i2c: au1550: relax bus timings a bit
[deliverable/linux.git] / drivers / md / dm-cache-target.c
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20
21 #define DM_MSG_PREFIX "cache"
22
23 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
24 "A percentage of time allocated for copying to and/or from cache");
25
26 /*----------------------------------------------------------------*/
27
28 #define IOT_RESOLUTION 4
29
30 struct io_tracker {
31 spinlock_t lock;
32
33 /*
34 * Sectors of in-flight IO.
35 */
36 sector_t in_flight;
37
38 /*
39 * The time, in jiffies, when this device became idle (if it is
40 * indeed idle).
41 */
42 unsigned long idle_time;
43 unsigned long last_update_time;
44 };
45
46 static void iot_init(struct io_tracker *iot)
47 {
48 spin_lock_init(&iot->lock);
49 iot->in_flight = 0ul;
50 iot->idle_time = 0ul;
51 iot->last_update_time = jiffies;
52 }
53
54 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
55 {
56 if (iot->in_flight)
57 return false;
58
59 return time_after(jiffies, iot->idle_time + jifs);
60 }
61
62 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
63 {
64 bool r;
65 unsigned long flags;
66
67 spin_lock_irqsave(&iot->lock, flags);
68 r = __iot_idle_for(iot, jifs);
69 spin_unlock_irqrestore(&iot->lock, flags);
70
71 return r;
72 }
73
74 static void iot_io_begin(struct io_tracker *iot, sector_t len)
75 {
76 unsigned long flags;
77
78 spin_lock_irqsave(&iot->lock, flags);
79 iot->in_flight += len;
80 spin_unlock_irqrestore(&iot->lock, flags);
81 }
82
83 static void __iot_io_end(struct io_tracker *iot, sector_t len)
84 {
85 iot->in_flight -= len;
86 if (!iot->in_flight)
87 iot->idle_time = jiffies;
88 }
89
90 static void iot_io_end(struct io_tracker *iot, sector_t len)
91 {
92 unsigned long flags;
93
94 spin_lock_irqsave(&iot->lock, flags);
95 __iot_io_end(iot, len);
96 spin_unlock_irqrestore(&iot->lock, flags);
97 }
98
99 /*----------------------------------------------------------------*/
100
101 /*
102 * Glossary:
103 *
104 * oblock: index of an origin block
105 * cblock: index of a cache block
106 * promotion: movement of a block from origin to cache
107 * demotion: movement of a block from cache to origin
108 * migration: movement of a block between the origin and cache device,
109 * either direction
110 */
111
112 /*----------------------------------------------------------------*/
113
114 /*
115 * There are a couple of places where we let a bio run, but want to do some
116 * work before calling its endio function. We do this by temporarily
117 * changing the endio fn.
118 */
119 struct dm_hook_info {
120 bio_end_io_t *bi_end_io;
121 void *bi_private;
122 };
123
124 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
125 bio_end_io_t *bi_end_io, void *bi_private)
126 {
127 h->bi_end_io = bio->bi_end_io;
128 h->bi_private = bio->bi_private;
129
130 bio->bi_end_io = bi_end_io;
131 bio->bi_private = bi_private;
132 }
133
134 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
135 {
136 bio->bi_end_io = h->bi_end_io;
137 bio->bi_private = h->bi_private;
138 }
139
140 /*----------------------------------------------------------------*/
141
142 #define MIGRATION_POOL_SIZE 128
143 #define COMMIT_PERIOD HZ
144 #define MIGRATION_COUNT_WINDOW 10
145
146 /*
147 * The block size of the device holding cache data must be
148 * between 32KB and 1GB.
149 */
150 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
151 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
152
153 enum cache_metadata_mode {
154 CM_WRITE, /* metadata may be changed */
155 CM_READ_ONLY, /* metadata may not be changed */
156 CM_FAIL
157 };
158
159 enum cache_io_mode {
160 /*
161 * Data is written to cached blocks only. These blocks are marked
162 * dirty. If you lose the cache device you will lose data.
163 * Potential performance increase for both reads and writes.
164 */
165 CM_IO_WRITEBACK,
166
167 /*
168 * Data is written to both cache and origin. Blocks are never
169 * dirty. Potential performance benfit for reads only.
170 */
171 CM_IO_WRITETHROUGH,
172
173 /*
174 * A degraded mode useful for various cache coherency situations
175 * (eg, rolling back snapshots). Reads and writes always go to the
176 * origin. If a write goes to a cached oblock, then the cache
177 * block is invalidated.
178 */
179 CM_IO_PASSTHROUGH
180 };
181
182 struct cache_features {
183 enum cache_metadata_mode mode;
184 enum cache_io_mode io_mode;
185 };
186
187 struct cache_stats {
188 atomic_t read_hit;
189 atomic_t read_miss;
190 atomic_t write_hit;
191 atomic_t write_miss;
192 atomic_t demotion;
193 atomic_t promotion;
194 atomic_t copies_avoided;
195 atomic_t cache_cell_clash;
196 atomic_t commit_count;
197 atomic_t discard_count;
198 };
199
200 /*
201 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
202 * the one-past-the-end value.
203 */
204 struct cblock_range {
205 dm_cblock_t begin;
206 dm_cblock_t end;
207 };
208
209 struct invalidation_request {
210 struct list_head list;
211 struct cblock_range *cblocks;
212
213 atomic_t complete;
214 int err;
215
216 wait_queue_head_t result_wait;
217 };
218
219 struct cache {
220 struct dm_target *ti;
221 struct dm_target_callbacks callbacks;
222
223 struct dm_cache_metadata *cmd;
224
225 /*
226 * Metadata is written to this device.
227 */
228 struct dm_dev *metadata_dev;
229
230 /*
231 * The slower of the two data devices. Typically a spindle.
232 */
233 struct dm_dev *origin_dev;
234
235 /*
236 * The faster of the two data devices. Typically an SSD.
237 */
238 struct dm_dev *cache_dev;
239
240 /*
241 * Size of the origin device in _complete_ blocks and native sectors.
242 */
243 dm_oblock_t origin_blocks;
244 sector_t origin_sectors;
245
246 /*
247 * Size of the cache device in blocks.
248 */
249 dm_cblock_t cache_size;
250
251 /*
252 * Fields for converting from sectors to blocks.
253 */
254 uint32_t sectors_per_block;
255 int sectors_per_block_shift;
256
257 spinlock_t lock;
258 struct list_head deferred_cells;
259 struct bio_list deferred_bios;
260 struct bio_list deferred_flush_bios;
261 struct bio_list deferred_writethrough_bios;
262 struct list_head quiesced_migrations;
263 struct list_head completed_migrations;
264 struct list_head need_commit_migrations;
265 sector_t migration_threshold;
266 wait_queue_head_t migration_wait;
267 atomic_t nr_allocated_migrations;
268
269 /*
270 * The number of in flight migrations that are performing
271 * background io. eg, promotion, writeback.
272 */
273 atomic_t nr_io_migrations;
274
275 wait_queue_head_t quiescing_wait;
276 atomic_t quiescing;
277 atomic_t quiescing_ack;
278
279 /*
280 * cache_size entries, dirty if set
281 */
282 atomic_t nr_dirty;
283 unsigned long *dirty_bitset;
284
285 /*
286 * origin_blocks entries, discarded if set.
287 */
288 dm_dblock_t discard_nr_blocks;
289 unsigned long *discard_bitset;
290 uint32_t discard_block_size; /* a power of 2 times sectors per block */
291
292 /*
293 * Rather than reconstructing the table line for the status we just
294 * save it and regurgitate.
295 */
296 unsigned nr_ctr_args;
297 const char **ctr_args;
298
299 struct dm_kcopyd_client *copier;
300 struct workqueue_struct *wq;
301 struct work_struct worker;
302
303 struct delayed_work waker;
304 unsigned long last_commit_jiffies;
305
306 struct dm_bio_prison *prison;
307 struct dm_deferred_set *all_io_ds;
308
309 mempool_t *migration_pool;
310
311 struct dm_cache_policy *policy;
312 unsigned policy_nr_args;
313
314 bool need_tick_bio:1;
315 bool sized:1;
316 bool invalidate:1;
317 bool commit_requested:1;
318 bool loaded_mappings:1;
319 bool loaded_discards:1;
320
321 /*
322 * Cache features such as write-through.
323 */
324 struct cache_features features;
325
326 struct cache_stats stats;
327
328 /*
329 * Invalidation fields.
330 */
331 spinlock_t invalidation_lock;
332 struct list_head invalidation_requests;
333
334 struct io_tracker origin_tracker;
335 };
336
337 struct per_bio_data {
338 bool tick:1;
339 unsigned req_nr:2;
340 struct dm_deferred_entry *all_io_entry;
341 struct dm_hook_info hook_info;
342 sector_t len;
343
344 /*
345 * writethrough fields. These MUST remain at the end of this
346 * structure and the 'cache' member must be the first as it
347 * is used to determine the offset of the writethrough fields.
348 */
349 struct cache *cache;
350 dm_cblock_t cblock;
351 struct dm_bio_details bio_details;
352 };
353
354 struct dm_cache_migration {
355 struct list_head list;
356 struct cache *cache;
357
358 unsigned long start_jiffies;
359 dm_oblock_t old_oblock;
360 dm_oblock_t new_oblock;
361 dm_cblock_t cblock;
362
363 bool err:1;
364 bool discard:1;
365 bool writeback:1;
366 bool demote:1;
367 bool promote:1;
368 bool requeue_holder:1;
369 bool invalidate:1;
370
371 struct dm_bio_prison_cell *old_ocell;
372 struct dm_bio_prison_cell *new_ocell;
373 };
374
375 /*
376 * Processing a bio in the worker thread may require these memory
377 * allocations. We prealloc to avoid deadlocks (the same worker thread
378 * frees them back to the mempool).
