block: Generic bio chaining
[deliverable/linux.git] / drivers / md / dm-cache-target.c
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19
20 #define DM_MSG_PREFIX "cache"
21
22 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
23 "A percentage of time allocated for copying to and/or from cache");
24
25 /*----------------------------------------------------------------*/
26
27 /*
28 * Glossary:
29 *
30 * oblock: index of an origin block
31 * cblock: index of a cache block
32 * promotion: movement of a block from origin to cache
33 * demotion: movement of a block from cache to origin
34 * migration: movement of a block between the origin and cache device,
35 * either direction
36 */
37
38 /*----------------------------------------------------------------*/
39
40 static size_t bitset_size_in_bytes(unsigned nr_entries)
41 {
42 return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
43 }
44
45 static unsigned long *alloc_bitset(unsigned nr_entries)
46 {
47 size_t s = bitset_size_in_bytes(nr_entries);
48 return vzalloc(s);
49 }
50
51 static void clear_bitset(void *bitset, unsigned nr_entries)
52 {
53 size_t s = bitset_size_in_bytes(nr_entries);
54 memset(bitset, 0, s);
55 }
56
57 static void free_bitset(unsigned long *bits)
58 {
59 vfree(bits);
60 }
61
62 /*----------------------------------------------------------------*/
63
64 /*
65 * There are a couple of places where we let a bio run, but want to do some
66 * work before calling its endio function. We do this by temporarily
67 * changing the endio fn.
68 */
69 struct dm_hook_info {
70 bio_end_io_t *bi_end_io;
71 void *bi_private;
72 };
73
74 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
75 bio_end_io_t *bi_end_io, void *bi_private)
76 {
77 h->bi_end_io = bio->bi_end_io;
78 h->bi_private = bio->bi_private;
79
80 bio->bi_end_io = bi_end_io;
81 bio->bi_private = bi_private;
82 }
83
84 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
85 {
86 bio->bi_end_io = h->bi_end_io;
87 bio->bi_private = h->bi_private;
88 }
89
90 /*----------------------------------------------------------------*/
91
92 #define PRISON_CELLS 1024
93 #define MIGRATION_POOL_SIZE 128
94 #define COMMIT_PERIOD HZ
95 #define MIGRATION_COUNT_WINDOW 10
96
97 /*
98 * The block size of the device holding cache data must be
99 * between 32KB and 1GB.
100 */
101 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
102 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
103
104 /*
105 * FIXME: the cache is read/write for the time being.
106 */
107 enum cache_metadata_mode {
108 CM_WRITE, /* metadata may be changed */
109 CM_READ_ONLY, /* metadata may not be changed */
110 };
111
112 enum cache_io_mode {
113 /*
114 * Data is written to cached blocks only. These blocks are marked
115 * dirty. If you lose the cache device you will lose data.
116 * Potential performance increase for both reads and writes.
117 */
118 CM_IO_WRITEBACK,
119
120 /*
121 * Data is written to both cache and origin. Blocks are never
122 * dirty. Potential performance benfit for reads only.
123 */
124 CM_IO_WRITETHROUGH,
125
126 /*
127 * A degraded mode useful for various cache coherency situations
128 * (eg, rolling back snapshots). Reads and writes always go to the
129 * origin. If a write goes to a cached oblock, then the cache
130 * block is invalidated.
131 */
132 CM_IO_PASSTHROUGH
133 };
134
135 struct cache_features {
136 enum cache_metadata_mode mode;
137 enum cache_io_mode io_mode;
138 };
139
140 struct cache_stats {
141 atomic_t read_hit;
142 atomic_t read_miss;
143 atomic_t write_hit;
144 atomic_t write_miss;
145 atomic_t demotion;
146 atomic_t promotion;
147 atomic_t copies_avoided;
148 atomic_t cache_cell_clash;
149 atomic_t commit_count;
150 atomic_t discard_count;
151 };
152
153 /*
154 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
155 * the one-past-the-end value.
156 */
157 struct cblock_range {
158 dm_cblock_t begin;
159 dm_cblock_t end;
160 };
161
162 struct invalidation_request {
163 struct list_head list;
164 struct cblock_range *cblocks;
165
166 atomic_t complete;
167 int err;
168
169 wait_queue_head_t result_wait;
170 };
171
172 struct cache {
173 struct dm_target *ti;
174 struct dm_target_callbacks callbacks;
175
176 struct dm_cache_metadata *cmd;
177
178 /*
179 * Metadata is written to this device.
180 */
181 struct dm_dev *metadata_dev;
182
183 /*
184 * The slower of the two data devices. Typically a spindle.
185 */
186 struct dm_dev *origin_dev;
187
188 /*
189 * The faster of the two data devices. Typically an SSD.
190 */
191 struct dm_dev *cache_dev;
192
193 /*
194 * Size of the origin device in _complete_ blocks and native sectors.
195 */
196 dm_oblock_t origin_blocks;
197 sector_t origin_sectors;
198
199 /*
200 * Size of the cache device in blocks.
201 */
202 dm_cblock_t cache_size;
203
204 /*
205 * Fields for converting from sectors to blocks.
206 */
207 uint32_t sectors_per_block;
208 int sectors_per_block_shift;
209
210 spinlock_t lock;
211 struct bio_list deferred_bios;
212 struct bio_list deferred_flush_bios;
213 struct bio_list deferred_writethrough_bios;
214 struct list_head quiesced_migrations;
215 struct list_head completed_migrations;
216 struct list_head need_commit_migrations;
217 sector_t migration_threshold;
218 wait_queue_head_t migration_wait;
219 atomic_t nr_migrations;
220
221 wait_queue_head_t quiescing_wait;
222 atomic_t quiescing;
223 atomic_t quiescing_ack;
224
225 /*
226 * cache_size entries, dirty if set
227 */
228 dm_cblock_t nr_dirty;
229 unsigned long *dirty_bitset;
230
231 /*
232 * origin_blocks entries, discarded if set.
233 */
234 dm_dblock_t discard_nr_blocks;
235 unsigned long *discard_bitset;
236 uint32_t discard_block_size; /* a power of 2 times sectors per block */
237
238 /*
239 * Rather than reconstructing the table line for the status we just
240 * save it and regurgitate.
241 */
242 unsigned nr_ctr_args;
243 const char **ctr_args;
244
245 struct dm_kcopyd_client *copier;
246 struct workqueue_struct *wq;
247 struct work_struct worker;
248
249 struct delayed_work waker;
250 unsigned long last_commit_jiffies;
251
252 struct dm_bio_prison *prison;
253 struct dm_deferred_set *all_io_ds;
254
255 mempool_t *migration_pool;
256 struct dm_cache_migration *next_migration;
257
258 struct dm_cache_policy *policy;
259 unsigned policy_nr_args;
260
261 bool need_tick_bio:1;
262 bool sized:1;
263 bool invalidate:1;
264 bool commit_requested:1;
265 bool loaded_mappings:1;
266 bool loaded_discards:1;
267
268 /*
269 * Cache features such as write-through.
270 */
271 struct cache_features features;
272
273 struct cache_stats stats;
274
275 /*
276 * Invalidation fields.
277 */
278 spinlock_t invalidation_lock;
279 struct list_head invalidation_requests;
280 };
281
282 struct per_bio_data {
283 bool tick:1;
284 unsigned req_nr:2;
285 struct dm_deferred_entry *all_io_entry;
286
287 /*
288 * writethrough fields. These MUST remain at the end of this
289 * structure and the 'cache' member must be the first as it
290 * is used to determine the offset of the writethrough fields.
291 */
292 struct cache *cache;
293 dm_cblock_t cblock;
294 struct dm_hook_info hook_info;
295 struct dm_bio_details bio_details;
296 };
297
298 struct dm_cache_migration {
299 struct list_head list;
300 struct cache *cache;
301
302 unsigned long start_jiffies;
303 dm_oblock_t old_oblock;
304 dm_oblock_t new_oblock;
305 dm_cblock_t cblock;
306
307 bool err:1;
308 bool writeback:1;
309 bool demote:1;
310 bool promote:1;
311 bool requeue_holder:1;
312 bool invalidate:1;
313
314 struct dm_bio_prison_cell *old_ocell;
315 struct dm_bio_prison_cell *new_ocell;
316 };
317
318 /*
319 * Processing a bio in the worker thread may require these memory
320 * allocations. We prealloc to avoid deadlocks (the same worker thread
321 * frees them back to the mempool).
322 */
323 struct prealloc {
324 struct dm_cache_migration *mg;
325 struct dm_bio_prison_cell *cell1;
326 struct dm_bio_prison_cell *cell2;
327 };
328
329 static void wake_worker(struct cache *cache)
330 {
331 queue_work(cache->wq, &cache->worker);
332 }
333
334 /*----------------------------------------------------------------*/
335
336 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
337 {
338 /* FIXME: change to use a local slab. */
339 return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
340 }
341
342 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
343 {
344 dm_bio_prison_free_cell(cache->prison, cell);
345 }
346
347 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
348 {
349 if (!p->mg) {
350 p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
351 if (!p->mg)
352 return -ENOMEM;
353 }
354
355 if (!p->cell1) {
356 p->cell1 = alloc_prison_cell(cache);
357 if (!p->cell1)
358 return -ENOMEM;
359 }
360
361 if (!p->cell2) {
362 p->cell2 = alloc_prison_cell(cache);
363 if (!p->cell2)
364 return -ENOMEM;
365 }
366
367 return 0;
368 }
369
370 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
371 {
372 if (p->cell2)
373 free_prison_cell(cache, p->cell2);
374
375 if (p->cell1)
376 free_prison_cell(cache, p->cell1);
377
378 if (p->mg)
379 mempool_free(p->mg, cache->migration_pool);
380 }
381
382 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
383 {
384 struct dm_cache_migration *mg = p->mg;
385
386 BUG_ON(!mg);
387 p->mg = NULL;
388
389 return mg;
390 }
391
392 /*
393 * You must have a cell within the prealloc struct to return. If not this
394 * function will BUG() rather than returning NULL.
395 */
396 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
397 {
398 struct dm_bio_prison_cell *r = NULL;
399
400 if (p->cell1) {
401 r = p->cell1;
402 p->cell1 = NULL;
403
404 } else if (p->cell2) {
405 r = p->cell2;
406 p->cell2 = NULL;
407 } else
408 BUG();
409
410 return r;
411 }
412
413 /*
414 * You can't have more than two cells in a prealloc struct. BUG() will be
415 * called if you try and overfill.
416 */
417 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
418 {
419 if (!p->cell2)
420 p->cell2 = cell;
421
422 else if (!p->cell1)
423 p->cell1 = cell;
424
425 else
426 BUG();
427 }
428
429 /*----------------------------------------------------------------*/
430
431 static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
432 {
433 key->virtual = 0;
434 key->dev = 0;
435 key->block = from_oblock(oblock);
436 }
437
438 /*
439 * The caller hands in a preallocated cell, and a free function for it.
440 * The cell will be freed if there's an error, or if it wasn't used because
441 * a cell with that key already exists.
