if (!cell) {
2182 defer_bio(cache, bio);
2183 return DM_MAPIO_SUBMITTED;
2184 }
2185
2186 r = bio_detain(cache, block, bio, cell,
2187 (cell_free_fn) free_prison_cell,
2188 cache, &cell);
2189 if (r) {
2190 if (r < 0)
2191 defer_bio(cache, bio);
2192
2193 return DM_MAPIO_SUBMITTED;
2194 }
2195
2196 discarded_block = is_discarded_oblock(cache, block);
2197
2198 r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2199 bio, &lookup_result);
2200 if (r == -EWOULDBLOCK) {
2201 cell_defer(cache, cell, true);
2202 return DM_MAPIO_SUBMITTED;
2203
2204 } else if (r) {
2205 DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2206 bio_io_error(bio);
2207 return DM_MAPIO_SUBMITTED;
2208 }
2209
2210 switch (lookup_result.op) {
2211 case POLICY_HIT:
2212 inc_hit_counter(cache, bio);
2213 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2214
2215 if (is_writethrough_io(cache, bio, lookup_result.cblock))
2216 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2217 else
2218 remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2219
2220 cell_defer(cache, cell, false);
2221 break;
2222
2223 case POLICY_MISS:
2224 inc_miss_counter(cache, bio);
2225 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2226
2227 if (pb->req_nr != 0) {
2228 /*
2229 * This is a duplicate writethrough io that is no
2230 * longer needed because the block has been demoted.
2231 */
2232 bio_endio(bio, 0);
2233 cell_defer(cache, cell, false);
2234 return DM_MAPIO_SUBMITTED;
2235 } else {
2236 remap_to_origin_clear_discard(cache, bio, block);
2237 cell_defer(cache, cell, false);
2238 }
2239 break;
2240
2241 default:
2242 DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2243 (unsigned) lookup_result.op);
2244 bio_io_error(bio);
2245 return DM_MAPIO_SUBMITTED;
2246 }
2247
2248 return DM_MAPIO_REMAPPED;
2249 }
2250
2251 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2252 {
2253 struct cache *cache = ti->private;
2254 unsigned long flags;
2255 size_t pb_data_size = get_per_bio_data_size(cache);
2256 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2257
2258 if (pb->tick) {
2259 policy_tick(cache->policy);
2260
2261 spin_lock_irqsave(&cache->lock, flags);
2262 cache->need_tick_bio = true;
2263 spin_unlock_irqrestore(&cache->lock, flags);
2264 }
2265
2266 check_for_quiesced_migrations(cache, pb);
2267
2268 return 0;
2269 }
2270
2271 static int write_dirty_bitset(struct cache *cache)
2272 {
2273 unsigned i, r;
2274
2275 for (i = 0; i < from_cblock(cache->cache_size); i++) {
2276 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2277 is_dirty(cache, to_cblock(i)));
2278 if (r)
2279 return r;
2280 }
2281
2282 return 0;
2283 }
2284
2285 static int write_discard_bitset(struct cache *cache)
2286 {
2287 unsigned i, r;
2288
2289 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2290 cache->discard_nr_blocks);
2291 if (r) {
2292 DMERR("could not resize on-disk discard bitset");
2293 return r;
2294 }
2295
2296 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2297 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2298 is_discarded(cache, to_dblock(i)));
2299 if (r)
2300 return r;
2301 }
2302
2303 return 0;
2304 }
2305
2306 static int save_hint(void *context, dm_cblock_t cblock, dm_oblock_t oblock,
2307 uint32_t hint)
2308 {
2309 struct cache *cache = context;
2310 return dm_cache_save_hint(cache->cmd, cblock, hint);
2311 }
2312
2313 static int write_hints(struct cache *cache)
2314 {
2315 int r;
2316
2317 r = dm_cache_begin_hints(cache->cmd, cache->policy);
2318 if (r) {
2319 DMERR("dm_cache_begin_hints failed");
2320 return r;
2321 }
2322
2323 r = policy_walk_mappings(cache->policy, save_hint, cache);
2324 if (r)
2325 DMERR("policy_walk_mappings failed");
2326
2327 return r;
2328 }
2329
2330 /*
2331 * returns true on success
2332 */
2333 static bool sync_metadata(struct cache *cache)
2334 {
2335 int r1, r2, r3, r4;
2336
2337 r1 = write_dirty_bitset(cache);
2338 if (r1)
2339 DMERR("could not write dirty bitset");
2340
2341 r2 = write_discard_bitset(cache);
2342 if (r2)
2343 DMERR("could not write discard bitset");
2344
2345 save_stats(cache);
2346
2347 r3 = write_hints(cache);
2348 if (r3)
2349 DMERR("could not write hints");
2350
2351 /*
2352 * If writing the above metadata failed, we still commit, but don't
2353 * set the clean shutdown flag. This will effectively force every
2354 * dirty bit to be set on reload.