379 */
380 struct prealloc {
381 struct dm_cache_migration *mg;
382 struct dm_bio_prison_cell *cell1;
383 struct dm_bio_prison_cell *cell2;
384 };
385
386 static enum cache_metadata_mode get_cache_mode(struct cache *cache);
387
388 static void wake_worker(struct cache *cache)
389 {
390 queue_work(cache->wq, &cache->worker);
391 }
392
393 /*----------------------------------------------------------------*/
394
395 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
396 {
397 /* FIXME: change to use a local slab. */
398 return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
399 }
400
401 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
402 {
403 dm_bio_prison_free_cell(cache->prison, cell);
404 }
405
406 static struct dm_cache_migration *alloc_migration(struct cache *cache)
407 {
408 struct dm_cache_migration *mg;
409
410 mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
411 if (mg) {
412 mg->cache = cache;
413 atomic_inc(&mg->cache->nr_allocated_migrations);
414 }
415
416 return mg;
417 }
418
419 static void free_migration(struct dm_cache_migration *mg)
420 {
421 struct cache *cache = mg->cache;
422
423 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
424 wake_up(&cache->migration_wait);
425
426 mempool_free(mg, cache->migration_pool);
427 }
428
429 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
430 {
431 if (!p->mg) {
432 p->mg = alloc_migration(cache);
433 if (!p->mg)
434 return -ENOMEM;
435 }
436
437 if (!p->cell1) {
438 p->cell1 = alloc_prison_cell(cache);
439 if (!p->cell1)
440 return -ENOMEM;
441 }
442
443 if (!p->cell2) {
444 p->cell2 = alloc_prison_cell(cache);
445 if (!p->cell2)
446 return -ENOMEM;
447 }
448
449 return 0;
450 }
451
452 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
453 {
454 if (p->cell2)
455 free_prison_cell(cache, p->cell2);
456
457 if (p->cell1)
458 free_prison_cell(cache, p->cell1);
459
460 if (p->mg)
461 free_migration(p->mg);
462 }
463
464 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
465 {
466 struct dm_cache_migration *mg = p->mg;
467
468 BUG_ON(!mg);
469 p->mg = NULL;
470
471 return mg;
472 }
473
474 /*
475 * You must have a cell within the prealloc struct to return. If not this
476 * function will BUG() rather than returning NULL.
477 */
478 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
479 {
480 struct dm_bio_prison_cell *r = NULL;
481
482 if (p->cell1) {
483 r = p->cell1;
484 p->cell1 = NULL;
485
486 } else if (p->cell2) {
487 r = p->cell2;
488 p->cell2 = NULL;
489 } else
490 BUG();
491
492 return r;
493 }
494
495 /*
496 * You can't have more than two cells in a prealloc struct. BUG() will be
497 * called if you try and overfill.
498 */
499 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
500 {
501 if (!p->cell2)
502 p->cell2 = cell;
503
504 else if (!p->cell1)
505 p->cell1 = cell;
506
507 else
508 BUG();
509 }
510
511 /*----------------------------------------------------------------*/
512
513 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
514 {
515 key->virtual = 0;
516 key->dev = 0;
517 key->block_begin = from_oblock(begin);
518 key->block_end = from_oblock(end);
519 }
520
521 /*
522 * The caller hands in a preallocated cell, and a free function for it.
523 * The cell will be freed if there's an error, or if it wasn't used because
524 * a cell with that key already exists.
525 */
526 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
527
528 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
529 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
530 cell_free_fn free_fn, void *free_context,
531 struct dm_bio_prison_cell **cell_result)
532 {
533 int r;
534 struct dm_cell_key key;
535
536 build_key(oblock_begin, oblock_end, &key);
537 r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
538 if (r)
539 free_fn(free_context, cell_prealloc);
540
541 return r;
542 }
543
544 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
545 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
546 cell_free_fn free_fn, void *free_context,
547 struct dm_bio_prison_cell **cell_result)
548 {
549 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
550 return bio_detain_range(cache, oblock, end, bio,
551 cell_prealloc, free_fn, free_context, cell_result);
552 }
553
554 static int get_cell(struct cache *cache,
555 dm_oblock_t oblock,
556 struct prealloc *structs,
557 struct dm_bio_prison_cell **cell_result)
558 {
559 int r;
560 struct dm_cell_key key;
561 struct dm_bio_prison_cell *cell_prealloc;
562
563 cell_prealloc = prealloc_get_cell(structs);
564
565 build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
566 r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
567 if (r)
568 prealloc_put_cell(structs, cell_prealloc);
569
570 return r;
571 }
572
573 /*----------------------------------------------------------------*/
574
575 static bool is_dirty(struct cache *cache, dm_cblock_t b)
576 {
577 return test_bit(from_cblock(b), cache->dirty_bitset);
578 }
579
580 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
581 {
582 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
583 atomic_inc(&cache->nr_dirty);
584 policy_set_dirty(cache->policy, oblock);
585 }
586 }
587
588 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
589 {
590 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
591 policy_clear_dirty(cache->policy, oblock);
592 if (atomic_dec_return(&cache->nr_dirty) == 0)
593 dm_table_event(cache->ti->table);
594 }
595 }
596
597 /*----------------------------------------------------------------*/
598
599 static bool block_size_is_power_of_two(struct cache *cache)
600 {
601 return cache->sectors_per_block_shift >= 0;
602 }
603
604 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
605 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
606 __always_inline
607 #endif
608 static dm_block_t block_div(dm_block_t b, uint32_t n)
609 {
610 do_div(b, n);
611
612 return b;
613 }
614
615 static dm_block_t oblocks_per_dblock(struct cache *cache)
616 {
617 dm_block_t oblocks = cache->discard_block_size;
618
619 if (block_size_is_power_of_two(cache))
620 oblocks >>= cache->sectors_per_block_shift;
621 else
622 oblocks = block_div(oblocks, cache->sectors_per_block);
623
624 return oblocks;
625 }
626
627 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
628 {
629 return to_dblock(block_div(from_oblock(oblock),
630 oblocks_per_dblock(cache)));
631 }
632
633 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
634 {
635 return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
636 }
637
638 static void set_discard(struct cache *cache, dm_dblock_t b)
639 {
640 unsigned long flags;
641
642 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
643 atomic_inc(&cache->stats.discard_count);
644
645 spin_lock_irqsave(&cache->lock, flags);
646 set_bit(from_dblock(b), cache->discard_bitset);
647 spin_unlock_irqrestore(&cache->lock, flags);
648 }
649
650 static void clear_discard(struct cache *cache, dm_dblock_t b)
651 {
652 unsigned long flags;
653
654 spin_lock_irqsave(&cache->lock, flags);
655 clear_bit(from_dblock(b), cache->discard_bitset);
656 spin_unlock_irqrestore(&cache->lock, flags);
657 }
658
659 static bool is_discarded(struct cache *cache, dm_dblock_t b)
660 {
661 int r;
662 unsigned long flags;
663
664 spin_lock_irqsave(&cache->lock, flags);
665 r = test_bit(from_dblock(b), cache->discard_bitset);
666 spin_unlock_irqrestore(&cache->lock, flags);
667
668 return r;
669 }
670
671 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
672 {
673 int r;
674 unsigned long flags;
675
676 spin_lock_irqsave(&cache->lock, flags);
677 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
678 cache->discard_bitset);
679 spin_unlock_irqrestore(&cache->lock, flags);
680
681 return r;
682 }
683
684 /*----------------------------------------------------------------*/
685
686 static void load_stats(struct cache *cache)
687 {
688 struct dm_cache_statistics stats;
689
690 dm_cache_metadata_get_stats(cache->cmd, &stats);
691 atomic_set(&cache->stats.read_hit, stats.read_hits);
692 atomic_set(&cache->stats.read_miss, stats.read_misses);
693 atomic_set(&cache->stats.write_hit, stats.write_hits);
694 atomic_set(&cache->stats.write_miss, stats.write_misses);
695 }
696
697 static void save_stats(struct cache *cache)
698 {
699 struct dm_cache_statistics stats;
700
701 if (get_cache_mode(cache) >= CM_READ_ONLY)
702 return;
703
704 stats.read_hits = atomic_read(&cache->stats.read_hit);
705 stats.read_misses = atomic_read(&cache->stats.read_miss);
706 stats.write_hits = atomic_read(&cache->stats.write_hit);
707 stats.write_misses = atomic_read(&cache->stats.write_miss);
708
709 dm_cache_metadata_set_stats(cache->cmd, &stats);
710 }
711
712 /*----------------------------------------------------------------
713 * Per bio data
714 *--------------------------------------------------------------*/
715
716 /*
717 * If using writeback, leave out struct per_bio_data's writethrough fields.
718 */
719 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
720 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
721
722 static bool writethrough_mode(struct cache_features *f)
723 {
724 return f->io_mode == CM_IO_WRITETHROUGH;
725 }
726
727 static bool writeback_mode(struct cache_features *f)
728 {
729 return f->io_mode == CM_IO_WRITEBACK;
730 }
731
732 static bool passthrough_mode(struct cache_features *f)
733 {
734 return f->io_mode == CM_IO_PASSTHROUGH;
735 }
736
737 static size_t get_per_bio_data_size(struct cache *cache)
738 {
739 return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
740 }
741
742 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
743 {
744 struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
745 BUG_ON(!pb);
746 return pb;
747 }
748
749 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
750 {
751 struct per_bio_data *pb = get_per_bio_data(bio, data_size);
752
753 pb->tick = false;
754 pb->req_nr = dm_bio_get_target_bio_nr(bio);
755 pb->all_io_entry = NULL;
756 pb->len = 0;
757
758 return pb;
759 }
760
761 /*----------------------------------------------------------------
762 * Remapping
763 *--------------------------------------------------------------*/
764 static void remap_to_origin(struct cache *cache, struct bio *bio)
765 {
766 bio->bi_bdev = cache->origin_dev->bdev;
767 }
768
769 static void remap_to_cache(struct cache *cache, struct bio *bio,
770 dm_cblock_t cblock)
771 {
772 sector_t bi_sector = bio->bi_iter.bi_sector;
773 sector_t block = from_cblock(cblock);
774
775 bio->bi_bdev = cache->cache_dev->bdev;
776 if (!block_size_is_power_of_two(cache))
777 bio->bi_iter.bi_sector =
778 (block * cache->sectors_per_block) +
779 sector_div(bi_sector, cache->sectors_per_block);
780 else
781 bio->bi_iter.bi_sector =
782 (block << cache->sectors_per_block_shift) |
783 (bi_sector & (cache->sectors_per_block - 1));
784 }
785
786 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
787 {
788 unsigned long flags;
789 size_t pb_data_size = get_per_bio_data_size(cache);
790 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
791
792 spin_lock_irqsave(&cache->lock, flags);
793 if (cache->need_tick_bio &&
794 !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
795 pb->tick = true;
796 cache->need_tick_bio = false;
797 }
798 spin_unlock_irqrestore(&cache->lock, flags);
799 }
800
801 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
802 dm_oblock_t oblock)
803 {
804 check_if_tick_bio_needed(cache, bio);
805 remap_to_origin(cache, bio);
806 if (bio_data_dir(bio) == WRITE)
807 clear_discard(cache, oblock_to_dblock(cache, oblock));
808 }
809
810 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
811 dm_oblock_t oblock, dm_cblock_t cblock)
812 {
813 check_if_tick_bio_needed(cache, bio);
814 remap_to_cache(cache, bio, cblock);
815 if (bio_data_dir(bio) == WRITE) {
816 set_dirty(cache, oblock, cblock);
817 clear_discard(cache, oblock_to_dblock(cache, oblock));
818 }
819 }
820
821 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
822 {
823 sector_t block_nr = bio->bi_iter.bi_sector;
824
825 if (!block_size_is_power_of_two(cache))
826 (void) sector_div(block_nr, cache->sectors_per_block);
827 else
828 block_nr >>= cache->sectors_per_block_shift;
829
830 return to_oblock(block_nr);
831 }
832
833 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
834 {
835 return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
836 }
837
838 /*
839 * You must increment the deferred set whilst the prison cell is held. To
840 * encourage this, we ask for 'cell' to be passed in.