442 */
443 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
444
445 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
446 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
447 cell_free_fn free_fn, void *free_context,
448 struct dm_bio_prison_cell **cell_result)
449 {
450 int r;
451 struct dm_cell_key key;
452
453 build_key(oblock, &key);
454 r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
455 if (r)
456 free_fn(free_context, cell_prealloc);
457
458 return r;
459 }
460
461 static int get_cell(struct cache *cache,
462 dm_oblock_t oblock,
463 struct prealloc *structs,
464 struct dm_bio_prison_cell **cell_result)
465 {
466 int r;
467 struct dm_cell_key key;
468 struct dm_bio_prison_cell *cell_prealloc;
469
470 cell_prealloc = prealloc_get_cell(structs);
471
472 build_key(oblock, &key);
473 r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
474 if (r)
475 prealloc_put_cell(structs, cell_prealloc);
476
477 return r;
478 }
479
480 /*----------------------------------------------------------------*/
481
482 static bool is_dirty(struct cache *cache, dm_cblock_t b)
483 {
484 return test_bit(from_cblock(b), cache->dirty_bitset);
485 }
486
487 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
488 {
489 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
490 cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1);
491 policy_set_dirty(cache->policy, oblock);
492 }
493 }
494
495 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
496 {
497 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
498 policy_clear_dirty(cache->policy, oblock);
499 cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1);
500 if (!from_cblock(cache->nr_dirty))
501 dm_table_event(cache->ti->table);
502 }
503 }
504
505 /*----------------------------------------------------------------*/
506
507 static bool block_size_is_power_of_two(struct cache *cache)
508 {
509 return cache->sectors_per_block_shift >= 0;
510 }
511
512 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
513 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
514 __always_inline
515 #endif
516 static dm_block_t block_div(dm_block_t b, uint32_t n)
517 {
518 do_div(b, n);
519
520 return b;
521 }
522
523 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
524 {
525 uint32_t discard_blocks = cache->discard_block_size;
526 dm_block_t b = from_oblock(oblock);
527
528 if (!block_size_is_power_of_two(cache))
529 discard_blocks = discard_blocks / cache->sectors_per_block;
530 else
531 discard_blocks >>= cache->sectors_per_block_shift;
532
533 b = block_div(b, discard_blocks);
534
535 return to_dblock(b);
536 }
537
538 static void set_discard(struct cache *cache, dm_dblock_t b)
539 {
540 unsigned long flags;
541
542 atomic_inc(&cache->stats.discard_count);
543
544 spin_lock_irqsave(&cache->lock, flags);
545 set_bit(from_dblock(b), cache->discard_bitset);
546 spin_unlock_irqrestore(&cache->lock, flags);
547 }
548
549 static void clear_discard(struct cache *cache, dm_dblock_t b)
550 {
551 unsigned long flags;
552
553 spin_lock_irqsave(&cache->lock, flags);
554 clear_bit(from_dblock(b), cache->discard_bitset);
555 spin_unlock_irqrestore(&cache->lock, flags);
556 }
557
558 static bool is_discarded(struct cache *cache, dm_dblock_t b)
559 {
560 int r;
561 unsigned long flags;
562
563 spin_lock_irqsave(&cache->lock, flags);
564 r = test_bit(from_dblock(b), cache->discard_bitset);
565 spin_unlock_irqrestore(&cache->lock, flags);
566
567 return r;
568 }
569
570 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
571 {
572 int r;
573 unsigned long flags;
574
575 spin_lock_irqsave(&cache->lock, flags);
576 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
577 cache->discard_bitset);
578 spin_unlock_irqrestore(&cache->lock, flags);
579
580 return r;
581 }
582
583 /*----------------------------------------------------------------*/
584
585 static void load_stats(struct cache *cache)
586 {
587 struct dm_cache_statistics stats;
588
589 dm_cache_metadata_get_stats(cache->cmd, &stats);
590 atomic_set(&cache->stats.read_hit, stats.read_hits);
591 atomic_set(&cache->stats.read_miss, stats.read_misses);
592 atomic_set(&cache->stats.write_hit, stats.write_hits);
593 atomic_set(&cache->stats.write_miss, stats.write_misses);
594 }
595
596 static void save_stats(struct cache *cache)
597 {
598 struct dm_cache_statistics stats;
599
600 stats.read_hits = atomic_read(&cache->stats.read_hit);
601 stats.read_misses = atomic_read(&cache->stats.read_miss);
602 stats.write_hits = atomic_read(&cache->stats.write_hit);
603 stats.write_misses = atomic_read(&cache->stats.write_miss);
604
605 dm_cache_metadata_set_stats(cache->cmd, &stats);
606 }
607
608 /*----------------------------------------------------------------
609 * Per bio data
610 *--------------------------------------------------------------*/
611
612 /*
613 * If using writeback, leave out struct per_bio_data's writethrough fields.
614 */
615 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
616 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
617
618 static bool writethrough_mode(struct cache_features *f)
619 {
620 return f->io_mode == CM_IO_WRITETHROUGH;
621 }
622
623 static bool writeback_mode(struct cache_features *f)
624 {
625 return f->io_mode == CM_IO_WRITEBACK;
626 }
627
628 static bool passthrough_mode(struct cache_features *f)
629 {
630 return f->io_mode == CM_IO_PASSTHROUGH;
631 }
632
633 static size_t get_per_bio_data_size(struct cache *cache)
634 {
635 return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
636 }
637
638 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
639 {
640 struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
641 BUG_ON(!pb);
642 return pb;
643 }
644
645 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
646 {
647 struct per_bio_data *pb = get_per_bio_data(bio, data_size);
648
649 pb->tick = false;
650 pb->req_nr = dm_bio_get_target_bio_nr(bio);
651 pb->all_io_entry = NULL;
652
653 return pb;
654 }
655
656 /*----------------------------------------------------------------
657 * Remapping
658 *--------------------------------------------------------------*/
659 static void remap_to_origin(struct cache *cache, struct bio *bio)
660 {
661 bio->bi_bdev = cache->origin_dev->bdev;
662 }
663
664 static void remap_to_cache(struct cache *cache, struct bio *bio,
665 dm_cblock_t cblock)
666 {
667 sector_t bi_sector = bio->bi_iter.bi_sector;
668
669 bio->bi_bdev = cache->cache_dev->bdev;
670 if (!block_size_is_power_of_two(cache))
671 bio->bi_iter.bi_sector =
672 (from_cblock(cblock) * cache->sectors_per_block) +
673 sector_div(bi_sector, cache->sectors_per_block);
674 else
675 bio->bi_iter.bi_sector =
676 (from_cblock(cblock) << cache->sectors_per_block_shift) |
677 (bi_sector & (cache->sectors_per_block - 1));
678 }
679
680 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
681 {
682 unsigned long flags;
683 size_t pb_data_size = get_per_bio_data_size(cache);
684 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
685
686 spin_lock_irqsave(&cache->lock, flags);
687 if (cache->need_tick_bio &&
688 !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
689 pb->tick = true;
690 cache->need_tick_bio = false;
691 }
692 spin_unlock_irqrestore(&cache->lock, flags);
693 }
694
695 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
696 dm_oblock_t oblock)
697 {
698 check_if_tick_bio_needed(cache, bio);
699 remap_to_origin(cache, bio);
700 if (bio_data_dir(bio) == WRITE)
701 clear_discard(cache, oblock_to_dblock(cache, oblock));
702 }
703
704 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
705 dm_oblock_t oblock, dm_cblock_t cblock)
706 {
707 check_if_tick_bio_needed(cache, bio);
708 remap_to_cache(cache, bio, cblock);
709 if (bio_data_dir(bio) == WRITE) {
710 set_dirty(cache, oblock, cblock);
711 clear_discard(cache, oblock_to_dblock(cache, oblock));
712 }
713 }
714
715 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
716 {
717 sector_t block_nr = bio->bi_iter.bi_sector;
718
719 if (!block_size_is_power_of_two(cache))
720 (void) sector_div(block_nr, cache->sectors_per_block);
721 else
722 block_nr >>= cache->sectors_per_block_shift;
723
724 return to_oblock(block_nr);
725 }
726
727 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
728 {
729 return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
730 }
731
732 static void issue(struct cache *cache, struct bio *bio)
733 {
734 unsigned long flags;
735
736 if (!bio_triggers_commit(cache, bio)) {
737 generic_make_request(bio);
738 return;
739 }
740
741 /*
742 * Batch together any bios that trigger commits and then issue a
743 * single commit for them in do_worker().
744 */
745 spin_lock_irqsave(&cache->lock, flags);
746 cache->commit_requested = true;
747 bio_list_add(&cache->deferred_flush_bios, bio);
748 spin_unlock_irqrestore(&cache->lock, flags);
749 }
750
751 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
752 {
753 unsigned long flags;
754
755 spin_lock_irqsave(&cache->lock, flags);
756 bio_list_add(&cache->deferred_writethrough_bios, bio);
757 spin_unlock_irqrestore(&cache->lock, flags);
758
759 wake_worker(cache);
760 }
761
762 static void writethrough_endio(struct bio *bio, int err)
763 {
764 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
765
766 dm_unhook_bio(&pb->hook_info, bio);
767
768 /*
769 * Must bump bi_remaining to allow bio to complete with
770 * restored bi_end_io.
771 */
772 atomic_inc(&bio->bi_remaining);
773
774 if (err) {
775 bio_endio(bio, err);
776 return;
777 }
778
779 dm_bio_restore(&pb->bio_details, bio);
780 remap_to_cache(pb->cache, bio, pb->cblock);
781
782 /*
783 * We can't issue this bio directly, since we're in interrupt
784 * context. So it gets put on a bio list for processing by the
785 * worker thread.
786 */
787 defer_writethrough_bio(pb->cache, bio);
788 }
789
790 /*
791 * When running in writethrough mode we need to send writes to clean blocks
792 * to both the cache and origin devices. In future we'd like to clone the
793 * bio and send them in parallel, but for now we're doing them in
794 * series as this is easier.
795 */
796 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
797 dm_oblock_t oblock, dm_cblock_t cblock)
798 {
799 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
800
801 pb->cache = cache;
802 pb->cblock = cblock;
803 dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
804 dm_bio_record(&pb->bio_details, bio);
805
806 remap_to_origin_clear_discard(pb->cache, bio, oblock);
807 }
808
809 /*----------------------------------------------------------------
810 * Migration processing
811 *
812 * Migration covers moving data from the origin device to the cache, or
813 * vice versa.
814 *--------------------------------------------------------------*/
815 static void free_migration(struct dm_cache_migration *mg)
816 {
817 mempool_free(mg, mg->cache->migration_pool);
818 }
819
820 static void inc_nr_migrations(struct cache *cache)
821 {
822 atomic_inc(&cache->nr_migrations);
823 }
824
825 static void dec_nr_migrations(struct cache *cache)
826 {
827 atomic_dec(&cache->nr_migrations);
828
829 /*
830 * Wake the worker in case we're suspending the target.