2355 */
2356 r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2357 if (r4)
2358 DMERR("could not write cache metadata. Data loss may occur.");
2359
2360 return !r1 && !r2 && !r3 && !r4;
2361 }
2362
2363 static void cache_postsuspend(struct dm_target *ti)
2364 {
2365 struct cache *cache = ti->private;
2366
2367 start_quiescing(cache);
2368 wait_for_migrations(cache);
2369 stop_worker(cache);
2370 requeue_deferred_io(cache);
2371 stop_quiescing(cache);
2372
2373 (void) sync_metadata(cache);
2374 }
2375
2376 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2377 bool dirty, uint32_t hint, bool hint_valid)
2378 {
2379 int r;
2380 struct cache *cache = context;
2381
2382 r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2383 if (r)
2384 return r;
2385
2386 if (dirty)
2387 set_dirty(cache, oblock, cblock);
2388 else
2389 clear_dirty(cache, oblock, cblock);
2390
2391 return 0;
2392 }
2393
2394 static int load_discard(void *context, sector_t discard_block_size,
2395 dm_dblock_t dblock, bool discard)
2396 {
2397 struct cache *cache = context;
2398
2399 /* FIXME: handle mis-matched block size */
2400
2401 if (discard)
2402 set_discard(cache, dblock);
2403 else
2404 clear_discard(cache, dblock);
2405
2406 return 0;
2407 }
2408
2409 static int cache_preresume(struct dm_target *ti)
2410 {
2411 int r = 0;
2412 struct cache *cache = ti->private;
2413 sector_t actual_cache_size = get_dev_size(cache->cache_dev);
2414 (void) sector_div(actual_cache_size, cache->sectors_per_block);
2415
2416 /*
2417 * Check to see if the cache has resized.
2418 */
2419 if (from_cblock(cache->cache_size) != actual_cache_size || !cache->sized) {
2420 cache->cache_size = to_cblock(actual_cache_size);
2421
2422 r = dm_cache_resize(cache->cmd, cache->cache_size);
2423 if (r) {
2424 DMERR("could not resize cache metadata");
2425 return r;
2426 }
2427
2428 cache->sized = true;
2429 }
2430
2431 if (!cache->loaded_mappings) {
2432 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2433 load_mapping, cache);
2434 if (r) {
2435 DMERR("could not load cache mappings");
2436 return r;
2437 }
2438
2439 cache->loaded_mappings = true;
2440 }
2441
2442 if (!cache->loaded_discards) {
2443 r = dm_cache_load_discards(cache->cmd, load_discard, cache);
2444 if (r) {
2445 DMERR("could not load origin discards");
2446 return r;
2447 }
2448
2449 cache->loaded_discards = true;
2450 }
2451
2452 return r;
2453 }
2454
2455 static void cache_resume(struct dm_target *ti)
2456 {
2457 struct cache *cache = ti->private;
2458
2459 cache->need_tick_bio = true;
2460 do_waker(&cache->waker.work);
2461 }
2462
2463 /*
2464 * Status format:
2465 *
2466 * <#used metadata blocks>/<#total metadata blocks>
2467 * <#read hits> <#read misses> <#write hits> <#write misses>
2468 * <#demotions> <#promotions> <#blocks in cache> <#dirty>
2469 * <#features> <features>*
2470 * <#core args> <core args>
2471 * <#policy args> <policy args>*
2472 */
2473 static void cache_status(struct dm_target *ti, status_type_t type,
2474 unsigned status_flags, char *result, unsigned maxlen)
2475 {
2476 int r = 0;
2477 unsigned i;
2478 ssize_t sz = 0;
2479 dm_block_t nr_free_blocks_metadata = 0;
2480 dm_block_t nr_blocks_metadata = 0;
2481 char buf[BDEVNAME_SIZE];
2482 struct cache *cache = ti->private;
2483 dm_cblock_t residency;
2484
2485 switch (type) {
2486 case STATUSTYPE_INFO:
2487 /* Commit to ensure statistics aren't out-of-date */
2488 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2489 r = dm_cache_commit(cache->cmd, false);
2490 if (r)
2491 DMERR("could not commit metadata for accurate status");
2492 }
2493
2494 r = dm_cache_get_free_metadata_block_count(cache->cmd,
2495 &nr_free_blocks_metadata);
2496 if (r) {
2497 DMERR("could not get metadata free block count");
2498 goto err;
2499 }
2500
2501 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2502 if (r) {
2503 DMERR("could not get metadata device size");
2504 goto err;
2505 }
2506
2507 residency = policy_residency(cache->policy);
2508
2509 DMEMIT("%llu/%llu %u %u %u %u %u %u %llu %u ",
2510 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2511 (unsigned long long)nr_blocks_metadata,
2512 (unsigned) atomic_read(&cache->stats.read_hit),
2513 (unsigned) atomic_read(&cache->stats.read_miss),
2514 (unsigned) atomic_read(&cache->stats.write_hit),
2515 (unsigned) atomic_read(&cache->stats.write_miss),
2516 (unsigned) atomic_read(&cache->stats.demotion),
2517 (unsigned) atomic_read(&cache->stats.promotion),
2518 (unsigned long long) from_cblock(residency),
2519 cache->nr_dirty);
2520
2521 if (cache->features.write_through)
2522 DMEMIT("1 writethrough ");
2523 else
2524 DMEMIT("0 ");
2525
2526 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2527 if (sz < maxlen) {
2528 r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2529 if (r)
2530 DMERR("policy_emit_config_values returned %d", r);
2531 }
2532
2533 break;
2534
2535 case STATUSTYPE_TABLE:
2536 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2537 DMEMIT("%s ", buf);
2538 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2539 DMEMIT("%s ", buf);
2540 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2541 DMEMIT("%s", buf);
2542
2543 for (i = 0; i < cache->nr_ctr_args - 1; i++)
2544 DMEMIT(" %s", cache->ctr_args[i]);
2545 if (cache->nr_ctr_args)
2546 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
2547 }
2548
2549 return;
2550
2551 err:
2552 DMEMIT("Error");
2553 }
2554
2555 /*
2556 * Supports <key> <value>.