841 */
842 static void inc_ds(struct cache *cache, struct bio *bio,
843 struct dm_bio_prison_cell *cell)
844 {
845 size_t pb_data_size = get_per_bio_data_size(cache);
846 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
847
848 BUG_ON(!cell);
849 BUG_ON(pb->all_io_entry);
850
851 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
852 }
853
854 static bool accountable_bio(struct cache *cache, struct bio *bio)
855 {
856 return ((bio->bi_bdev == cache->origin_dev->bdev) &&
857 !(bio->bi_rw & REQ_DISCARD));
858 }
859
860 static void accounted_begin(struct cache *cache, struct bio *bio)
861 {
862 size_t pb_data_size = get_per_bio_data_size(cache);
863 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
864
865 if (accountable_bio(cache, bio)) {
866 pb->len = bio_sectors(bio);
867 iot_io_begin(&cache->origin_tracker, pb->len);
868 }
869 }
870
871 static void accounted_complete(struct cache *cache, struct bio *bio)
872 {
873 size_t pb_data_size = get_per_bio_data_size(cache);
874 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
875
876 iot_io_end(&cache->origin_tracker, pb->len);
877 }
878
879 static void accounted_request(struct cache *cache, struct bio *bio)
880 {
881 accounted_begin(cache, bio);
882 generic_make_request(bio);
883 }
884
885 static void issue(struct cache *cache, struct bio *bio)
886 {
887 unsigned long flags;
888
889 if (!bio_triggers_commit(cache, bio)) {
890 accounted_request(cache, bio);
891 return;
892 }
893
894 /*
895 * Batch together any bios that trigger commits and then issue a
896 * single commit for them in do_worker().
897 */
898 spin_lock_irqsave(&cache->lock, flags);
899 cache->commit_requested = true;
900 bio_list_add(&cache->deferred_flush_bios, bio);
901 spin_unlock_irqrestore(&cache->lock, flags);
902 }
903
904 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
905 {
906 inc_ds(cache, bio, cell);
907 issue(cache, bio);
908 }
909
910 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
911 {
912 unsigned long flags;
913
914 spin_lock_irqsave(&cache->lock, flags);
915 bio_list_add(&cache->deferred_writethrough_bios, bio);
916 spin_unlock_irqrestore(&cache->lock, flags);
917
918 wake_worker(cache);
919 }
920
921 static void writethrough_endio(struct bio *bio)
922 {
923 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
924
925 dm_unhook_bio(&pb->hook_info, bio);
926
927 if (bio->bi_error) {
928 bio_endio(bio);
929 return;
930 }
931
932 dm_bio_restore(&pb->bio_details, bio);
933 remap_to_cache(pb->cache, bio, pb->cblock);
934
935 /*
936 * We can't issue this bio directly, since we're in interrupt
937 * context. So it gets put on a bio list for processing by the
938 * worker thread.
939 */
940 defer_writethrough_bio(pb->cache, bio);
941 }
942
943 /*
944 * When running in writethrough mode we need to send writes to clean blocks
945 * to both the cache and origin devices. In future we'd like to clone the
946 * bio and send them in parallel, but for now we're doing them in
947 * series as this is easier.
948 */
949 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
950 dm_oblock_t oblock, dm_cblock_t cblock)
951 {
952 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
953
954 pb->cache = cache;
955 pb->cblock = cblock;
956 dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
957 dm_bio_record(&pb->bio_details, bio);
958
959 remap_to_origin_clear_discard(pb->cache, bio, oblock);
960 }
961
962 /*----------------------------------------------------------------
963 * Failure modes
964 *--------------------------------------------------------------*/
965 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
966 {
967 return cache->features.mode;
968 }
969
970 static const char *cache_device_name(struct cache *cache)
971 {
972 return dm_device_name(dm_table_get_md(cache->ti->table));
973 }
974
975 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
976 {
977 const char *descs[] = {
978 "write",
979 "read-only",
980 "fail"
981 };
982
983 dm_table_event(cache->ti->table);
984 DMINFO("%s: switching cache to %s mode",
985 cache_device_name(cache), descs[(int)mode]);
986 }
987
988 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
989 {
990 bool needs_check = dm_cache_metadata_needs_check(cache->cmd);
991 enum cache_metadata_mode old_mode = get_cache_mode(cache);
992
993 if (new_mode == CM_WRITE && needs_check) {
994 DMERR("%s: unable to switch cache to write mode until repaired.",
995 cache_device_name(cache));
996 if (old_mode != new_mode)
997 new_mode = old_mode;
998 else
999 new_mode = CM_READ_ONLY;
1000 }
1001
1002 /* Never move out of fail mode */
1003 if (old_mode == CM_FAIL)
1004 new_mode = CM_FAIL;
1005
1006 switch (new_mode) {
1007 case CM_FAIL:
1008 case CM_READ_ONLY:
1009 dm_cache_metadata_set_read_only(cache->cmd);
1010 break;
1011
1012 case CM_WRITE:
1013 dm_cache_metadata_set_read_write(cache->cmd);
1014 break;
1015 }
1016
1017 cache->features.mode = new_mode;
1018
1019 if (new_mode != old_mode)
1020 notify_mode_switch(cache, new_mode);
1021 }
1022
1023 static void abort_transaction(struct cache *cache)
1024 {
1025 const char *dev_name = cache_device_name(cache);
1026
1027 if (get_cache_mode(cache) >= CM_READ_ONLY)
1028 return;
1029
1030 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1031 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1032 set_cache_mode(cache, CM_FAIL);
1033 }
1034
1035 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1036 if (dm_cache_metadata_abort(cache->cmd)) {
1037 DMERR("%s: failed to abort metadata transaction", dev_name);
1038 set_cache_mode(cache, CM_FAIL);
1039 }
1040 }
1041
1042 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1043 {
1044 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1045 cache_device_name(cache), op, r);
1046 abort_transaction(cache);
1047 set_cache_mode(cache, CM_READ_ONLY);
1048 }
1049
1050 /*----------------------------------------------------------------
1051 * Migration processing
1052 *
1053 * Migration covers moving data from the origin device to the cache, or
1054 * vice versa.
1055 *--------------------------------------------------------------*/
1056 static void inc_io_migrations(struct cache *cache)
1057 {
1058 atomic_inc(&cache->nr_io_migrations);
1059 }
1060
1061 static void dec_io_migrations(struct cache *cache)
1062 {
1063 atomic_dec(&cache->nr_io_migrations);
1064 }
1065
1066 static bool discard_or_flush(struct bio *bio)
1067 {
1068 return bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD);
1069 }
1070
1071 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
1072 {
1073 if (discard_or_flush(cell->holder)) {
1074 /*
1075 * We have to handle these bios individually.
1076 */
1077 dm_cell_release(cache->prison, cell, &cache->deferred_bios);
1078 free_prison_cell(cache, cell);
1079 } else
1080 list_add_tail(&cell->user_list, &cache->deferred_cells);
1081 }
1082
1083 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
1084 {
1085 unsigned long flags;
1086
1087 if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1088 /*
1089 * There was no prisoner to promote to holder, the
1090 * cell has been released.
1091 */
1092 free_prison_cell(cache, cell);
1093 return;
1094 }
1095
1096 spin_lock_irqsave(&cache->lock, flags);
1097 __cell_defer(cache, cell);
1098 spin_unlock_irqrestore(&cache->lock, flags);
1099
1100 wake_worker(cache);
1101 }
1102
1103 static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1104 {
1105 dm_cell_error(cache->prison, cell, err);
1106 free_prison_cell(cache, cell);
1107 }
1108
1109 static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1110 {
1111 cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
1112 }
1113
1114 static void free_io_migration(struct dm_cache_migration *mg)
1115 {
1116 struct cache *cache = mg->cache;
1117
1118 dec_io_migrations(cache);
1119 free_migration(mg);
1120 wake_worker(cache);
1121 }
1122
1123 static void migration_failure(struct dm_cache_migration *mg)
1124 {
1125 struct cache *cache = mg->cache;
1126 const char *dev_name = cache_device_name(cache);
1127
1128 if (mg->writeback) {
1129 DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1130 set_dirty(cache, mg->old_oblock, mg->cblock);
1131 cell_defer(cache, mg->old_ocell, false);
1132
1133 } else if (mg->demote) {
1134 DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1135 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1136
1137 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1138 if (mg->promote)
1139 cell_defer(cache, mg->new_ocell, true);
1140 } else {
1141 DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1142 policy_remove_mapping(cache->policy, mg->new_oblock);
1143 cell_defer(cache, mg->new_ocell, true);
1144 }
1145
1146 free_io_migration(mg);
1147 }
1148
1149 static void migration_success_pre_commit(struct dm_cache_migration *mg)
1150 {
1151 int r;
1152 unsigned long flags;
1153 struct cache *cache = mg->cache;
1154
1155 if (mg->writeback) {
1156 clear_dirty(cache, mg->old_oblock, mg->cblock);
1157 cell_defer(cache, mg->old_ocell, false);
1158 free_io_migration(mg);
1159 return;
1160
1161 } else if (mg->demote) {
1162 r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1163 if (r) {
1164 DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1165 cache_device_name(cache));
1166 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1167 policy_force_mapping(cache->policy, mg->new_oblock,
1168 mg->old_oblock);
1169 if (mg->promote)
1170 cell_defer(cache, mg->new_ocell, true);
1171 free_io_migration(mg);
1172 return;
1173 }
1174 } else {
1175 r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1176 if (r) {
1177 DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1178 cache_device_name(cache));
1179 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1180 policy_remove_mapping(cache->policy, mg->new_oblock);
1181 free_io_migration(mg);
1182 return;
1183 }
1184 }
1185
1186 spin_lock_irqsave(&cache->lock, flags);
1187 list_add_tail(&mg->list, &cache->need_commit_migrations);
1188 cache->commit_requested = true;
1189 spin_unlock_irqrestore(&cache->lock, flags);
1190 }
1191
1192 static void migration_success_post_commit(struct dm_cache_migration *mg)
1193 {
1194 unsigned long flags;
1195 struct cache *cache = mg->cache;
1196
1197 if (mg->writeback) {
1198 DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1199 cache_device_name(cache));
1200 return;
1201
1202 } else if (mg->demote) {
1203 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1204
1205 if (mg->promote) {
1206 mg->demote = false;
1207
1208 spin_lock_irqsave(&cache->lock, flags);
1209 list_add_tail(&mg->list, &cache->quiesced_migrations);
1210 spin_unlock_irqrestore(&cache->lock, flags);
1211
1212 } else {
1213 if (mg->invalidate)
1214 policy_remove_mapping(cache->policy, mg->old_oblock);
1215 free_io_migration(mg);
1216 }
1217
1218 } else {
1219 if (mg->requeue_holder) {
1220 clear_dirty(cache, mg->new_oblock, mg->cblock);
1221 cell_defer(cache, mg->new_ocell, true);
1222 } else {
1223 /*
1224 * The block was promoted via an overwrite, so it's dirty.