831 */
832 wake_up(&cache->migration_wait);
833 }
834
835 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
836 bool holder)
837 {
838 (holder ? dm_cell_release : dm_cell_release_no_holder)
839 (cache->prison, cell, &cache->deferred_bios);
840 free_prison_cell(cache, cell);
841 }
842
843 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
844 bool holder)
845 {
846 unsigned long flags;
847
848 spin_lock_irqsave(&cache->lock, flags);
849 __cell_defer(cache, cell, holder);
850 spin_unlock_irqrestore(&cache->lock, flags);
851
852 wake_worker(cache);
853 }
854
855 static void cleanup_migration(struct dm_cache_migration *mg)
856 {
857 struct cache *cache = mg->cache;
858 free_migration(mg);
859 dec_nr_migrations(cache);
860 }
861
862 static void migration_failure(struct dm_cache_migration *mg)
863 {
864 struct cache *cache = mg->cache;
865
866 if (mg->writeback) {
867 DMWARN_LIMIT("writeback failed; couldn't copy block");
868 set_dirty(cache, mg->old_oblock, mg->cblock);
869 cell_defer(cache, mg->old_ocell, false);
870
871 } else if (mg->demote) {
872 DMWARN_LIMIT("demotion failed; couldn't copy block");
873 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
874
875 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
876 if (mg->promote)
877 cell_defer(cache, mg->new_ocell, true);
878 } else {
879 DMWARN_LIMIT("promotion failed; couldn't copy block");
880 policy_remove_mapping(cache->policy, mg->new_oblock);
881 cell_defer(cache, mg->new_ocell, true);
882 }
883
884 cleanup_migration(mg);
885 }
886
887 static void migration_success_pre_commit(struct dm_cache_migration *mg)
888 {
889 unsigned long flags;
890 struct cache *cache = mg->cache;
891
892 if (mg->writeback) {
893 cell_defer(cache, mg->old_ocell, false);
894 clear_dirty(cache, mg->old_oblock, mg->cblock);
895 cleanup_migration(mg);
896 return;
897
898 } else if (mg->demote) {
899 if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
900 DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
901 policy_force_mapping(cache->policy, mg->new_oblock,
902 mg->old_oblock);
903 if (mg->promote)
904 cell_defer(cache, mg->new_ocell, true);
905 cleanup_migration(mg);
906 return;
907 }
908 } else {
909 if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
910 DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
911 policy_remove_mapping(cache->policy, mg->new_oblock);
912 cleanup_migration(mg);
913 return;
914 }
915 }
916
917 spin_lock_irqsave(&cache->lock, flags);
918 list_add_tail(&mg->list, &cache->need_commit_migrations);
919 cache->commit_requested = true;
920 spin_unlock_irqrestore(&cache->lock, flags);
921 }
922
923 static void migration_success_post_commit(struct dm_cache_migration *mg)
924 {
925 unsigned long flags;
926 struct cache *cache = mg->cache;
927
928 if (mg->writeback) {
929 DMWARN("writeback unexpectedly triggered commit");
930 return;
931
932 } else if (mg->demote) {
933 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
934
935 if (mg->promote) {
936 mg->demote = false;
937
938 spin_lock_irqsave(&cache->lock, flags);
939 list_add_tail(&mg->list, &cache->quiesced_migrations);
940 spin_unlock_irqrestore(&cache->lock, flags);
941
942 } else {
943 if (mg->invalidate)
944 policy_remove_mapping(cache->policy, mg->old_oblock);
945 cleanup_migration(mg);
946 }
947
948 } else {
949 if (mg->requeue_holder)
950 cell_defer(cache, mg->new_ocell, true);
951 else {
952 bio_endio(mg->new_ocell->holder, 0);
953 cell_defer(cache, mg->new_ocell, false);
954 }
955 clear_dirty(cache, mg->new_oblock, mg->cblock);
956 cleanup_migration(mg);
957 }
958 }
959
960 static void copy_complete(int read_err, unsigned long write_err, void *context)
961 {
962 unsigned long flags;
963 struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
964 struct cache *cache = mg->cache;
965
966 if (read_err || write_err)
967 mg->err = true;
968
969 spin_lock_irqsave(&cache->lock, flags);
970 list_add_tail(&mg->list, &cache->completed_migrations);
971 spin_unlock_irqrestore(&cache->lock, flags);
972
973 wake_worker(cache);
974 }
975
976 static void issue_copy_real(struct dm_cache_migration *mg)
977 {
978 int r;
979 struct dm_io_region o_region, c_region;
980 struct cache *cache = mg->cache;
981
982 o_region.bdev = cache->origin_dev->bdev;
983 o_region.count = cache->sectors_per_block;
984
985 c_region.bdev = cache->cache_dev->bdev;
986 c_region.sector = from_cblock(mg->cblock) * cache->sectors_per_block;
987 c_region.count = cache->sectors_per_block;
988
989 if (mg->writeback || mg->demote) {
990 /* demote */
991 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
992 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
993 } else {
994 /* promote */
995 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
996 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
997 }
998
999 if (r < 0) {
1000 DMERR_LIMIT("issuing migration failed");
1001 migration_failure(mg);
1002 }
1003 }
1004
1005 static void overwrite_endio(struct bio *bio, int err)
1006 {
1007 struct dm_cache_migration *mg = bio->bi_private;
1008 struct cache *cache = mg->cache;
1009 size_t pb_data_size = get_per_bio_data_size(cache);
1010 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1011 unsigned long flags;
1012
1013 if (err)
1014 mg->err = true;
1015
1016 spin_lock_irqsave(&cache->lock, flags);
1017 list_add_tail(&mg->list, &cache->completed_migrations);
1018 dm_unhook_bio(&pb->hook_info, bio);
1019 mg->requeue_holder = false;
1020 spin_unlock_irqrestore(&cache->lock, flags);
1021
1022 wake_worker(cache);
1023 }
1024
1025 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1026 {
1027 size_t pb_data_size = get_per_bio_data_size(mg->cache);
1028 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1029
1030 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1031 remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1032 generic_make_request(bio);
1033 }
1034
1035 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1036 {
1037 return (bio_data_dir(bio) == WRITE) &&
1038 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1039 }
1040
1041 static void avoid_copy(struct dm_cache_migration *mg)
1042 {
1043 atomic_inc(&mg->cache->stats.copies_avoided);
1044 migration_success_pre_commit(mg);
1045 }
1046
1047 static void issue_copy(struct dm_cache_migration *mg)
1048 {
1049 bool avoid;
1050 struct cache *cache = mg->cache;
1051
1052 if (mg->writeback || mg->demote)
1053 avoid = !is_dirty(cache, mg->cblock) ||
1054 is_discarded_oblock(cache, mg->old_oblock);
1055 else {
1056 struct bio *bio = mg->new_ocell->holder;
1057
1058 avoid = is_discarded_oblock(cache, mg->new_oblock);
1059
1060 if (!avoid && bio_writes_complete_block(cache, bio)) {
1061 issue_overwrite(mg, bio);
1062 return;
1063 }
1064 }
1065
1066 avoid ? avoid_copy(mg) : issue_copy_real(mg);
1067 }
1068
1069 static void complete_migration(struct dm_cache_migration *mg)
1070 {
1071 if (mg->err)
1072 migration_failure(mg);
1073 else
1074 migration_success_pre_commit(mg);
1075 }
1076
1077 static void process_migrations(struct cache *cache, struct list_head *head,
1078 void (*fn)(struct dm_cache_migration *))
1079 {
1080 unsigned long flags;
1081 struct list_head list;
1082 struct dm_cache_migration *mg, *tmp;
1083
1084 INIT_LIST_HEAD(&list);
1085 spin_lock_irqsave(&cache->lock, flags);
1086 list_splice_init(head, &list);
1087 spin_unlock_irqrestore(&cache->lock, flags);
1088
1089 list_for_each_entry_safe(mg, tmp, &list, list)
1090 fn(mg);
1091 }
1092
1093 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1094 {
1095 list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1096 }
1097
1098 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1099 {
1100 unsigned long flags;
1101 struct cache *cache = mg->cache;
1102
1103 spin_lock_irqsave(&cache->lock, flags);
1104 __queue_quiesced_migration(mg);
1105 spin_unlock_irqrestore(&cache->lock, flags);
1106
1107 wake_worker(cache);
1108 }
1109
1110 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1111 {
1112 unsigned long flags;
1113 struct dm_cache_migration *mg, *tmp;
1114
1115 spin_lock_irqsave(&cache->lock, flags);
1116 list_for_each_entry_safe(mg, tmp, work, list)
1117 __queue_quiesced_migration(mg);
1118 spin_unlock_irqrestore(&cache->lock, flags);
1119
1120 wake_worker(cache);
1121 }
1122
1123 static void check_for_quiesced_migrations(struct cache *cache,
1124 struct per_bio_data *pb)
1125 {
1126 struct list_head work;
1127
1128 if (!pb->all_io_entry)
1129 return;
1130
1131 INIT_LIST_HEAD(&work);
1132 if (pb->all_io_entry)
1133 dm_deferred_entry_dec(pb->all_io_entry, &work);
1134
1135 if (!list_empty(&work))
1136 queue_quiesced_migrations(cache, &work);
1137 }
1138
1139 static void quiesce_migration(struct dm_cache_migration *mg)
1140 {
1141 if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1142 queue_quiesced_migration(mg);
1143 }
1144
1145 static void promote(struct cache *cache, struct prealloc *structs,
1146 dm_oblock_t oblock, dm_cblock_t cblock,
1147 struct dm_bio_prison_cell *cell)
1148 {
1149 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1150
1151 mg->err = false;
1152 mg->writeback = false;
1153 mg->demote = false;
1154 mg->promote = true;
1155 mg->requeue_holder = true;
1156 mg->invalidate = false;
1157 mg->cache = cache;
1158 mg->new_oblock = oblock;
1159 mg->cblock = cblock;
1160 mg->old_ocell = NULL;
1161 mg->new_ocell = cell;
1162 mg->start_jiffies = jiffies;
1163
1164 inc_nr_migrations(cache);
1165 quiesce_migration(mg);
1166 }
1167
1168 static void writeback(struct cache *cache, struct prealloc *structs,
1169 dm_oblock_t oblock, dm_cblock_t cblock,
1170 struct dm_bio_prison_cell *cell)
1171 {
1172 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1173
1174 mg->err = false;
1175 mg->writeback = true;
1176 mg->demote = false;
1177 mg->promote = false;
1178 mg->requeue_holder = true;
1179 mg->invalidate = false;
1180 mg->cache = cache;
1181 mg->old_oblock = oblock;
1182 mg->cblock = cblock;
1183 mg->old_ocell = cell;
1184 mg->new_ocell = NULL;
1185 mg->start_jiffies = jiffies;
1186
1187 inc_nr_migrations(cache);
1188 quiesce_migration(mg);
1189 }
1190
1191 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1192 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1193 dm_cblock_t cblock,
1194 struct dm_bio_prison_cell *old_ocell,
1195 struct dm_bio_prison_cell *new_ocell)
1196 {
1197 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1198
1199 mg->err = false;
1200 mg->writeback = false;
1201 mg->demote = true;
1202 mg->promote = true;
1203 mg->requeue_holder = true;
1204 mg->invalidate = false;
1205 mg->cache = cache;
1206 mg->old_oblock = old_oblock;
1207 mg->new_oblock = new_oblock;
1208 mg->cblock = cblock;
1209 mg->old_ocell = old_ocell;
1210 mg->new_ocell = new_ocell;
1211 mg->start_jiffies = jiffies;
1212
1213 inc_nr_migrations(cache);
1214 quiesce_migration(mg);
1215 }
1216
1217 /*
1218 * Invalidate a cache entry. No writeback occurs; any changes in the cache
1219 * block are thrown away.