2557 *
2558 * The key migration_threshold is supported by the cache target core.
2559 */
2560 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
2561 {
2562 struct cache *cache = ti->private;
2563
2564 if (argc != 2)
2565 return -EINVAL;
2566
2567 return set_config_value(cache, argv[0], argv[1]);
2568 }
2569
2570 static int cache_iterate_devices(struct dm_target *ti,
2571 iterate_devices_callout_fn fn, void *data)
2572 {
2573 int r = 0;
2574 struct cache *cache = ti->private;
2575
2576 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
2577 if (!r)
2578 r = fn(ti, cache->origin_dev, 0, ti->len, data);
2579
2580 return r;
2581 }
2582
2583 /*
2584 * We assume I/O is going to the origin (which is the volume
2585 * more likely to have restrictions e.g. by being striped).
2586 * (Looking up the exact location of the data would be expensive
2587 * and could always be out of date by the time the bio is submitted.)
2588 */
2589 static int cache_bvec_merge(struct dm_target *ti,
2590 struct bvec_merge_data *bvm,
2591 struct bio_vec *biovec, int max_size)
2592 {
2593 struct cache *cache = ti->private;
2594 struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
2595
2596 if (!q->merge_bvec_fn)
2597 return max_size;
2598
2599 bvm->bi_bdev = cache->origin_dev->bdev;
2600 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2601 }
2602
2603 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
2604 {
2605 /*
2606 * FIXME: these limits may be incompatible with the cache device
2607 */
2608 limits->max_discard_sectors = cache->discard_block_size * 1024;
2609 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
2610 }
2611
2612 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
2613 {
2614 struct cache *cache = ti->private;
2615 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2616
2617 /*
2618 * If the system-determined stacked limits are compatible with the
2619 * cache's blocksize (io_opt is a factor) do not override them.
2620 */
2621 if (io_opt_sectors < cache->sectors_per_block ||
2622 do_div(io_opt_sectors, cache->sectors_per_block)) {
2623 blk_limits_io_min(limits, 0);
2624 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
2625 }
2626 set_discard_limits(cache, limits);
2627 }
2628
2629 /*----------------------------------------------------------------*/
2630
2631 static struct target_type cache_target = {
2632 .name = "cache",
2633 .version = {1, 1, 1},
2634 .module = THIS_MODULE,
2635 .ctr = cache_ctr,
2636 .dtr = cache_dtr,
2637 .map = cache_map,
2638 .end_io = cache_end_io,
2639 .postsuspend = cache_postsuspend,
2640 .preresume = cache_preresume,
2641 .resume = cache_resume,
2642 .status = cache_status,
2643 .message = cache_message,
2644 .iterate_devices = cache_iterate_devices,
2645 .merge = cache_bvec_merge,
2646 .io_hints = cache_io_hints,
2647 };
2648
2649 static int __init dm_cache_init(void)
2650 {
2651 int r;
2652
2653 r = dm_register_target(&cache_target);
2654 if (r) {
2655 DMERR("cache target registration failed: %d", r);
2656 return r;
2657 }
2658
2659 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
2660 if (!migration_cache) {
2661 dm_unregister_target(&cache_target);
2662 return -ENOMEM;
2663 }
2664
2665 return 0;
2666 }
2667
2668 static void __exit dm_cache_exit(void)
2669 {
2670 dm_unregister_target(&cache_target);
2671 kmem_cache_destroy(migration_cache);
2672 }
2673
2674 module_init(dm_cache_init);
2675 module_exit(dm_cache_exit);
2676
2677 MODULE_DESCRIPTION(DM_NAME " cache target");
2678 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
2679 MODULE_LICENSE("GPL");
This page took 0.11329 seconds and 5 git commands to generate.