1225 */
1226 set_dirty(cache, mg->new_oblock, mg->cblock);
1227 bio_endio(mg->new_ocell->holder);
1228 cell_defer(cache, mg->new_ocell, false);
1229 }
1230 free_io_migration(mg);
1231 }
1232 }
1233
1234 static void copy_complete(int read_err, unsigned long write_err, void *context)
1235 {
1236 unsigned long flags;
1237 struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1238 struct cache *cache = mg->cache;
1239
1240 if (read_err || write_err)
1241 mg->err = true;
1242
1243 spin_lock_irqsave(&cache->lock, flags);
1244 list_add_tail(&mg->list, &cache->completed_migrations);
1245 spin_unlock_irqrestore(&cache->lock, flags);
1246
1247 wake_worker(cache);
1248 }
1249
1250 static void issue_copy(struct dm_cache_migration *mg)
1251 {
1252 int r;
1253 struct dm_io_region o_region, c_region;
1254 struct cache *cache = mg->cache;
1255 sector_t cblock = from_cblock(mg->cblock);
1256
1257 o_region.bdev = cache->origin_dev->bdev;
1258 o_region.count = cache->sectors_per_block;
1259
1260 c_region.bdev = cache->cache_dev->bdev;
1261 c_region.sector = cblock * cache->sectors_per_block;
1262 c_region.count = cache->sectors_per_block;
1263
1264 if (mg->writeback || mg->demote) {
1265 /* demote */
1266 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1267 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1268 } else {
1269 /* promote */
1270 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1271 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1272 }
1273
1274 if (r < 0) {
1275 DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1276 migration_failure(mg);
1277 }
1278 }
1279
1280 static void overwrite_endio(struct bio *bio)
1281 {
1282 struct dm_cache_migration *mg = bio->bi_private;
1283 struct cache *cache = mg->cache;
1284 size_t pb_data_size = get_per_bio_data_size(cache);
1285 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1286 unsigned long flags;
1287
1288 dm_unhook_bio(&pb->hook_info, bio);
1289
1290 if (bio->bi_error)
1291 mg->err = true;
1292
1293 mg->requeue_holder = false;
1294
1295 spin_lock_irqsave(&cache->lock, flags);
1296 list_add_tail(&mg->list, &cache->completed_migrations);
1297 spin_unlock_irqrestore(&cache->lock, flags);
1298
1299 wake_worker(cache);
1300 }
1301
1302 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1303 {
1304 size_t pb_data_size = get_per_bio_data_size(mg->cache);
1305 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1306
1307 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1308 remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1309
1310 /*
1311 * No need to inc_ds() here, since the cell will be held for the
1312 * duration of the io.
1313 */
1314 accounted_request(mg->cache, bio);
1315 }
1316
1317 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1318 {
1319 return (bio_data_dir(bio) == WRITE) &&
1320 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1321 }
1322
1323 static void avoid_copy(struct dm_cache_migration *mg)
1324 {
1325 atomic_inc(&mg->cache->stats.copies_avoided);
1326 migration_success_pre_commit(mg);
1327 }
1328
1329 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1330 dm_dblock_t *b, dm_dblock_t *e)
1331 {
1332 sector_t sb = bio->bi_iter.bi_sector;
1333 sector_t se = bio_end_sector(bio);
1334
1335 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1336
1337 if (se - sb < cache->discard_block_size)
1338 *e = *b;
1339 else
1340 *e = to_dblock(block_div(se, cache->discard_block_size));
1341 }
1342
1343 static void issue_discard(struct dm_cache_migration *mg)
1344 {
1345 dm_dblock_t b, e;
1346 struct bio *bio = mg->new_ocell->holder;
1347 struct cache *cache = mg->cache;
1348
1349 calc_discard_block_range(cache, bio, &b, &e);
1350 while (b != e) {
1351 set_discard(cache, b);
1352 b = to_dblock(from_dblock(b) + 1);
1353 }
1354
1355 bio_endio(bio);
1356 cell_defer(cache, mg->new_ocell, false);
1357 free_migration(mg);
1358 wake_worker(cache);
1359 }
1360
1361 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1362 {
1363 bool avoid;
1364 struct cache *cache = mg->cache;
1365
1366 if (mg->discard) {
1367 issue_discard(mg);
1368 return;
1369 }
1370
1371 if (mg->writeback || mg->demote)
1372 avoid = !is_dirty(cache, mg->cblock) ||
1373 is_discarded_oblock(cache, mg->old_oblock);
1374 else {
1375 struct bio *bio = mg->new_ocell->holder;
1376
1377 avoid = is_discarded_oblock(cache, mg->new_oblock);
1378
1379 if (writeback_mode(&cache->features) &&
1380 !avoid && bio_writes_complete_block(cache, bio)) {
1381 issue_overwrite(mg, bio);
1382 return;
1383 }
1384 }
1385
1386 avoid ? avoid_copy(mg) : issue_copy(mg);
1387 }
1388
1389 static void complete_migration(struct dm_cache_migration *mg)
1390 {
1391 if (mg->err)
1392 migration_failure(mg);
1393 else
1394 migration_success_pre_commit(mg);
1395 }
1396
1397 static void process_migrations(struct cache *cache, struct list_head *head,
1398 void (*fn)(struct dm_cache_migration *))
1399 {
1400 unsigned long flags;
1401 struct list_head list;
1402 struct dm_cache_migration *mg, *tmp;
1403
1404 INIT_LIST_HEAD(&list);
1405 spin_lock_irqsave(&cache->lock, flags);
1406 list_splice_init(head, &list);
1407 spin_unlock_irqrestore(&cache->lock, flags);
1408
1409 list_for_each_entry_safe(mg, tmp, &list, list)
1410 fn(mg);
1411 }
1412
1413 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1414 {
1415 list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1416 }
1417
1418 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1419 {
1420 unsigned long flags;
1421 struct cache *cache = mg->cache;
1422
1423 spin_lock_irqsave(&cache->lock, flags);
1424 __queue_quiesced_migration(mg);
1425 spin_unlock_irqrestore(&cache->lock, flags);
1426
1427 wake_worker(cache);
1428 }
1429
1430 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1431 {
1432 unsigned long flags;
1433 struct dm_cache_migration *mg, *tmp;
1434
1435 spin_lock_irqsave(&cache->lock, flags);
1436 list_for_each_entry_safe(mg, tmp, work, list)
1437 __queue_quiesced_migration(mg);
1438 spin_unlock_irqrestore(&cache->lock, flags);
1439
1440 wake_worker(cache);
1441 }
1442
1443 static void check_for_quiesced_migrations(struct cache *cache,
1444 struct per_bio_data *pb)
1445 {
1446 struct list_head work;
1447
1448 if (!pb->all_io_entry)
1449 return;
1450
1451 INIT_LIST_HEAD(&work);
1452 dm_deferred_entry_dec(pb->all_io_entry, &work);
1453
1454 if (!list_empty(&work))
1455 queue_quiesced_migrations(cache, &work);
1456 }
1457
1458 static void quiesce_migration(struct dm_cache_migration *mg)
1459 {
1460 if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1461 queue_quiesced_migration(mg);
1462 }
1463
1464 static void promote(struct cache *cache, struct prealloc *structs,
1465 dm_oblock_t oblock, dm_cblock_t cblock,
1466 struct dm_bio_prison_cell *cell)
1467 {
1468 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1469
1470 mg->err = false;
1471 mg->discard = false;
1472 mg->writeback = false;
1473 mg->demote = false;
1474 mg->promote = true;
1475 mg->requeue_holder = true;
1476 mg->invalidate = false;
1477 mg->cache = cache;
1478 mg->new_oblock = oblock;
1479 mg->cblock = cblock;
1480 mg->old_ocell = NULL;
1481 mg->new_ocell = cell;
1482 mg->start_jiffies = jiffies;
1483
1484 inc_io_migrations(cache);
1485 quiesce_migration(mg);
1486 }
1487
1488 static void writeback(struct cache *cache, struct prealloc *structs,
1489 dm_oblock_t oblock, dm_cblock_t cblock,
1490 struct dm_bio_prison_cell *cell)
1491 {
1492 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1493
1494 mg->err = false;
1495 mg->discard = false;
1496 mg->writeback = true;
1497 mg->demote = false;
1498 mg->promote = false;
1499 mg->requeue_holder = true;
1500 mg->invalidate = false;
1501 mg->cache = cache;
1502 mg->old_oblock = oblock;
1503 mg->cblock = cblock;
1504 mg->old_ocell = cell;
1505 mg->new_ocell = NULL;
1506 mg->start_jiffies = jiffies;
1507
1508 inc_io_migrations(cache);
1509 quiesce_migration(mg);
1510 }
1511
1512 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1513 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1514 dm_cblock_t cblock,
1515 struct dm_bio_prison_cell *old_ocell,
1516 struct dm_bio_prison_cell *new_ocell)
1517 {
1518 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1519
1520 mg->err = false;
1521 mg->discard = false;
1522 mg->writeback = false;
1523 mg->demote = true;
1524 mg->promote = true;
1525 mg->requeue_holder = true;
1526 mg->invalidate = false;
1527 mg->cache = cache;
1528 mg->old_oblock = old_oblock;
1529 mg->new_oblock = new_oblock;
1530 mg->cblock = cblock;
1531 mg->old_ocell = old_ocell;
1532 mg->new_ocell = new_ocell;
1533 mg->start_jiffies = jiffies;
1534
1535 inc_io_migrations(cache);
1536 quiesce_migration(mg);
1537 }
1538
1539 /*
1540 * Invalidate a cache entry. No writeback occurs; any changes in the cache
1541 * block are thrown away.