1220 */
1221 static void invalidate(struct cache *cache, struct prealloc *structs,
1222 dm_oblock_t oblock, dm_cblock_t cblock,
1223 struct dm_bio_prison_cell *cell)
1224 {
1225 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1226
1227 mg->err = false;
1228 mg->writeback = false;
1229 mg->demote = true;
1230 mg->promote = false;
1231 mg->requeue_holder = true;
1232 mg->invalidate = true;
1233 mg->cache = cache;
1234 mg->old_oblock = oblock;
1235 mg->cblock = cblock;
1236 mg->old_ocell = cell;
1237 mg->new_ocell = NULL;
1238 mg->start_jiffies = jiffies;
1239
1240 inc_nr_migrations(cache);
1241 quiesce_migration(mg);
1242 }
1243
1244 /*----------------------------------------------------------------
1245 * bio processing
1246 *--------------------------------------------------------------*/
1247 static void defer_bio(struct cache *cache, struct bio *bio)
1248 {
1249 unsigned long flags;
1250
1251 spin_lock_irqsave(&cache->lock, flags);
1252 bio_list_add(&cache->deferred_bios, bio);
1253 spin_unlock_irqrestore(&cache->lock, flags);
1254
1255 wake_worker(cache);
1256 }
1257
1258 static void process_flush_bio(struct cache *cache, struct bio *bio)
1259 {
1260 size_t pb_data_size = get_per_bio_data_size(cache);
1261 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1262
1263 BUG_ON(bio->bi_iter.bi_size);
1264 if (!pb->req_nr)
1265 remap_to_origin(cache, bio);
1266 else
1267 remap_to_cache(cache, bio, 0);
1268
1269 issue(cache, bio);
1270 }
1271
1272 /*
1273 * People generally discard large parts of a device, eg, the whole device
1274 * when formatting. Splitting these large discards up into cache block
1275 * sized ios and then quiescing (always neccessary for discard) takes too
1276 * long.
1277 *
1278 * We keep it simple, and allow any size of discard to come in, and just
1279 * mark off blocks on the discard bitset. No passdown occurs!
1280 *
1281 * To implement passdown we need to change the bio_prison such that a cell
1282 * can have a key that spans many blocks.
1283 */
1284 static void process_discard_bio(struct cache *cache, struct bio *bio)
1285 {
1286 dm_block_t start_block = dm_sector_div_up(bio->bi_iter.bi_sector,
1287 cache->discard_block_size);
1288 dm_block_t end_block = bio_end_sector(bio);
1289 dm_block_t b;
1290
1291 end_block = block_div(end_block, cache->discard_block_size);
1292
1293 for (b = start_block; b < end_block; b++)
1294 set_discard(cache, to_dblock(b));
1295
1296 bio_endio(bio, 0);
1297 }
1298
1299 static bool spare_migration_bandwidth(struct cache *cache)
1300 {
1301 sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1302 cache->sectors_per_block;
1303 return current_volume < cache->migration_threshold;
1304 }
1305
1306 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1307 {
1308 atomic_inc(bio_data_dir(bio) == READ ?
1309 &cache->stats.read_hit : &cache->stats.write_hit);
1310 }
1311
1312 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1313 {
1314 atomic_inc(bio_data_dir(bio) == READ ?
1315 &cache->stats.read_miss : &cache->stats.write_miss);
1316 }
1317
1318 static void issue_cache_bio(struct cache *cache, struct bio *bio,
1319 struct per_bio_data *pb,
1320 dm_oblock_t oblock, dm_cblock_t cblock)
1321 {
1322 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1323 remap_to_cache_dirty(cache, bio, oblock, cblock);
1324 issue(cache, bio);
1325 }
1326
1327 static void process_bio(struct cache *cache, struct prealloc *structs,
1328 struct bio *bio)
1329 {
1330 int r;
1331 bool release_cell = true;
1332 dm_oblock_t block = get_bio_block(cache, bio);
1333 struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1334 struct policy_result lookup_result;
1335 size_t pb_data_size = get_per_bio_data_size(cache);
1336 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1337 bool discarded_block = is_discarded_oblock(cache, block);
1338 bool passthrough = passthrough_mode(&cache->features);
1339 bool can_migrate = !passthrough && (discarded_block || spare_migration_bandwidth(cache));
1340
1341 /*
1342 * Check to see if that block is currently migrating.
1343 */
1344 cell_prealloc = prealloc_get_cell(structs);
1345 r = bio_detain(cache, block, bio, cell_prealloc,
1346 (cell_free_fn) prealloc_put_cell,
1347 structs, &new_ocell);
1348 if (r > 0)
1349 return;
1350
1351 r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1352 bio, &lookup_result);
1353
1354 if (r == -EWOULDBLOCK)
1355 /* migration has been denied */
1356 lookup_result.op = POLICY_MISS;
1357
1358 switch (lookup_result.op) {
1359 case POLICY_HIT:
1360 if (passthrough) {
1361 inc_miss_counter(cache, bio);
1362
1363 /*
1364 * Passthrough always maps to the origin,
1365 * invalidating any cache blocks that are written
1366 * to.
1367 */
1368
1369 if (bio_data_dir(bio) == WRITE) {
1370 atomic_inc(&cache->stats.demotion);
1371 invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1372 release_cell = false;
1373
1374 } else {
1375 /* FIXME: factor out issue_origin() */
1376 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1377 remap_to_origin_clear_discard(cache, bio, block);
1378 issue(cache, bio);
1379 }
1380 } else {
1381 inc_hit_counter(cache, bio);
1382
1383 if (bio_data_dir(bio) == WRITE &&
1384 writethrough_mode(&cache->features) &&
1385 !is_dirty(cache, lookup_result.cblock)) {
1386 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1387 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1388 issue(cache, bio);
1389 } else
1390 issue_cache_bio(cache, bio, pb, block, lookup_result.cblock);
1391 }
1392
1393 break;
1394
1395 case POLICY_MISS:
1396 inc_miss_counter(cache, bio);
1397 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1398 remap_to_origin_clear_discard(cache, bio, block);
1399 issue(cache, bio);
1400 break;
1401
1402 case POLICY_NEW:
1403 atomic_inc(&cache->stats.promotion);
1404 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1405 release_cell = false;
1406 break;
1407
1408 case POLICY_REPLACE:
1409 cell_prealloc = prealloc_get_cell(structs);
1410 r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1411 (cell_free_fn) prealloc_put_cell,
1412 structs, &old_ocell);
1413 if (r > 0) {
1414 /*
1415 * We have to be careful to avoid lock inversion of
1416 * the cells. So we back off, and wait for the
1417 * old_ocell to become free.
1418 */
1419 policy_force_mapping(cache->policy, block,
1420 lookup_result.old_oblock);
1421 atomic_inc(&cache->stats.cache_cell_clash);
1422 break;
1423 }
1424 atomic_inc(&cache->stats.demotion);
1425 atomic_inc(&cache->stats.promotion);
1426
1427 demote_then_promote(cache, structs, lookup_result.old_oblock,
1428 block, lookup_result.cblock,
1429 old_ocell, new_ocell);
1430 release_cell = false;
1431 break;
1432
1433 default:
1434 DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1435 (unsigned) lookup_result.op);
1436 bio_io_error(bio);
1437 }
1438
1439 if (release_cell)
1440 cell_defer(cache, new_ocell, false);
1441 }
1442
1443 static int need_commit_due_to_time(struct cache *cache)
1444 {
1445 return jiffies < cache->last_commit_jiffies ||
1446 jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1447 }
1448
1449 static int commit_if_needed(struct cache *cache)
1450 {
1451 int r = 0;
1452
1453 if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1454 dm_cache_changed_this_transaction(cache->cmd)) {
1455 atomic_inc(&cache->stats.commit_count);
1456 cache->commit_requested = false;
1457 r = dm_cache_commit(cache->cmd, false);
1458 cache->last_commit_jiffies = jiffies;
1459 }
1460
1461 return r;
1462 }
1463
1464 static void process_deferred_bios(struct cache *cache)
1465 {
1466 unsigned long flags;
1467 struct bio_list bios;
1468 struct bio *bio;
1469 struct prealloc structs;
1470
1471 memset(&structs, 0, sizeof(structs));
1472 bio_list_init(&bios);
1473
1474 spin_lock_irqsave(&cache->lock, flags);
1475 bio_list_merge(&bios, &cache->deferred_bios);
1476 bio_list_init(&cache->deferred_bios);
1477 spin_unlock_irqrestore(&cache->lock, flags);
1478
1479 while (!bio_list_empty(&bios)) {
1480 /*
1481 * If we've got no free migration structs, and processing
1482 * this bio might require one, we pause until there are some
1483 * prepared mappings to process.
1484 */
1485 if (prealloc_data_structs(cache, &structs)) {
1486 spin_lock_irqsave(&cache->lock, flags);
1487 bio_list_merge(&cache->deferred_bios, &bios);
1488 spin_unlock_irqrestore(&cache->lock, flags);
1489 break;
1490 }
1491
1492 bio = bio_list_pop(&bios);
1493
1494 if (bio->bi_rw & REQ_FLUSH)
1495 process_flush_bio(cache, bio);
1496 else if (bio->bi_rw & REQ_DISCARD)
1497 process_discard_bio(cache, bio);
1498 else
1499 process_bio(cache, &structs, bio);
1500 }
1501
1502 prealloc_free_structs(cache, &structs);
1503 }
1504
1505 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1506 {
1507 unsigned long flags;
1508 struct bio_list bios;
1509 struct bio *bio;
1510
1511 bio_list_init(&bios);
1512
1513 spin_lock_irqsave(&cache->lock, flags);
1514 bio_list_merge(&bios, &cache->deferred_flush_bios);
1515 bio_list_init(&cache->deferred_flush_bios);
1516 spin_unlock_irqrestore(&cache->lock, flags);
1517
1518 while ((bio = bio_list_pop(&bios)))
1519 submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1520 }
1521
1522 static void process_deferred_writethrough_bios(struct cache *cache)
1523 {
1524 unsigned long flags;
1525 struct bio_list bios;
1526 struct bio *bio;
1527
1528 bio_list_init(&bios);
1529
1530 spin_lock_irqsave(&cache->lock, flags);
1531 bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1532 bio_list_init(&cache->deferred_writethrough_bios);
1533 spin_unlock_irqrestore(&cache->lock, flags);
1534
1535 while ((bio = bio_list_pop(&bios)))
1536 generic_make_request(bio);
1537 }
1538
1539 static void writeback_some_dirty_blocks(struct cache *cache)
1540 {
1541 int r = 0;
1542 dm_oblock_t oblock;
1543 dm_cblock_t cblock;
1544 struct prealloc structs;
1545 struct dm_bio_prison_cell *old_ocell;
1546
1547 memset(&structs, 0, sizeof(structs));
1548
1549 while (spare_migration_bandwidth(cache)) {
1550 if (prealloc_data_structs(cache, &structs))
1551 break;
1552
1553 r = policy_writeback_work(cache->policy, &oblock, &cblock);
1554 if (r)
1555 break;
1556
1557 r = get_cell(cache, oblock, &structs, &old_ocell);
1558 if (r) {
1559 policy_set_dirty(cache->policy, oblock);
1560 break;
1561 }
1562
1563 writeback(cache, &structs, oblock, cblock, old_ocell);
1564 }
1565
1566 prealloc_free_structs(cache, &structs);
1567 }
1568
1569 /*----------------------------------------------------------------
1570 * Invalidations.
1571 * Dropping something from the cache *without* writing back.
1572 *--------------------------------------------------------------*/
1573
1574 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
1575 {
1576 int r = 0;
1577 uint64_t begin = from_cblock(req->cblocks->begin);
1578 uint64_t end = from_cblock(req->cblocks->end);
1579
1580 while (begin != end) {
1581 r = policy_remove_cblock(cache->policy, to_cblock(begin));
1582 if (!r) {
1583 r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
1584 if (r)
1585 break;
1586
1587 } else if (r == -ENODATA) {
1588 /* harmless, already unmapped */
1589 r = 0;
1590
1591 } else {
1592 DMERR("policy_remove_cblock failed");
1593 break;
1594 }
1595
1596 begin++;
1597 }
1598
1599 cache->commit_requested = true;
1600
1601 req->err = r;
1602 atomic_set(&req->complete, 1);
1603
1604 wake_up(&req->result_wait);
1605 }
1606
1607 static void process_invalidation_requests(struct cache *cache)
1608 {
1609 struct list_head list;
1610 struct invalidation_request *req, *tmp;
1611
1612 INIT_LIST_HEAD(&list);
1613 spin_lock(&cache->invalidation_lock);
1614 list_splice_init(&cache->invalidation_requests, &list);
1615 spin_unlock(&cache->invalidation_lock);
1616
1617 list_for_each_entry_safe (req, tmp, &list, list)
1618 process_invalidation_request(cache, req);
1619 }
1620
1621 /*----------------------------------------------------------------
1622 * Main worker loop
1623 *--------------------------------------------------------------*/
1624 static bool is_quiescing(struct cache *cache)
1625 {
1626 return atomic_read(&cache->quiescing);
1627 }
1628
1629 static void ack_quiescing(struct cache *cache)
1630 {
1631 if (is_quiescing(cache)) {
1632 atomic_inc(&cache->quiescing_ack);
1633 wake_up(&cache->quiescing_wait);
1634 }
1635 }
1636
1637 static void wait_for_quiescing_ack(struct cache *cache)
1638 {
1639 wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
1640 }
1641
1642 static void start_quiescing(struct cache *cache)
1643 {
1644 atomic_inc(&cache->quiescing);
1645 wait_for_quiescing_ack(cache);
1646 }
1647
1648 static void stop_quiescing(struct cache *cache)
1649 {
1650 atomic_set(&cache->quiescing, 0);
1651 atomic_set(&cache->quiescing_ack, 0);
1652 }
1653
1654 static void wait_for_migrations(struct cache *cache)
1655 {
1656 wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
1657 }
1658
1659 static void stop_worker(struct cache *cache)
1660 {
1661 cancel_delayed_work(&cache->waker);
1662 flush_workqueue(cache->wq);
1663 }
1664
1665 static void requeue_deferred_io(struct cache *cache)
1666 {
1667 struct bio *bio;
1668 struct bio_list bios;
1669
1670 bio_list_init(&bios);
1671 bio_list_merge(&bios, &cache->deferred_bios);
1672 bio_list_init(&cache->deferred_bios);
1673
1674 while ((bio = bio_list_pop(&bios)))
1675 bio_endio(bio, DM_ENDIO_REQUEUE);
1676 }
1677
1678 static int more_work(struct cache *cache)
1679 {
1680 if (is_quiescing(cache))
1681 return !list_empty(&cache->quiesced_migrations) ||
1682 !list_empty(&cache->completed_migrations) ||
1683 !list_empty(&cache->need_commit_migrations);
1684 else
1685 return !bio_list_empty(&cache->deferred_bios) ||
1686 !bio_list_empty(&cache->deferred_flush_bios) ||
1687 !bio_list_empty(&cache->deferred_writethrough_bios) ||
1688 !list_empty(&cache->quiesced_migrations) ||
1689 !list_empty(&cache->completed_migrations) ||
1690 !list_empty(&cache->need_commit_migrations) ||
1691 cache->invalidate;
1692 }
1693
1694 static void do_worker(struct work_struct *ws)
1695 {
1696 struct cache *cache = container_of(ws, struct cache, worker);
1697
1698 do {
1699 if (!is_quiescing(cache)) {
1700 writeback_some_dirty_blocks(cache);
1701 process_deferred_writethrough_bios(cache);
1702 process_deferred_bios(cache);
1703 process_invalidation_requests(cache);
1704 }
1705
1706 process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1707 process_migrations(cache, &cache->completed_migrations, complete_migration);
1708
1709 if (commit_if_needed(cache)) {
1710 process_deferred_flush_bios(cache, false);
1711
1712 /*
1713 * FIXME: rollback metadata or just go into a
1714 * failure mode and error everything
1715 */
1716 } else {
1717 process_deferred_flush_bios(cache, true);
1718 process_migrations(cache, &cache->need_commit_migrations,
1719 migration_success_post_commit);
1720 }
1721
1722 ack_quiescing(cache);
1723
1724 } while (more_work(cache));
1725 }
1726
1727 /*
1728 * We want to commit periodically so that not too much
1729 * unwritten metadata builds up.
1730 */
1731 static void do_waker(struct work_struct *ws)
1732 {
1733 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1734 policy_tick(cache->policy);
1735 wake_worker(cache);
1736 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1737 }
1738
1739 /*----------------------------------------------------------------*/
1740
1741 static int is_congested(struct dm_dev *dev, int bdi_bits)
1742 {
1743 struct request_queue *q = bdev_get_queue(dev->bdev);
1744 return bdi_congested(&q->backing_dev_info, bdi_bits);
1745 }
1746
1747 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1748 {
1749 struct cache *cache = container_of(cb, struct cache, callbacks);
1750
1751 return is_congested(cache->origin_dev, bdi_bits) ||
1752 is_congested(cache->cache_dev, bdi_bits);
1753 }
1754
1755 /*----------------------------------------------------------------
1756 * Target methods
1757 *--------------------------------------------------------------*/
1758
1759 /*
1760 * This function gets called on the error paths of the constructor, so we
1761 * have to cope with a partially initialised struct.
1762 */
1763 static void destroy(struct cache *cache)
1764 {
1765 unsigned i;
1766
1767 if (cache->next_migration)
1768 mempool_free(cache->next_migration, cache->migration_pool);
1769
1770 if (cache->migration_pool)
1771 mempool_destroy(cache->migration_pool);
1772
1773 if (cache->all_io_ds)
1774 dm_deferred_set_destroy(cache->all_io_ds);
1775
1776 if (cache->prison)
1777 dm_bio_prison_destroy(cache->prison);
1778
1779 if (cache->wq)
1780 destroy_workqueue(cache->wq);
1781
1782 if (cache->dirty_bitset)
1783 free_bitset(cache->dirty_bitset);
1784
1785 if (cache->discard_bitset)
1786 free_bitset(cache->discard_bitset);
1787
1788 if (cache->copier)
1789 dm_kcopyd_client_destroy(cache->copier);
1790
1791 if (cache->cmd)
1792 dm_cache_metadata_close(cache->cmd);
1793
1794 if (cache->metadata_dev)
1795 dm_put_device(cache->ti, cache->metadata_dev);
1796
1797 if (cache->origin_dev)
1798 dm_put_device(cache->ti, cache->origin_dev);
1799
1800 if (cache->cache_dev)
1801 dm_put_device(cache->ti, cache->cache_dev);
1802
1803 if (cache->policy)
1804 dm_cache_policy_destroy(cache->policy);
1805
1806 for (i = 0; i < cache->nr_ctr_args ; i++)
1807 kfree(cache->ctr_args[i]);
1808 kfree(cache->ctr_args);
1809
1810 kfree(cache);
1811 }
1812
1813 static void cache_dtr(struct dm_target *ti)
1814 {
1815 struct cache *cache = ti->private;
1816
1817 destroy(cache);
1818 }
1819
1820 static sector_t get_dev_size(struct dm_dev *dev)
1821 {
1822 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1823 }
1824
1825 /*----------------------------------------------------------------*/
1826
1827 /*
1828 * Construct a cache device mapping.
1829 *
1830 * cache <metadata dev> <cache dev> <origin dev> <block size>
1831 * <#feature args> [<feature arg>]*
1832 * <policy> <#policy args> [<policy arg>]*
1833 *
1834 * metadata dev : fast device holding the persistent metadata
1835 * cache dev : fast device holding cached data blocks
1836 * origin dev : slow device holding original data blocks
1837 * block size : cache unit size in sectors
1838 *
1839 * #feature args : number of feature arguments passed
1840 * feature args : writethrough. (The default is writeback.)
1841 *
1842 * policy : the replacement policy to use
1843 * #policy args : an even number of policy arguments corresponding
1844 * to key/value pairs passed to the policy
1845 * policy args : key/value pairs passed to the policy
1846 * E.g. 'sequential_threshold 1024'
1847 * See cache-policies.txt for details.
1848 *
1849 * Optional feature arguments are:
1850 * writethrough : write through caching that prohibits cache block
1851 * content from being different from origin block content.
1852 * Without this argument, the default behaviour is to write
1853 * back cache block contents later for performance reasons,
1854 * so they may differ from the corresponding origin blocks.