1542 */
1543 static void invalidate(struct cache *cache, struct prealloc *structs,
1544 dm_oblock_t oblock, dm_cblock_t cblock,
1545 struct dm_bio_prison_cell *cell)
1546 {
1547 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1548
1549 mg->err = false;
1550 mg->discard = false;
1551 mg->writeback = false;
1552 mg->demote = true;
1553 mg->promote = false;
1554 mg->requeue_holder = true;
1555 mg->invalidate = true;
1556 mg->cache = cache;
1557 mg->old_oblock = oblock;
1558 mg->cblock = cblock;
1559 mg->old_ocell = cell;
1560 mg->new_ocell = NULL;
1561 mg->start_jiffies = jiffies;
1562
1563 inc_io_migrations(cache);
1564 quiesce_migration(mg);
1565 }
1566
1567 static void discard(struct cache *cache, struct prealloc *structs,
1568 struct dm_bio_prison_cell *cell)
1569 {
1570 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1571
1572 mg->err = false;
1573 mg->discard = true;
1574 mg->writeback = false;
1575 mg->demote = false;
1576 mg->promote = false;
1577 mg->requeue_holder = false;
1578 mg->invalidate = false;
1579 mg->cache = cache;
1580 mg->old_ocell = NULL;
1581 mg->new_ocell = cell;
1582 mg->start_jiffies = jiffies;
1583
1584 quiesce_migration(mg);
1585 }
1586
1587 /*----------------------------------------------------------------
1588 * bio processing
1589 *--------------------------------------------------------------*/
1590 static void defer_bio(struct cache *cache, struct bio *bio)
1591 {
1592 unsigned long flags;
1593
1594 spin_lock_irqsave(&cache->lock, flags);
1595 bio_list_add(&cache->deferred_bios, bio);
1596 spin_unlock_irqrestore(&cache->lock, flags);
1597
1598 wake_worker(cache);
1599 }
1600
1601 static void process_flush_bio(struct cache *cache, struct bio *bio)
1602 {
1603 size_t pb_data_size = get_per_bio_data_size(cache);
1604 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1605
1606 BUG_ON(bio->bi_iter.bi_size);
1607 if (!pb->req_nr)
1608 remap_to_origin(cache, bio);
1609 else
1610 remap_to_cache(cache, bio, 0);
1611
1612 /*
1613 * REQ_FLUSH is not directed at any particular block so we don't
1614 * need to inc_ds(). REQ_FUA's are split into a write + REQ_FLUSH
1615 * by dm-core.
1616 */
1617 issue(cache, bio);
1618 }
1619
1620 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1621 struct bio *bio)
1622 {
1623 int r;
1624 dm_dblock_t b, e;
1625 struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1626
1627 calc_discard_block_range(cache, bio, &b, &e);
1628 if (b == e) {
1629 bio_endio(bio);
1630 return;
1631 }
1632
1633 cell_prealloc = prealloc_get_cell(structs);
1634 r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1635 (cell_free_fn) prealloc_put_cell,
1636 structs, &new_ocell);
1637 if (r > 0)
1638 return;
1639
1640 discard(cache, structs, new_ocell);
1641 }
1642
1643 static bool spare_migration_bandwidth(struct cache *cache)
1644 {
1645 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1646 cache->sectors_per_block;
1647 return current_volume < cache->migration_threshold;
1648 }
1649
1650 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1651 {
1652 atomic_inc(bio_data_dir(bio) == READ ?
1653 &cache->stats.read_hit : &cache->stats.write_hit);
1654 }
1655
1656 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1657 {
1658 atomic_inc(bio_data_dir(bio) == READ ?
1659 &cache->stats.read_miss : &cache->stats.write_miss);
1660 }
1661
1662 /*----------------------------------------------------------------*/
1663
1664 struct inc_detail {
1665 struct cache *cache;
1666 struct bio_list bios_for_issue;
1667 struct bio_list unhandled_bios;
1668 bool any_writes;
1669 };
1670
1671 static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1672 {
1673 struct bio *bio;
1674 struct inc_detail *detail = context;
1675 struct cache *cache = detail->cache;
1676
1677 inc_ds(cache, cell->holder, cell);
1678 if (bio_data_dir(cell->holder) == WRITE)
1679 detail->any_writes = true;
1680
1681 while ((bio = bio_list_pop(&cell->bios))) {
1682 if (discard_or_flush(bio)) {
1683 bio_list_add(&detail->unhandled_bios, bio);
1684 continue;
1685 }
1686
1687 if (bio_data_dir(bio) == WRITE)
1688 detail->any_writes = true;
1689
1690 bio_list_add(&detail->bios_for_issue, bio);
1691 inc_ds(cache, bio, cell);
1692 }
1693 }
1694
1695 // FIXME: refactor these two
1696 static void remap_cell_to_origin_clear_discard(struct cache *cache,
1697 struct dm_bio_prison_cell *cell,
1698 dm_oblock_t oblock, bool issue_holder)
1699 {
1700 struct bio *bio;
1701 unsigned long flags;
1702 struct inc_detail detail;
1703
1704 detail.cache = cache;
1705 bio_list_init(&detail.bios_for_issue);
1706 bio_list_init(&detail.unhandled_bios);
1707 detail.any_writes = false;
1708
1709 spin_lock_irqsave(&cache->lock, flags);
1710 dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1711 bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1712 spin_unlock_irqrestore(&cache->lock, flags);
1713
1714 remap_to_origin(cache, cell->holder);
1715 if (issue_holder)
1716 issue(cache, cell->holder);
1717 else
1718 accounted_begin(cache, cell->holder);
1719
1720 if (detail.any_writes)
1721 clear_discard(cache, oblock_to_dblock(cache, oblock));
1722
1723 while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1724 remap_to_origin(cache, bio);
1725 issue(cache, bio);
1726 }
1727
1728 free_prison_cell(cache, cell);
1729 }
1730
1731 static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1732 dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1733 {
1734 struct bio *bio;
1735 unsigned long flags;
1736 struct inc_detail detail;
1737
1738 detail.cache = cache;
1739 bio_list_init(&detail.bios_for_issue);
1740 bio_list_init(&detail.unhandled_bios);
1741 detail.any_writes = false;
1742
1743 spin_lock_irqsave(&cache->lock, flags);
1744 dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1745 bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1746 spin_unlock_irqrestore(&cache->lock, flags);
1747
1748 remap_to_cache(cache, cell->holder, cblock);
1749 if (issue_holder)
1750 issue(cache, cell->holder);
1751 else
1752 accounted_begin(cache, cell->holder);
1753
1754 if (detail.any_writes) {
1755 set_dirty(cache, oblock, cblock);
1756 clear_discard(cache, oblock_to_dblock(cache, oblock));
1757 }
1758
1759 while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1760 remap_to_cache(cache, bio, cblock);
1761 issue(cache, bio);
1762 }
1763
1764 free_prison_cell(cache, cell);
1765 }
1766
1767 /*----------------------------------------------------------------*/
1768
1769 struct old_oblock_lock {
1770 struct policy_locker locker;
1771 struct cache *cache;
1772 struct prealloc *structs;
1773 struct dm_bio_prison_cell *cell;
1774 };
1775
1776 static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1777 {
1778 /* This should never be called */
1779 BUG();
1780 return 0;
1781 }
1782
1783 static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1784 {
1785 struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1786 struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1787
1788 return bio_detain(l->cache, b, NULL, cell_prealloc,
1789 (cell_free_fn) prealloc_put_cell,
1790 l->structs, &l->cell);
1791 }
1792
1793 static void process_cell(struct cache *cache, struct prealloc *structs,
1794 struct dm_bio_prison_cell *new_ocell)
1795 {
1796 int r;
1797 bool release_cell = true;
1798 struct bio *bio = new_ocell->holder;
1799 dm_oblock_t block = get_bio_block(cache, bio);
1800 struct policy_result lookup_result;
1801 bool passthrough = passthrough_mode(&cache->features);
1802 bool fast_promotion, can_migrate;
1803 struct old_oblock_lock ool;
1804
1805 fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1806 can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1807
1808 ool.locker.fn = cell_locker;
1809 ool.cache = cache;
1810 ool.structs = structs;
1811 ool.cell = NULL;
1812 r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1813 bio, &ool.locker, &lookup_result);
1814
1815 if (r == -EWOULDBLOCK)
1816 /* migration has been denied */
1817 lookup_result.op = POLICY_MISS;
1818
1819 switch (lookup_result.op) {
1820 case POLICY_HIT:
1821 if (passthrough) {
1822 inc_miss_counter(cache, bio);
1823
1824 /*
1825 * Passthrough always maps to the origin,
1826 * invalidating any cache blocks that are written
1827 * to.