1855 */
1856 struct cache_args {
1857 struct dm_target *ti;
1858
1859 struct dm_dev *metadata_dev;
1860
1861 struct dm_dev *cache_dev;
1862 sector_t cache_sectors;
1863
1864 struct dm_dev *origin_dev;
1865 sector_t origin_sectors;
1866
1867 uint32_t block_size;
1868
1869 const char *policy_name;
1870 int policy_argc;
1871 const char **policy_argv;
1872
1873 struct cache_features features;
1874 };
1875
1876 static void destroy_cache_args(struct cache_args *ca)
1877 {
1878 if (ca->metadata_dev)
1879 dm_put_device(ca->ti, ca->metadata_dev);
1880
1881 if (ca->cache_dev)
1882 dm_put_device(ca->ti, ca->cache_dev);
1883
1884 if (ca->origin_dev)
1885 dm_put_device(ca->ti, ca->origin_dev);
1886
1887 kfree(ca);
1888 }
1889
1890 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1891 {
1892 if (!as->argc) {
1893 *error = "Insufficient args";
1894 return false;
1895 }
1896
1897 return true;
1898 }
1899
1900 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1901 char **error)
1902 {
1903 int r;
1904 sector_t metadata_dev_size;
1905 char b[BDEVNAME_SIZE];
1906
1907 if (!at_least_one_arg(as, error))
1908 return -EINVAL;
1909
1910 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1911 &ca->metadata_dev);
1912 if (r) {
1913 *error = "Error opening metadata device";
1914 return r;
1915 }
1916
1917 metadata_dev_size = get_dev_size(ca->metadata_dev);
1918 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1919 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1920 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1921
1922 return 0;
1923 }
1924
1925 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1926 char **error)
1927 {
1928 int r;
1929
1930 if (!at_least_one_arg(as, error))
1931 return -EINVAL;
1932
1933 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1934 &ca->cache_dev);
1935 if (r) {
1936 *error = "Error opening cache device";
1937 return r;
1938 }
1939 ca->cache_sectors = get_dev_size(ca->cache_dev);
1940
1941 return 0;
1942 }
1943
1944 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1945 char **error)
1946 {
1947 int r;
1948
1949 if (!at_least_one_arg(as, error))
1950 return -EINVAL;
1951
1952 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1953 &ca->origin_dev);
1954 if (r) {
1955 *error = "Error opening origin device";
1956 return r;
1957 }
1958
1959 ca->origin_sectors = get_dev_size(ca->origin_dev);
1960 if (ca->ti->len > ca->origin_sectors) {
1961 *error = "Device size larger than cached device";
1962 return -EINVAL;
1963 }
1964
1965 return 0;
1966 }
1967
1968 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1969 char **error)
1970 {
1971 unsigned long block_size;
1972
1973 if (!at_least_one_arg(as, error))
1974 return -EINVAL;
1975
1976 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
1977 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1978 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1979 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1980 *error = "Invalid data block size";
1981 return -EINVAL;
1982 }
1983
1984 if (block_size > ca->cache_sectors) {
1985 *error = "Data block size is larger than the cache device";
1986 return -EINVAL;
1987 }
1988
1989 ca->block_size = block_size;
1990
1991 return 0;
1992 }
1993
1994 static void init_features(struct cache_features *cf)
1995 {
1996 cf->mode = CM_WRITE;
1997 cf->io_mode = CM_IO_WRITEBACK;
1998 }
1999
2000 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2001 char **error)
2002 {
2003 static struct dm_arg _args[] = {
2004 {0, 1, "Invalid number of cache feature arguments"},
2005 };
2006
2007 int r;
2008 unsigned argc;
2009 const char *arg;
2010 struct cache_features *cf = &ca->features;
2011
2012 init_features(cf);
2013
2014 r = dm_read_arg_group(_args, as, &argc, error);
2015 if (r)
2016 return -EINVAL;
2017
2018 while (argc--) {
2019 arg = dm_shift_arg(as);
2020
2021 if (!strcasecmp(arg, "writeback"))
2022 cf->io_mode = CM_IO_WRITEBACK;
2023
2024 else if (!strcasecmp(arg, "writethrough"))
2025 cf->io_mode = CM_IO_WRITETHROUGH;
2026
2027 else if (!strcasecmp(arg, "passthrough"))
2028 cf->io_mode = CM_IO_PASSTHROUGH;
2029
2030 else {
2031 *error = "Unrecognised cache feature requested";
2032 return -EINVAL;
2033 }
2034 }
2035
2036 return 0;
2037 }
2038
2039 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2040 char **error)
2041 {
2042 static struct dm_arg _args[] = {
2043 {0, 1024, "Invalid number of policy arguments"},
2044 };
2045
2046 int r;
2047
2048 if (!at_least_one_arg(as, error))
2049 return -EINVAL;
2050
2051 ca->policy_name = dm_shift_arg(as);
2052
2053 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2054 if (r)
2055 return -EINVAL;
2056
2057 ca->policy_argv = (const char **)as->argv;
2058 dm_consume_args(as, ca->policy_argc);
2059
2060 return 0;
2061 }
2062
2063 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2064 char **error)
2065 {
2066 int r;
2067 struct dm_arg_set as;
2068
2069 as.argc = argc;
2070 as.argv = argv;
2071
2072 r = parse_metadata_dev(ca, &as, error);
2073 if (r)
2074 return r;
2075
2076 r = parse_cache_dev(ca, &as, error);
2077 if (r)
2078 return r;
2079
2080 r = parse_origin_dev(ca, &as, error);
2081 if (r)
2082 return r;
2083
2084 r = parse_block_size(ca, &as, error);
2085 if (r)
2086 return r;
2087
2088 r = parse_features(ca, &as, error);
2089 if (r)
2090 return r;
2091
2092 r = parse_policy(ca, &as, error);
2093 if (r)
2094 return r;
2095
2096 return 0;
2097 }
2098
2099 /*----------------------------------------------------------------*/
2100
2101 static struct kmem_cache *migration_cache;
2102
2103 #define NOT_CORE_OPTION 1
2104
2105 static int process_config_option(struct cache *cache, const char *key, const char *value)
2106 {
2107 unsigned long tmp;
2108
2109 if (!strcasecmp(key, "migration_threshold")) {
2110 if (kstrtoul(value, 10, &tmp))
2111 return -EINVAL;
2112
2113 cache->migration_threshold = tmp;
2114 return 0;
2115 }
2116
2117 return NOT_CORE_OPTION;
2118 }
2119
2120 static int set_config_value(struct cache *cache, const char *key, const char *value)
2121 {
2122 int r = process_config_option(cache, key, value);
2123
2124 if (r == NOT_CORE_OPTION)
2125 r = policy_set_config_value(cache->policy, key, value);
2126
2127 if (r)
2128 DMWARN("bad config value for %s: %s", key, value);
2129
2130 return r;
2131 }
2132
2133 static int set_config_values(struct cache *cache, int argc, const char **argv)
2134 {
2135 int r = 0;
2136
2137 if (argc & 1) {
2138 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2139 return -EINVAL;
2140 }
2141
2142 while (argc) {
2143 r = set_config_value(cache, argv[0], argv[1]);
2144 if (r)
2145 break;
2146
2147 argc -= 2;
2148 argv += 2;
2149 }
2150
2151 return r;
2152 }
2153
2154 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2155 char **error)
2156 {
2157 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2158 cache->cache_size,
2159 cache->origin_sectors,
2160 cache->sectors_per_block);
2161 if (IS_ERR(p)) {
2162 *error = "Error creating cache's policy";
2163 return PTR_ERR(p);
2164 }
2165 cache->policy = p;
2166
2167 return 0;
2168 }
2169
2170 /*
2171 * We want the discard block size to be a power of two, at least the size
2172 * of the cache block size, and have no more than 2^14 discard blocks
2173 * across the origin.
2174 */
2175 #define MAX_DISCARD_BLOCKS (1 << 14)
2176
2177 static bool too_many_discard_blocks(sector_t discard_block_size,
2178 sector_t origin_size)
2179 {
2180 (void) sector_div(origin_size, discard_block_size);
2181
2182 return origin_size > MAX_DISCARD_BLOCKS;
2183 }
2184
2185 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2186 sector_t origin_size)
2187 {
2188 sector_t discard_block_size;
2189
2190 discard_block_size = roundup_pow_of_two(cache_block_size);
2191
2192 if (origin_size)
2193 while (too_many_discard_blocks(discard_block_size, origin_size))
2194 discard_block_size *= 2;
2195
2196 return discard_block_size;
2197 }
2198
2199 #define DEFAULT_MIGRATION_THRESHOLD 2048
2200
2201 static int cache_create(struct cache_args *ca, struct cache **result)
2202 {
2203 int r = 0;
2204 char **error = &ca->ti->error;
2205 struct cache *cache;
2206 struct dm_target *ti = ca->ti;
2207 dm_block_t origin_blocks;
2208 struct dm_cache_metadata *cmd;
2209 bool may_format = ca->features.mode == CM_WRITE;
2210
2211 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2212 if (!cache)
2213 return -ENOMEM;
2214
2215 cache->ti = ca->ti;
2216 ti->private = cache;
2217 ti->num_flush_bios = 2;
2218 ti->flush_supported = true;
2219
2220 ti->num_discard_bios = 1;
2221 ti->discards_supported = true;
2222 ti->discard_zeroes_data_unsupported = true;
2223
2224 cache->features = ca->features;
2225 ti->per_bio_data_size = get_per_bio_data_size(cache);
2226
2227 cache->callbacks.congested_fn = cache_is_congested;
2228 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2229
2230 cache->metadata_dev = ca->metadata_dev;
2231 cache->origin_dev = ca->origin_dev;
2232 cache->cache_dev = ca->cache_dev;
2233
2234 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2235
2236 /* FIXME: factor out this whole section */
2237 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2238 origin_blocks = block_div(origin_blocks, ca->block_size);
2239 cache->origin_blocks = to_oblock(origin_blocks);
2240
2241 cache->sectors_per_block = ca->block_size;
2242 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2243 r = -EINVAL;
2244 goto bad;
2245 }
2246
2247 if (ca->block_size & (ca->block_size - 1)) {
2248 dm_block_t cache_size = ca->cache_sectors;
2249
2250 cache->sectors_per_block_shift = -1;
2251 cache_size = block_div(cache_size, ca->block_size);
2252 cache->cache_size = to_cblock(cache_size);
2253 } else {
2254 cache->sectors_per_block_shift = __ffs(ca->block_size);
2255 cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
2256 }
2257
2258 r = create_cache_policy(cache, ca, error);
2259 if (r)
2260 goto bad;
2261
2262 cache->policy_nr_args = ca->policy_argc;
2263 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2264
2265 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2266 if (r) {
2267 *error = "Error setting cache policy's config values";
2268 goto bad;
2269 }
2270
2271 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2272 ca->block_size, may_format,
2273 dm_cache_policy_get_hint_size(cache->policy));
2274 if (IS_ERR(cmd)) {
2275 *error = "Error creating metadata object";
2276 r = PTR_ERR(cmd);
2277 goto bad;
2278 }
2279 cache->cmd = cmd;
2280
2281 if (passthrough_mode(&cache->features)) {
2282 bool all_clean;
2283
2284 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2285 if (r) {
2286 *error = "dm_cache_metadata_all_clean() failed";
2287 goto bad;
2288 }
2289
2290 if (!all_clean) {
2291 *error = "Cannot enter passthrough mode unless all blocks are clean";
2292 r = -EINVAL;
2293 goto bad;
2294 }
2295 }
2296
2297 spin_lock_init(&cache->lock);
2298 bio_list_init(&cache->deferred_bios);
2299 bio_list_init(&cache->deferred_flush_bios);
2300 bio_list_init(&cache->deferred_writethrough_bios);
2301 INIT_LIST_HEAD(&cache->quiesced_migrations);
2302 INIT_LIST_HEAD(&cache->completed_migrations);
2303 INIT_LIST_HEAD(&cache->need_commit_migrations);
2304 atomic_set(&cache->nr_migrations, 0);
2305 init_waitqueue_head(&cache->migration_wait);
2306
2307 init_waitqueue_head(&cache->quiescing_wait);
2308 atomic_set(&cache->quiescing, 0);
2309 atomic_set(&cache->quiescing_ack, 0);
2310
2311 r = -ENOMEM;
2312 cache->nr_dirty = 0;
2313 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2314 if (!cache->dirty_bitset) {
2315 *error = "could not allocate dirty bitset";
2316 goto bad;
2317 }
2318 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2319
2320 cache->discard_block_size =
2321 calculate_discard_block_size(cache->sectors_per_block,
2322 cache->origin_sectors);
2323 cache->discard_nr_blocks = oblock_to_dblock(cache, cache->origin_blocks);
2324 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2325 if (!cache->discard_bitset) {
2326 *error = "could not allocate discard bitset";
2327 goto bad;
2328 }
2329 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2330
2331 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2332 if (IS_ERR(cache->copier)) {
2333 *error = "could not create kcopyd client";
2334 r = PTR_ERR(cache->copier);
2335 goto bad;
2336 }
2337
2338 cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2339 if (!cache->wq) {
2340 *error = "could not create workqueue for metadata object";
2341 goto bad;
2342 }
2343 INIT_WORK(&cache->worker, do_worker);
2344 INIT_DELAYED_WORK(&cache->waker, do_waker);
2345 cache->last_commit_jiffies = jiffies;
2346
2347 cache->prison = dm_bio_prison_create(PRISON_CELLS);
2348 if (!cache->prison) {
2349 *error = "could not create bio prison";
2350 goto bad;
2351 }
2352
2353 cache->all_io_ds = dm_deferred_set_create();
2354 if (!cache->all_io_ds) {
2355 *error = "could not create all_io deferred set";
2356 goto bad;
2357 }
2358
2359 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2360 migration_cache);
2361 if (!cache->migration_pool) {
2362 *error = "Error creating cache's migration mempool";
2363 goto bad;
2364 }
2365
2366 cache->next_migration = NULL;
2367
2368 cache->need_tick_bio = true;
2369 cache->sized = false;
2370 cache->invalidate = false;
2371 cache->commit_requested = false;
2372 cache->loaded_mappings = false;
2373 cache->loaded_discards = false;
2374
2375 load_stats(cache);
2376
2377 atomic_set(&cache->stats.demotion, 0);
2378 atomic_set(&cache->stats.promotion, 0);
2379 atomic_set(&cache->stats.copies_avoided, 0);
2380 atomic_set(&cache->stats.cache_cell_clash, 0);
2381 atomic_set(&cache->stats.commit_count, 0);
2382 atomic_set(&cache->stats.discard_count, 0);
2383
2384 spin_lock_init(&cache->invalidation_lock);
2385 INIT_LIST_HEAD(&cache->invalidation_requests);
2386
2387 *result = cache;
2388 return 0;
2389
2390 bad:
2391 destroy(cache);
2392 return r;
2393 }
2394
2395 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2396 {
2397 unsigned i;
2398 const char **copy;
2399
2400 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2401 if (!copy)
2402 return -ENOMEM;
2403 for (i = 0; i < argc; i++) {
2404 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2405 if (!copy[i]) {
2406 while (i--)
2407 kfree(copy[i]);
2408 kfree(copy);
2409 return -ENOMEM;
2410 }
2411 }
2412
2413 cache->nr_ctr_args = argc;
2414 cache->ctr_args = copy;
2415
2416 return 0;
2417 }
2418
2419 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2420 {
2421 int r = -EINVAL;
2422 struct cache_args *ca;
2423 struct cache *cache = NULL;
2424
2425 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2426 if (!ca) {
2427 ti->error = "Error allocating memory for cache";
2428 return -ENOMEM;
2429 }
2430 ca->ti = ti;
2431
2432 r = parse_cache_args(ca, argc, argv, &ti->error);
2433 if (r)
2434 goto out;
2435
2436 r = cache_create(ca, &cache);
2437 if (r)
2438 goto out;
2439
2440 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2441 if (r) {
2442 destroy(cache);
2443 goto out;
2444 }
2445
2446 ti->private = cache;
2447
2448 out:
2449 destroy_cache_args(ca);
2450 return r;
2451 }
2452
2453 static int cache_map(struct dm_target *ti, struct bio *bio)
2454 {
2455 struct cache *cache = ti->private;
2456
2457 int r;
2458 dm_oblock_t block = get_bio_block(cache, bio);
2459 size_t pb_data_size = get_per_bio_data_size(cache);
2460 bool can_migrate = false;
2461 bool discarded_block;
2462 struct dm_bio_prison_cell *cell;
2463 struct policy_result lookup_result;
2464 struct per_bio_data *pb;
2465
2466 if (from_oblock(block) > from_oblock(cache->origin_blocks)) {
2467 /*
2468 * This can only occur if the io goes to a partial block at
2469 * the end of the origin device. We don't cache these.
2470 * Just remap to the origin and carry on.
2471 */
2472 remap_to_origin_clear_discard(cache, bio, block);
2473 return DM_MAPIO_REMAPPED;
2474 }
2475
2476 pb = init_per_bio_data(bio, pb_data_size);
2477
2478 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2479 defer_bio(cache, bio);
2480 return DM_MAPIO_SUBMITTED;
2481 }
2482
2483 /*
2484 * Check to see if that block is currently migrating.
2485 */
2486 cell = alloc_prison_cell(cache);
2487 if (!cell) {
2488 defer_bio(cache, bio);
2489 return DM_MAPIO_SUBMITTED;
2490 }
2491
2492 r = bio_detain(cache, block, bio, cell,
2493 (cell_free_fn) free_prison_cell,
2494 cache, &cell);
2495 if (r) {
2496 if (r < 0)
2497 defer_bio(cache, bio);
2498
2499 return DM_MAPIO_SUBMITTED;
2500 }
2501
2502 discarded_block = is_discarded_oblock(cache, block);
2503
2504 r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2505 bio, &lookup_result);
2506 if (r == -EWOULDBLOCK) {
2507 cell_defer(cache, cell, true);
2508 return DM_MAPIO_SUBMITTED;
2509
2510 } else if (r) {
2511 DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2512 bio_io_error(bio);
2513 return DM_MAPIO_SUBMITTED;
2514 }
2515
2516 r = DM_MAPIO_REMAPPED;
2517 switch (lookup_result.op) {
2518 case POLICY_HIT:
2519 if (passthrough_mode(&cache->features)) {
2520 if (bio_data_dir(bio) == WRITE) {
2521 /*
2522 * We need to invalidate this block, so
2523 * defer for the worker thread.
2524 */
2525 cell_defer(cache, cell, true);
2526 r = DM_MAPIO_SUBMITTED;
2527
2528 } else {
2529 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2530 inc_miss_counter(cache, bio);
2531 remap_to_origin_clear_discard(cache, bio, block);
2532
2533 cell_defer(cache, cell, false);
2534 }
2535
2536 } else {
2537 inc_hit_counter(cache, bio);
2538
2539 if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
2540 !is_dirty(cache, lookup_result.cblock))
2541 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2542 else
2543 remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2544
2545 cell_defer(cache, cell, false);
2546 }
2547 break;
2548
2549 case POLICY_MISS:
2550 inc_miss_counter(cache, bio);
2551 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2552
2553 if (pb->req_nr != 0) {
2554 /*
2555 * This is a duplicate writethrough io that is no
2556 * longer needed because the block has been demoted.
2557 */
2558 bio_endio(bio, 0);
2559 cell_defer(cache, cell, false);
2560 return DM_MAPIO_SUBMITTED;
2561 } else {
2562 remap_to_origin_clear_discard(cache, bio, block);
2563 cell_defer(cache, cell, false);
2564 }
2565 break;
2566
2567 default:
2568 DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2569 (unsigned) lookup_result.op);
2570 bio_io_error(bio);
2571 r = DM_MAPIO_SUBMITTED;
2572 }
2573
2574 return r;
2575 }
2576
2577 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2578 {
2579 struct cache *cache = ti->private;
2580 unsigned long flags;
2581 size_t pb_data_size = get_per_bio_data_size(cache);
2582 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2583
2584 if (pb->tick) {
2585 policy_tick(cache->policy);
2586
2587 spin_lock_irqsave(&cache->lock, flags);
2588 cache->need_tick_bio = true;
2589 spin_unlock_irqrestore(&cache->lock, flags);
2590 }
2591
2592 check_for_quiesced_migrations(cache, pb);
2593
2594 return 0;
2595 }
2596
2597 static int write_dirty_bitset(struct cache *cache)
2598 {
2599 unsigned i, r;
2600
2601 for (i = 0; i < from_cblock(cache->cache_size); i++) {
2602 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2603 is_dirty(cache, to_cblock(i)));
2604 if (r)
2605 return r;
2606 }
2607
2608 return 0;
2609 }
2610
2611 static int write_discard_bitset(struct cache *cache)
2612 {
2613 unsigned i, r;
2614
2615 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2616 cache->discard_nr_blocks);
2617 if (r) {
2618 DMERR("could not resize on-disk discard bitset");
2619 return r;
2620 }
2621
2622 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2623 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2624 is_discarded(cache, to_dblock(i)));
2625 if (r)
2626 return r;
2627 }
2628
2629 return 0;
2630 }
2631
2632 static int save_hint(void *context, dm_cblock_t cblock, dm_oblock_t oblock,
2633 uint32_t hint)
2634 {
2635 struct cache *cache = context;
2636 return dm_cache_save_hint(cache->cmd, cblock, hint);
2637 }
2638
2639 static int write_hints(struct cache *cache)
2640 {
2641 int r;
2642
2643 r = dm_cache_begin_hints(cache->cmd, cache->policy);
2644 if (r) {
2645 DMERR("dm_cache_begin_hints failed");
2646 return r;
2647 }
2648
2649 r = policy_walk_mappings(cache->policy, save_hint, cache);
2650 if (r)
2651 DMERR("policy_walk_mappings failed");
2652
2653 return r;
2654 }
2655
2656 /*
2657 * returns true on success
2658 */
2659 static bool sync_metadata(struct cache *cache)
2660 {
2661 int r1, r2, r3, r4;
2662
2663 r1 = write_dirty_bitset(cache);
2664 if (r1)
2665 DMERR("could not write dirty bitset");
2666
2667 r2 = write_discard_bitset(cache);
2668 if (r2)
2669 DMERR("could not write discard bitset");
2670
2671 save_stats(cache);
2672
2673 r3 = write_hints(cache);
2674 if (r3)
2675 DMERR("could not write hints");
2676
2677 /*
2678 * If writing the above metadata failed, we still commit, but don't
2679 * set the clean shutdown flag. This will effectively force every
2680 * dirty bit to be set on reload.
2681 */
2682 r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2683 if (r4)
2684 DMERR("could not write cache metadata. Data loss may occur.");
2685
2686 return !r1 && !r2 && !r3 && !r4;
2687 }
2688
2689 static void cache_postsuspend(struct dm_target *ti)
2690 {
2691 struct cache *cache = ti->private;
2692
2693 start_quiescing(cache);
2694 wait_for_migrations(cache);
2695 stop_worker(cache);
2696 requeue_deferred_io(cache);
2697 stop_quiescing(cache);
2698
2699 (void) sync_metadata(cache);
2700 }
2701
2702 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2703 bool dirty, uint32_t hint, bool hint_valid)
2704 {
2705 int r;
2706 struct cache *cache = context;
2707
2708 r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2709 if (r)
2710 return r;
2711
2712 if (dirty)
2713 set_dirty(cache, oblock, cblock);
2714 else
2715 clear_dirty(cache, oblock, cblock);
2716
2717 return 0;
2718 }
2719
2720 static int load_discard(void *context, sector_t discard_block_size,
2721 dm_dblock_t dblock, bool discard)
2722 {
2723 struct cache *cache = context;
2724
2725 /* FIXME: handle mis-matched block size */
2726
2727 if (discard)
2728 set_discard(cache, dblock);
2729 else
2730 clear_discard(cache, dblock);
2731
2732 return 0;
2733 }
2734
2735 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2736 {
2737 sector_t size = get_dev_size(cache->cache_dev);
2738 (void) sector_div(size, cache->sectors_per_block);
2739 return to_cblock(size);
2740 }
2741
2742 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2743 {
2744 if (from_cblock(new_size) > from_cblock(cache->cache_size))
2745 return true;
2746
2747 /*
2748 * We can't drop a dirty block when shrinking the cache.
2749 */
2750 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2751 new_size = to_cblock(from_cblock(new_size) + 1);
2752 if (is_dirty(cache, new_size)) {
2753 DMERR("unable to shrink cache; cache block %llu is dirty",
2754 (unsigned long long) from_cblock(new_size));
2755 return false;
2756 }
2757 }
2758
2759 return true;
2760 }
2761
2762 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2763 {
2764 int r;
2765
2766 r = dm_cache_resize(cache->cmd, cache->cache_size);
2767 if (r) {
2768 DMERR("could not resize cache metadata");
2769 return r;
2770 }
2771
2772 cache->cache_size = new_size;
2773
2774 return 0;
2775 }
2776
2777 static int cache_preresume(struct dm_target *ti)
2778 {
2779 int r = 0;
2780 struct cache *cache = ti->private;
2781 dm_cblock_t csize = get_cache_dev_size(cache);
2782
2783 /*
2784 * Check to see if the cache has resized.