1828 */
1829
1830 if (bio_data_dir(bio) == WRITE) {
1831 atomic_inc(&cache->stats.demotion);
1832 invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1833 release_cell = false;
1834
1835 } else {
1836 /* FIXME: factor out issue_origin() */
1837 remap_to_origin_clear_discard(cache, bio, block);
1838 inc_and_issue(cache, bio, new_ocell);
1839 }
1840 } else {
1841 inc_hit_counter(cache, bio);
1842
1843 if (bio_data_dir(bio) == WRITE &&
1844 writethrough_mode(&cache->features) &&
1845 !is_dirty(cache, lookup_result.cblock)) {
1846 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1847 inc_and_issue(cache, bio, new_ocell);
1848
1849 } else {
1850 remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1851 release_cell = false;
1852 }
1853 }
1854
1855 break;
1856
1857 case POLICY_MISS:
1858 inc_miss_counter(cache, bio);
1859 remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1860 release_cell = false;
1861 break;
1862
1863 case POLICY_NEW:
1864 atomic_inc(&cache->stats.promotion);
1865 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1866 release_cell = false;
1867 break;
1868
1869 case POLICY_REPLACE:
1870 atomic_inc(&cache->stats.demotion);
1871 atomic_inc(&cache->stats.promotion);
1872 demote_then_promote(cache, structs, lookup_result.old_oblock,
1873 block, lookup_result.cblock,
1874 ool.cell, new_ocell);
1875 release_cell = false;
1876 break;
1877
1878 default:
1879 DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1880 cache_device_name(cache), __func__,
1881 (unsigned) lookup_result.op);
1882 bio_io_error(bio);
1883 }
1884
1885 if (release_cell)
1886 cell_defer(cache, new_ocell, false);
1887 }
1888
1889 static void process_bio(struct cache *cache, struct prealloc *structs,
1890 struct bio *bio)
1891 {
1892 int r;
1893 dm_oblock_t block = get_bio_block(cache, bio);
1894 struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1895
1896 /*
1897 * Check to see if that block is currently migrating.
1898 */
1899 cell_prealloc = prealloc_get_cell(structs);
1900 r = bio_detain(cache, block, bio, cell_prealloc,
1901 (cell_free_fn) prealloc_put_cell,
1902 structs, &new_ocell);
1903 if (r > 0)
1904 return;
1905
1906 process_cell(cache, structs, new_ocell);
1907 }
1908
1909 static int need_commit_due_to_time(struct cache *cache)
1910 {
1911 return jiffies < cache->last_commit_jiffies ||
1912 jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1913 }
1914
1915 /*
1916 * A non-zero return indicates read_only or fail_io mode.
1917 */
1918 static int commit(struct cache *cache, bool clean_shutdown)
1919 {
1920 int r;
1921
1922 if (get_cache_mode(cache) >= CM_READ_ONLY)
1923 return -EINVAL;
1924
1925 atomic_inc(&cache->stats.commit_count);
1926 r = dm_cache_commit(cache->cmd, clean_shutdown);
1927 if (r)
1928 metadata_operation_failed(cache, "dm_cache_commit", r);
1929
1930 return r;
1931 }
1932
1933 static int commit_if_needed(struct cache *cache)
1934 {
1935 int r = 0;
1936
1937 if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1938 dm_cache_changed_this_transaction(cache->cmd)) {
1939 r = commit(cache, false);
1940 cache->commit_requested = false;
1941 cache->last_commit_jiffies = jiffies;
1942 }
1943
1944 return r;
1945 }
1946
1947 static void process_deferred_bios(struct cache *cache)
1948 {
1949 bool prealloc_used = false;
1950 unsigned long flags;
1951 struct bio_list bios;
1952 struct bio *bio;
1953 struct prealloc structs;
1954
1955 memset(&structs, 0, sizeof(structs));
1956 bio_list_init(&bios);
1957
1958 spin_lock_irqsave(&cache->lock, flags);
1959 bio_list_merge(&bios, &cache->deferred_bios);
1960 bio_list_init(&cache->deferred_bios);
1961 spin_unlock_irqrestore(&cache->lock, flags);
1962
1963 while (!bio_list_empty(&bios)) {
1964 /*
1965 * If we've got no free migration structs, and processing
1966 * this bio might require one, we pause until there are some
1967 * prepared mappings to process.
1968 */
1969 prealloc_used = true;
1970 if (prealloc_data_structs(cache, &structs)) {
1971 spin_lock_irqsave(&cache->lock, flags);
1972 bio_list_merge(&cache->deferred_bios, &bios);
1973 spin_unlock_irqrestore(&cache->lock, flags);
1974 break;
1975 }
1976
1977 bio = bio_list_pop(&bios);
1978
1979 if (bio->bi_rw & REQ_FLUSH)
1980 process_flush_bio(cache, bio);
1981 else if (bio->bi_rw & REQ_DISCARD)
1982 process_discard_bio(cache, &structs, bio);
1983 else
1984 process_bio(cache, &structs, bio);
1985 }
1986
1987 if (prealloc_used)
1988 prealloc_free_structs(cache, &structs);
1989 }
1990
1991 static void process_deferred_cells(struct cache *cache)
1992 {
1993 bool prealloc_used = false;
1994 unsigned long flags;
1995 struct dm_bio_prison_cell *cell, *tmp;
1996 struct list_head cells;
1997 struct prealloc structs;
1998
1999 memset(&structs, 0, sizeof(structs));
2000
2001 INIT_LIST_HEAD(&cells);
2002
2003 spin_lock_irqsave(&cache->lock, flags);
2004 list_splice_init(&cache->deferred_cells, &cells);
2005 spin_unlock_irqrestore(&cache->lock, flags);
2006
2007 list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2008 /*
2009 * If we've got no free migration structs, and processing
2010 * this bio might require one, we pause until there are some
2011 * prepared mappings to process.
2012 */
2013 prealloc_used = true;
2014 if (prealloc_data_structs(cache, &structs)) {
2015 spin_lock_irqsave(&cache->lock, flags);
2016 list_splice(&cells, &cache->deferred_cells);
2017 spin_unlock_irqrestore(&cache->lock, flags);
2018 break;
2019 }
2020
2021 process_cell(cache, &structs, cell);
2022 }
2023
2024 if (prealloc_used)
2025 prealloc_free_structs(cache, &structs);
2026 }
2027
2028 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2029 {
2030 unsigned long flags;
2031 struct bio_list bios;
2032 struct bio *bio;
2033
2034 bio_list_init(&bios);
2035
2036 spin_lock_irqsave(&cache->lock, flags);
2037 bio_list_merge(&bios, &cache->deferred_flush_bios);
2038 bio_list_init(&cache->deferred_flush_bios);
2039 spin_unlock_irqrestore(&cache->lock, flags);
2040
2041 /*
2042 * These bios have already been through inc_ds()
2043 */
2044 while ((bio = bio_list_pop(&bios)))
2045 submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2046 }
2047
2048 static void process_deferred_writethrough_bios(struct cache *cache)
2049 {
2050 unsigned long flags;
2051 struct bio_list bios;
2052 struct bio *bio;
2053
2054 bio_list_init(&bios);
2055
2056 spin_lock_irqsave(&cache->lock, flags);
2057 bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2058 bio_list_init(&cache->deferred_writethrough_bios);
2059 spin_unlock_irqrestore(&cache->lock, flags);
2060
2061 /*
2062 * These bios have already been through inc_ds()
2063 */
2064 while ((bio = bio_list_pop(&bios)))
2065 accounted_request(cache, bio);
2066 }
2067
2068 static void writeback_some_dirty_blocks(struct cache *cache)
2069 {
2070 bool prealloc_used = false;
2071 dm_oblock_t oblock;
2072 dm_cblock_t cblock;
2073 struct prealloc structs;
2074 struct dm_bio_prison_cell *old_ocell;
2075 bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2076
2077 memset(&structs, 0, sizeof(structs));
2078
2079 while (spare_migration_bandwidth(cache)) {
2080 if (policy_writeback_work(cache->policy, &oblock, &cblock, busy))
2081 break; /* no work to do */
2082
2083 prealloc_used = true;
2084 if (prealloc_data_structs(cache, &structs) ||
2085 get_cell(cache, oblock, &structs, &old_ocell)) {
2086 policy_set_dirty(cache->policy, oblock);
2087 break;
2088 }
2089
2090 writeback(cache, &structs, oblock, cblock, old_ocell);
2091 }
2092
2093 if (prealloc_used)
2094 prealloc_free_structs(cache, &structs);
2095 }
2096
2097 /*----------------------------------------------------------------
2098 * Invalidations.
2099 * Dropping something from the cache *without* writing back.