2785 */
2786 if (!cache->sized) {
2787 r = resize_cache_dev(cache, csize);
2788 if (r)
2789 return r;
2790
2791 cache->sized = true;
2792
2793 } else if (csize != cache->cache_size) {
2794 if (!can_resize(cache, csize))
2795 return -EINVAL;
2796
2797 r = resize_cache_dev(cache, csize);
2798 if (r)
2799 return r;
2800 }
2801
2802 if (!cache->loaded_mappings) {
2803 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2804 load_mapping, cache);
2805 if (r) {
2806 DMERR("could not load cache mappings");
2807 return r;
2808 }
2809
2810 cache->loaded_mappings = true;
2811 }
2812
2813 if (!cache->loaded_discards) {
2814 r = dm_cache_load_discards(cache->cmd, load_discard, cache);
2815 if (r) {
2816 DMERR("could not load origin discards");
2817 return r;
2818 }
2819
2820 cache->loaded_discards = true;
2821 }
2822
2823 return r;
2824 }
2825
2826 static void cache_resume(struct dm_target *ti)
2827 {
2828 struct cache *cache = ti->private;
2829
2830 cache->need_tick_bio = true;
2831 do_waker(&cache->waker.work);
2832 }
2833
2834 /*
2835 * Status format:
2836 *
2837 * <#used metadata blocks>/<#total metadata blocks>
2838 * <#read hits> <#read misses> <#write hits> <#write misses>
2839 * <#demotions> <#promotions> <#blocks in cache> <#dirty>
2840 * <#features> <features>*
2841 * <#core args> <core args>
2842 * <#policy args> <policy args>*
2843 */
2844 static void cache_status(struct dm_target *ti, status_type_t type,
2845 unsigned status_flags, char *result, unsigned maxlen)
2846 {
2847 int r = 0;
2848 unsigned i;
2849 ssize_t sz = 0;
2850 dm_block_t nr_free_blocks_metadata = 0;
2851 dm_block_t nr_blocks_metadata = 0;
2852 char buf[BDEVNAME_SIZE];
2853 struct cache *cache = ti->private;
2854 dm_cblock_t residency;
2855
2856 switch (type) {
2857 case STATUSTYPE_INFO:
2858 /* Commit to ensure statistics aren't out-of-date */
2859 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2860 r = dm_cache_commit(cache->cmd, false);
2861 if (r)
2862 DMERR("could not commit metadata for accurate status");
2863 }
2864
2865 r = dm_cache_get_free_metadata_block_count(cache->cmd,
2866 &nr_free_blocks_metadata);
2867 if (r) {
2868 DMERR("could not get metadata free block count");
2869 goto err;
2870 }
2871
2872 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2873 if (r) {
2874 DMERR("could not get metadata device size");
2875 goto err;
2876 }
2877
2878 residency = policy_residency(cache->policy);
2879
2880 DMEMIT("%llu/%llu %u %u %u %u %u %u %llu %u ",
2881 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2882 (unsigned long long)nr_blocks_metadata,
2883 (unsigned) atomic_read(&cache->stats.read_hit),
2884 (unsigned) atomic_read(&cache->stats.read_miss),
2885 (unsigned) atomic_read(&cache->stats.write_hit),
2886 (unsigned) atomic_read(&cache->stats.write_miss),
2887 (unsigned) atomic_read(&cache->stats.demotion),
2888 (unsigned) atomic_read(&cache->stats.promotion),
2889 (unsigned long long) from_cblock(residency),
2890 cache->nr_dirty);
2891
2892 if (writethrough_mode(&cache->features))
2893 DMEMIT("1 writethrough ");
2894
2895 else if (passthrough_mode(&cache->features))
2896 DMEMIT("1 passthrough ");
2897
2898 else if (writeback_mode(&cache->features))
2899 DMEMIT("1 writeback ");
2900
2901 else {
2902 DMERR("internal error: unknown io mode: %d", (int) cache->features.io_mode);
2903 goto err;
2904 }
2905
2906 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2907 if (sz < maxlen) {
2908 r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2909 if (r)
2910 DMERR("policy_emit_config_values returned %d", r);
2911 }
2912
2913 break;
2914
2915 case STATUSTYPE_TABLE:
2916 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2917 DMEMIT("%s ", buf);
2918 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2919 DMEMIT("%s ", buf);
2920 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2921 DMEMIT("%s", buf);
2922
2923 for (i = 0; i < cache->nr_ctr_args - 1; i++)
2924 DMEMIT(" %s", cache->ctr_args[i]);
2925 if (cache->nr_ctr_args)
2926 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
2927 }
2928
2929 return;
2930
2931 err:
2932 DMEMIT("Error");
2933 }
2934
2935 /*
2936 * A cache block range can take two forms:
2937 *
2938 * i) A single cblock, eg. '3456'
2939 * ii) A begin and end cblock with dots between, eg. 123-234
2940 */
2941 static int parse_cblock_range(struct cache *cache, const char *str,
2942 struct cblock_range *result)
2943 {
2944 char dummy;
2945 uint64_t b, e;
2946 int r;
2947
2948 /*
2949 * Try and parse form (ii) first.
2950 */
2951 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
2952 if (r < 0)
2953 return r;
2954
2955 if (r == 2) {
2956 result->begin = to_cblock(b);
2957 result->end = to_cblock(e);
2958 return 0;
2959 }
2960
2961 /*
2962 * That didn't work, try form (i).
2963 */
2964 r = sscanf(str, "%llu%c", &b, &dummy);
2965 if (r < 0)
2966 return r;
2967
2968 if (r == 1) {
2969 result->begin = to_cblock(b);
2970 result->end = to_cblock(from_cblock(result->begin) + 1u);
2971 return 0;
2972 }
2973
2974 DMERR("invalid cblock range '%s'", str);
2975 return -EINVAL;
2976 }
2977
2978 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
2979 {
2980 uint64_t b = from_cblock(range->begin);
2981 uint64_t e = from_cblock(range->end);
2982 uint64_t n = from_cblock(cache->cache_size);
2983
2984 if (b >= n) {
2985 DMERR("begin cblock out of range: %llu >= %llu", b, n);
2986 return -EINVAL;
2987 }
2988
2989 if (e > n) {
2990 DMERR("end cblock out of range: %llu > %llu", e, n);
2991 return -EINVAL;
2992 }
2993
2994 if (b >= e) {
2995 DMERR("invalid cblock range: %llu >= %llu", b, e);
2996 return -EINVAL;
2997 }
2998
2999 return 0;
3000 }
3001
3002 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3003 {
3004 struct invalidation_request req;
3005
3006 INIT_LIST_HEAD(&req.list);
3007 req.cblocks = range;
3008 atomic_set(&req.complete, 0);
3009 req.err = 0;
3010 init_waitqueue_head(&req.result_wait);
3011
3012 spin_lock(&cache->invalidation_lock);
3013 list_add(&req.list, &cache->invalidation_requests);
3014 spin_unlock(&cache->invalidation_lock);
3015 wake_worker(cache);
3016
3017 wait_event(req.result_wait, atomic_read(&req.complete));
3018 return req.err;
3019 }
3020
3021 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3022 const char **cblock_ranges)
3023 {
3024 int r = 0;
3025 unsigned i;
3026 struct cblock_range range;
3027
3028 if (!passthrough_mode(&cache->features)) {
3029 DMERR("cache has to be in passthrough mode for invalidation");
3030 return -EPERM;
3031 }
3032
3033 for (i = 0; i < count; i++) {
3034 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3035 if (r)
3036 break;
3037
3038 r = validate_cblock_range(cache, &range);
3039 if (r)
3040 break;
3041
3042 /*
3043 * Pass begin and end origin blocks to the worker and wake it.
3044 */
3045 r = request_invalidation(cache, &range);
3046 if (r)
3047 break;
3048 }
3049
3050 return r;
3051 }
3052
3053 /*
3054 * Supports
3055 * "<key> <value>"
3056 * and
3057 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3058 *
3059 * The key migration_threshold is supported by the cache target core.
3060 */
3061 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3062 {
3063 struct cache *cache = ti->private;
3064
3065 if (!argc)
3066 return -EINVAL;
3067
3068 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3069 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3070
3071 if (argc != 2)
3072 return -EINVAL;
3073
3074 return set_config_value(cache, argv[0], argv[1]);
3075 }
3076
3077 static int cache_iterate_devices(struct dm_target *ti,
3078 iterate_devices_callout_fn fn, void *data)
3079 {
3080 int r = 0;
3081 struct cache *cache = ti->private;
3082
3083 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3084 if (!r)
3085 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3086
3087 return r;
3088 }
3089
3090 /*
3091 * We assume I/O is going to the origin (which is the volume
3092 * more likely to have restrictions e.g. by being striped).
3093 * (Looking up the exact location of the data would be expensive
3094 * and could always be out of date by the time the bio is submitted.)
3095 */
3096 static int cache_bvec_merge(struct dm_target *ti,
3097 struct bvec_merge_data *bvm,
3098 struct bio_vec *biovec, int max_size)
3099 {
3100 struct cache *cache = ti->private;
3101 struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
3102
3103 if (!q->merge_bvec_fn)
3104 return max_size;
3105
3106 bvm->bi_bdev = cache->origin_dev->bdev;
3107 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3108 }
3109
3110 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3111 {
3112 /*
3113 * FIXME: these limits may be incompatible with the cache device
3114 */
3115 limits->max_discard_sectors = cache->discard_block_size * 1024;
3116 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3117 }
3118
3119 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3120 {
3121 struct cache *cache = ti->private;
3122 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3123
3124 /*
3125 * If the system-determined stacked limits are compatible with the
3126 * cache's blocksize (io_opt is a factor) do not override them.
3127 */
3128 if (io_opt_sectors < cache->sectors_per_block ||
3129 do_div(io_opt_sectors, cache->sectors_per_block)) {
3130 blk_limits_io_min(limits, 0);
3131 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3132 }
3133 set_discard_limits(cache, limits);
3134 }
3135
3136 /*----------------------------------------------------------------*/
3137
3138 static struct target_type cache_target = {
3139 .name = "cache",
3140 .version = {1, 2, 0},
3141 .module = THIS_MODULE,
3142 .ctr = cache_ctr,
3143 .dtr = cache_dtr,
3144 .map = cache_map,
3145 .end_io = cache_end_io,
3146 .postsuspend = cache_postsuspend,
3147 .preresume = cache_preresume,
3148 .resume = cache_resume,
3149 .status = cache_status,
3150 .message = cache_message,
3151 .iterate_devices = cache_iterate_devices,
3152 .merge = cache_bvec_merge,
3153 .io_hints = cache_io_hints,
3154 };
3155
3156 static int __init dm_cache_init(void)
3157 {
3158 int r;
3159
3160 r = dm_register_target(&cache_target);
3161 if (r) {
3162 DMERR("cache target registration failed: %d", r);
3163 return r;
3164 }
3165
3166 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3167 if (!migration_cache) {
3168 dm_unregister_target(&cache_target);
3169 return -ENOMEM;
3170 }
3171
3172 return 0;
3173 }
3174
3175 static void __exit dm_cache_exit(void)
3176 {
3177 dm_unregister_target(&cache_target);
3178 kmem_cache_destroy(migration_cache);
3179 }
3180
3181 module_init(dm_cache_init);
3182 module_exit(dm_cache_exit);
3183
3184 MODULE_DESCRIPTION(DM_NAME " cache target");
3185 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3186 MODULE_LICENSE("GPL");
This page took 0.133631 seconds and 5 git commands to generate.