2100 *--------------------------------------------------------------*/
2101
2102 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2103 {
2104 int r = 0;
2105 uint64_t begin = from_cblock(req->cblocks->begin);
2106 uint64_t end = from_cblock(req->cblocks->end);
2107
2108 while (begin != end) {
2109 r = policy_remove_cblock(cache->policy, to_cblock(begin));
2110 if (!r) {
2111 r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2112 if (r) {
2113 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2114 break;
2115 }
2116
2117 } else if (r == -ENODATA) {
2118 /* harmless, already unmapped */
2119 r = 0;
2120
2121 } else {
2122 DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2123 break;
2124 }
2125
2126 begin++;
2127 }
2128
2129 cache->commit_requested = true;
2130
2131 req->err = r;
2132 atomic_set(&req->complete, 1);
2133
2134 wake_up(&req->result_wait);
2135 }
2136
2137 static void process_invalidation_requests(struct cache *cache)
2138 {
2139 struct list_head list;
2140 struct invalidation_request *req, *tmp;
2141
2142 INIT_LIST_HEAD(&list);
2143 spin_lock(&cache->invalidation_lock);
2144 list_splice_init(&cache->invalidation_requests, &list);
2145 spin_unlock(&cache->invalidation_lock);
2146
2147 list_for_each_entry_safe (req, tmp, &list, list)
2148 process_invalidation_request(cache, req);
2149 }
2150
2151 /*----------------------------------------------------------------
2152 * Main worker loop
2153 *--------------------------------------------------------------*/
2154 static bool is_quiescing(struct cache *cache)
2155 {
2156 return atomic_read(&cache->quiescing);
2157 }
2158
2159 static void ack_quiescing(struct cache *cache)
2160 {
2161 if (is_quiescing(cache)) {
2162 atomic_inc(&cache->quiescing_ack);
2163 wake_up(&cache->quiescing_wait);
2164 }
2165 }
2166
2167 static void wait_for_quiescing_ack(struct cache *cache)
2168 {
2169 wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2170 }
2171
2172 static void start_quiescing(struct cache *cache)
2173 {
2174 atomic_inc(&cache->quiescing);
2175 wait_for_quiescing_ack(cache);
2176 }
2177
2178 static void stop_quiescing(struct cache *cache)
2179 {
2180 atomic_set(&cache->quiescing, 0);
2181 atomic_set(&cache->quiescing_ack, 0);
2182 }
2183
2184 static void wait_for_migrations(struct cache *cache)
2185 {
2186 wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2187 }
2188
2189 static void stop_worker(struct cache *cache)
2190 {
2191 cancel_delayed_work(&cache->waker);
2192 flush_workqueue(cache->wq);
2193 }
2194
2195 static void requeue_deferred_cells(struct cache *cache)
2196 {
2197 unsigned long flags;
2198 struct list_head cells;
2199 struct dm_bio_prison_cell *cell, *tmp;
2200
2201 INIT_LIST_HEAD(&cells);
2202 spin_lock_irqsave(&cache->lock, flags);
2203 list_splice_init(&cache->deferred_cells, &cells);
2204 spin_unlock_irqrestore(&cache->lock, flags);
2205
2206 list_for_each_entry_safe(cell, tmp, &cells, user_list)
2207 cell_requeue(cache, cell);
2208 }
2209
2210 static void requeue_deferred_bios(struct cache *cache)
2211 {
2212 struct bio *bio;
2213 struct bio_list bios;
2214
2215 bio_list_init(&bios);
2216 bio_list_merge(&bios, &cache->deferred_bios);
2217 bio_list_init(&cache->deferred_bios);
2218
2219 while ((bio = bio_list_pop(&bios))) {
2220 bio->bi_error = DM_ENDIO_REQUEUE;
2221 bio_endio(bio);
2222 }
2223 }
2224
2225 static int more_work(struct cache *cache)
2226 {
2227 if (is_quiescing(cache))
2228 return !list_empty(&cache->quiesced_migrations) ||
2229 !list_empty(&cache->completed_migrations) ||
2230 !list_empty(&cache->need_commit_migrations);
2231 else
2232 return !bio_list_empty(&cache->deferred_bios) ||
2233 !list_empty(&cache->deferred_cells) ||
2234 !bio_list_empty(&cache->deferred_flush_bios) ||
2235 !bio_list_empty(&cache->deferred_writethrough_bios) ||
2236 !list_empty(&cache->quiesced_migrations) ||
2237 !list_empty(&cache->completed_migrations) ||
2238 !list_empty(&cache->need_commit_migrations) ||
2239 cache->invalidate;
2240 }
2241
2242 static void do_worker(struct work_struct *ws)
2243 {
2244 struct cache *cache = container_of(ws, struct cache, worker);
2245
2246 do {
2247 if (!is_quiescing(cache)) {
2248 writeback_some_dirty_blocks(cache);
2249 process_deferred_writethrough_bios(cache);
2250 process_deferred_bios(cache);
2251 process_deferred_cells(cache);
2252 process_invalidation_requests(cache);
2253 }
2254
2255 process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2256 process_migrations(cache, &cache->completed_migrations, complete_migration);
2257
2258 if (commit_if_needed(cache)) {
2259 process_deferred_flush_bios(cache, false);
2260 process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2261 } else {
2262 process_deferred_flush_bios(cache, true);
2263 process_migrations(cache, &cache->need_commit_migrations,
2264 migration_success_post_commit);
2265 }
2266
2267 ack_quiescing(cache);
2268
2269 } while (more_work(cache));
2270 }
2271
2272 /*
2273 * We want to commit periodically so that not too much
2274 * unwritten metadata builds up.
2275 */
2276 static void do_waker(struct work_struct *ws)
2277 {
2278 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2279 policy_tick(cache->policy, true);
2280 wake_worker(cache);
2281 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2282 }
2283
2284 /*----------------------------------------------------------------*/
2285
2286 static int is_congested(struct dm_dev *dev, int bdi_bits)
2287 {
2288 struct request_queue *q = bdev_get_queue(dev->bdev);
2289 return bdi_congested(&q->backing_dev_info, bdi_bits);
2290 }
2291
2292 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2293 {
2294 struct cache *cache = container_of(cb, struct cache, callbacks);
2295
2296 return is_congested(cache->origin_dev, bdi_bits) ||
2297 is_congested(cache->cache_dev, bdi_bits);
2298 }
2299
2300 /*----------------------------------------------------------------
2301 * Target methods
2302 *--------------------------------------------------------------*/
2303
2304 /*
2305 * This function gets called on the error paths of the constructor, so we
2306 * have to cope with a partially initialised struct.
2307 */
2308 static void destroy(struct cache *cache)
2309 {
2310 unsigned i;
2311
2312 if (cache->migration_pool)
2313 mempool_destroy(cache->migration_pool);
2314
2315 if (cache->all_io_ds)
2316 dm_deferred_set_destroy(cache->all_io_ds);
2317
2318 if (cache->prison)
2319 dm_bio_prison_destroy(cache->prison);
2320
2321 if (cache->wq)
2322 destroy_workqueue(cache->wq);
2323
2324 if (cache->dirty_bitset)
2325 free_bitset(cache->dirty_bitset);
2326
2327 if (cache->discard_bitset)
2328 free_bitset(cache->discard_bitset);
2329
2330 if (cache->copier)
2331 dm_kcopyd_client_destroy(cache->copier);
2332
2333 if (cache->cmd)
2334 dm_cache_metadata_close(cache->cmd);
2335
2336 if (cache->metadata_dev)
2337 dm_put_device(cache->ti, cache->metadata_dev);
2338
2339 if (cache->origin_dev)
2340 dm_put_device(cache->ti, cache->origin_dev);
2341
2342 if (cache->cache_dev)
2343 dm_put_device(cache->ti, cache->cache_dev);
2344
2345 if (cache->policy)
2346 dm_cache_policy_destroy(cache->policy);
2347
2348 for (i = 0; i < cache->nr_ctr_args ; i++)
2349 kfree(cache->ctr_args[i]);
2350 kfree(cache->ctr_args);
2351
2352 kfree(cache);
2353 }
2354
2355 static void cache_dtr(struct dm_target *ti)
2356 {
2357 struct cache *cache = ti->private;
2358
2359 destroy(cache);
2360 }
2361
2362 static sector_t get_dev_size(struct dm_dev *dev)
2363 {
2364 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2365 }
2366
2367 /*----------------------------------------------------------------*/
2368
2369 /*
2370 * Construct a cache device mapping.
2371 *
2372 * cache <metadata dev> <cache dev> <origin dev> <block size>
2373 * <#feature args> [<feature arg>]*
2374 * <policy> <#policy args> [<policy arg>]*
2375 *
2376 * metadata dev : fast device holding the persistent metadata
2377 * cache dev : fast device holding cached data blocks
2378 * origin dev : slow device holding original data blocks
2379 * block size : cache unit size in sectors
2380 *
2381 * #feature args : number of feature arguments passed
2382 * feature args : writethrough. (The default is writeback.)
2383 *
2384 * policy : the replacement policy to use
2385 * #policy args : an even number of policy arguments corresponding
2386 * to key/value pairs passed to the policy
2387 * policy args : key/value pairs passed to the policy
2388 * E.g. 'sequential_threshold 1024'
2389 * See cache-policies.txt for details.
2390 *
2391 * Optional feature arguments are:
2392 * writethrough : write through caching that prohibits cache block
2393 * content from being different from origin block content.
2394 * Without this argument, the default behaviour is to write
2395 * back cache block contents later for performance reasons,
2396 * so they may differ from the corresponding origin blocks.
2397 */
2398 struct cache_args {
2399 struct dm_target *ti;
2400
2401 struct dm_dev *metadata_dev;
2402
2403 struct dm_dev *cache_dev;
2404 sector_t cache_sectors;
2405
2406 struct dm_dev *origin_dev;
2407 sector_t origin_sectors;
2408
2409 uint32_t block_size;
2410
2411 const char *policy_name;
2412 int policy_argc;
2413 const char **policy_argv;
2414
2415 struct cache_features features;
2416 };
2417
2418 static void destroy_cache_args(struct cache_args *ca)
2419 {
2420 if (ca->metadata_dev)
2421 dm_put_device(ca->ti, ca->metadata_dev);
2422
2423 if (ca->cache_dev)
2424 dm_put_device(ca->ti, ca->cache_dev);
2425
2426 if (ca->origin_dev)
2427 dm_put_device(ca->ti, ca->origin_dev);
2428
2429 kfree(ca);
2430 }
2431
2432 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2433 {
2434 if (!as->argc) {
2435 *error = "Insufficient args";
2436 return false;
2437 }
2438
2439 return true;
2440 }
2441
2442 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2443 char **error)
2444 {
2445 int r;
2446 sector_t metadata_dev_size;
2447 char b[BDEVNAME_SIZE];
2448
2449 if (!at_least_one_arg(as, error))
2450 return -EINVAL;
2451
2452 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2453 &ca->metadata_dev);
2454 if (r) {
2455 *error = "Error opening metadata device";
2456 return r;
2457 }
2458
2459 metadata_dev_size = get_dev_size(ca->metadata_dev);
2460 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2461 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2462 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2463
2464 return 0;
2465 }
2466
2467 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2468 char **error)
2469 {
2470 int r;
2471
2472 if (!at_least_one_arg(as, error))
2473 return -EINVAL;
2474
2475 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2476 &ca->cache_dev);
2477 if (r) {
2478 *error = "Error opening cache device";
2479 return r;
2480 }
2481 ca->cache_sectors = get_dev_size(ca->cache_dev);
2482
2483 return 0;
2484 }
2485
2486 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2487 char **error)
2488 {
2489 int r;
2490
2491 if (!at_least_one_arg(as, error))
2492 return -EINVAL;
2493
2494 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2495 &ca->origin_dev);
2496 if (r) {
2497 *error = "Error opening origin device";
2498 return r;
2499 }
2500
2501 ca->origin_sectors = get_dev_size(ca->origin_dev);
2502 if (ca->ti->len > ca->origin_sectors) {
2503 *error = "Device size larger than cached device";
2504 return -EINVAL;
2505 }
2506
2507 return 0;
2508 }
2509
2510 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2511 char **error)
2512 {
2513 unsigned long block_size;
2514
2515 if (!at_least_one_arg(as, error))
2516 return -EINVAL;
2517
2518 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2519 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2520 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2521 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2522 *error = "Invalid data block size";
2523 return -EINVAL;
2524 }
2525
2526 if (block_size > ca->cache_sectors) {
2527 *error = "Data block size is larger than the cache device";
2528 return -EINVAL;
2529 }
2530
2531 ca->block_size = block_size;
2532
2533 return 0;
2534 }
2535
2536 static void init_features(struct cache_features *cf)
2537 {
2538 cf->mode = CM_WRITE;
2539 cf->io_mode = CM_IO_WRITEBACK;
2540 }
2541
2542 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2543 char **error)
2544 {
2545 static struct dm_arg _args[] = {
2546 {0, 1, "Invalid number of cache feature arguments"},
2547 };
2548
2549 int r;
2550 unsigned argc;
2551 const char *arg;
2552 struct cache_features *cf = &ca->features;
2553
2554 init_features(cf);
2555
2556 r = dm_read_arg_group(_args, as, &argc, error);
2557 if (r)
2558 return -EINVAL;
2559
2560 while (argc--) {
2561 arg = dm_shift_arg(as);
2562
2563 if (!strcasecmp(arg, "writeback"))
2564 cf->io_mode = CM_IO_WRITEBACK;
2565
2566 else if (!strcasecmp(arg, "writethrough"))
2567 cf->io_mode = CM_IO_WRITETHROUGH;
2568
2569 else if (!strcasecmp(arg, "passthrough"))
2570 cf->io_mode = CM_IO_PASSTHROUGH;
2571
2572 else {
2573 *error = "Unrecognised cache feature requested";
2574 return -EINVAL;
2575 }
2576 }
2577
2578 return 0;
2579 }
2580
2581 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2582 char **error)
2583 {
2584 static struct dm_arg _args[] = {
2585 {0, 1024, "Invalid number of policy arguments"},
2586 };
2587
2588 int r;
2589
2590 if (!at_least_one_arg(as, error))
2591 return -EINVAL;
2592
2593 ca->policy_name = dm_shift_arg(as);
2594
2595 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2596 if (r)
2597 return -EINVAL;
2598
2599 ca->policy_argv = (const char **)as->argv;
2600 dm_consume_args(as, ca->policy_argc);
2601
2602 return 0;
2603 }
2604
2605 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2606 char **error)
2607 {
2608 int r;
2609 struct dm_arg_set as;
2610
2611 as.argc = argc;
2612 as.argv = argv;
2613
2614 r = parse_metadata_dev(ca, &as, error);
2615 if (r)
2616 return r;
2617
2618 r = parse_cache_dev(ca, &as, error);
2619 if (r)
2620 return r;
2621
2622 r = parse_origin_dev(ca, &as, error);
2623 if (r)
2624 return r;
2625
2626 r = parse_block_size(ca, &as, error);
2627 if (r)
2628 return r;
2629
2630 r = parse_features(ca, &as, error);
2631 if (r)
2632 return r;
2633
2634 r = parse_policy(ca, &as, error);
2635 if (r)
2636 return r;
2637
2638 return 0;
2639 }
2640
2641 /*----------------------------------------------------------------*/
2642
2643 static struct kmem_cache *migration_cache;
2644
2645 #define NOT_CORE_OPTION 1
2646
2647 static int process_config_option(struct cache *cache, const char *key, const char *value)
2648 {
2649 unsigned long tmp;
2650
2651 if (!strcasecmp(key, "migration_threshold")) {
2652 if (kstrtoul(value, 10, &tmp))
2653 return -EINVAL;
2654
2655 cache->migration_threshold = tmp;
2656 return 0;
2657 }
2658
2659 return NOT_CORE_OPTION;
2660 }
2661
2662 static int set_config_value(struct cache *cache, const char *key, const char *value)
2663 {
2664 int r = process_config_option(cache, key, value);
2665
2666 if (r == NOT_CORE_OPTION)
2667 r = policy_set_config_value(cache->policy, key, value);
2668
2669 if (r)
2670 DMWARN("bad config value for %s: %s", key, value);
2671
2672 return r;
2673 }
2674
2675 static int set_config_values(struct cache *cache, int argc, const char **argv)
2676 {
2677 int r = 0;
2678
2679 if (argc & 1) {
2680 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2681 return -EINVAL;
2682 }
2683
2684 while (argc) {
2685 r = set_config_value(cache, argv[0], argv[1]);
2686 if (r)
2687 break;
2688
2689 argc -= 2;
2690 argv += 2;
2691 }
2692
2693 return r;
2694 }
2695
2696 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2697 char **error)
2698 {
2699 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2700 cache->cache_size,
2701 cache->origin_sectors,
2702 cache->sectors_per_block);
2703 if (IS_ERR(p)) {
2704 *error = "Error creating cache's policy";
2705 return PTR_ERR(p);
2706 }
2707 cache->policy = p;
2708
2709 return 0;
2710 }
2711
2712 /*
2713 * We want the discard block size to be at least the size of the cache
2714 * block size and have no more than 2^14 discard blocks across the origin.
2715 */
2716 #define MAX_DISCARD_BLOCKS (1 << 14)
2717
2718 static bool too_many_discard_blocks(sector_t discard_block_size,
2719 sector_t origin_size)
2720 {
2721 (void) sector_div(origin_size, discard_block_size);
2722
2723 return origin_size > MAX_DISCARD_BLOCKS;
2724 }
2725
2726 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2727 sector_t origin_size)
2728 {
2729 sector_t discard_block_size = cache_block_size;
2730
2731 if (origin_size)
2732 while (too_many_discard_blocks(discard_block_size, origin_size))
2733 discard_block_size *= 2;
2734
2735 return discard_block_size;
2736 }
2737
2738 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2739 {
2740 dm_block_t nr_blocks = from_cblock(size);
2741
2742 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2743 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2744 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2745 "Please consider increasing the cache block size to reduce the overall cache block count.",
2746 (unsigned long long) nr_blocks);
2747
2748 cache->cache_size = size;
2749 }
2750
2751 #define DEFAULT_MIGRATION_THRESHOLD 2048
2752
2753 static int cache_create(struct cache_args *ca, struct cache **result)
2754 {
2755 int r = 0;
2756 char **error = &ca->ti->error;
2757 struct cache *cache;
2758 struct dm_target *ti = ca->ti;
2759 dm_block_t origin_blocks;
2760 struct dm_cache_metadata *cmd;
2761 bool may_format = ca->features.mode == CM_WRITE;
2762
2763 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2764 if (!cache)
2765 return -ENOMEM;
2766
2767 cache->ti = ca->ti;
2768 ti->private = cache;
2769 ti->num_flush_bios = 2;
2770 ti->flush_supported = true;
2771
2772 ti->num_discard_bios = 1;
2773 ti->discards_supported = true;
2774 ti->discard_zeroes_data_unsupported = true;
2775 ti->split_discard_bios = false;
2776
2777 cache->features = ca->features;
2778 ti->per_bio_data_size = get_per_bio_data_size(cache);
2779
2780 cache->callbacks.congested_fn = cache_is_congested;
2781 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2782
2783 cache->metadata_dev = ca->metadata_dev;
2784 cache->origin_dev = ca->origin_dev;
2785 cache->cache_dev = ca->cache_dev;
2786
2787 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2788
2789 /* FIXME: factor out this whole section */
2790 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2791 origin_blocks = block_div(origin_blocks, ca->block_size);
2792 cache->origin_blocks = to_oblock(origin_blocks);
2793
2794 cache->sectors_per_block = ca->block_size;
2795 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2796 r = -EINVAL;
2797 goto bad;
2798 }
2799
2800 if (ca->block_size & (ca->block_size - 1)) {
2801 dm_block_t cache_size = ca->cache_sectors;
2802
2803 cache->sectors_per_block_shift = -1;
2804 cache_size = block_div(cache_size, ca->block_size);
2805 set_cache_size(cache, to_cblock(cache_size));
2806 } else {
2807 cache->sectors_per_block_shift = __ffs(ca->block_size);
2808 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2809 }
2810
2811 r = create_cache_policy(cache, ca, error);
2812 if (r)
2813 goto bad;
2814
2815 cache->policy_nr_args = ca->policy_argc;
2816 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2817
2818 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2819 if (r) {
2820 *error = "Error setting cache policy's config values";
2821 goto bad;
2822 }
2823
2824 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2825 ca->block_size, may_format,
2826 dm_cache_policy_get_hint_size(cache->policy));
2827 if (IS_ERR(cmd)) {
2828 *error = "Error creating metadata object";
2829 r = PTR_ERR(cmd);
2830 goto bad;
2831 }
2832 cache->cmd = cmd;
2833 set_cache_mode(cache, CM_WRITE);
2834 if (get_cache_mode(cache) != CM_WRITE) {
2835 *error = "Unable to get write access to metadata, please check/repair metadata.";
2836 r = -EINVAL;
2837 goto bad;
2838 }
2839
2840 if (passthrough_mode(&cache->features)) {
2841 bool all_clean;
2842
2843 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2844 if (r) {
2845 *error = "dm_cache_metadata_all_clean() failed";
2846 goto bad;
2847 }
2848
2849 if (!all_clean) {
2850 *error = "Cannot enter passthrough mode unless all blocks are clean";
2851 r = -EINVAL;
2852 goto bad;
2853 }
2854 }
2855
2856 spin_lock_init(&cache->lock);
2857 INIT_LIST_HEAD(&cache->deferred_cells);
2858 bio_list_init(&cache->deferred_bios);
2859 bio_list_init(&cache->deferred_flush_bios);
2860 bio_list_init(&cache->deferred_writethrough_bios);
2861 INIT_LIST_HEAD(&cache->quiesced_migrations);
2862 INIT_LIST_HEAD(&cache->completed_migrations);
2863 INIT_LIST_HEAD(&cache->need_commit_migrations);
2864 atomic_set(&cache->nr_allocated_migrations, 0);
2865 atomic_set(&cache->nr_io_migrations, 0);
2866 init_waitqueue_head(&cache->migration_wait);
2867
2868 init_waitqueue_head(&cache->quiescing_wait);
2869 atomic_set(&cache->quiescing, 0);
2870 atomic_set(&cache->quiescing_ack, 0);
2871
2872 r = -ENOMEM;
2873 atomic_set(&cache->nr_dirty, 0);
2874 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2875 if (!cache->dirty_bitset) {
2876 *error = "could not allocate dirty bitset";
2877 goto bad;
2878 }
2879 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2880
2881 cache->discard_block_size =
2882 calculate_discard_block_size(cache->sectors_per_block,
2883 cache->origin_sectors);
2884 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2885 cache->discard_block_size));
2886 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2887 if (!cache->discard_bitset) {
2888 *error = "could not allocate discard bitset";
2889 goto bad;
2890 }
2891 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2892
2893 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2894 if (IS_ERR(cache->copier)) {
2895 *error = "could not create kcopyd client";
2896 r = PTR_ERR(cache->copier);
2897 goto bad;
2898 }
2899
2900 cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2901 if (!cache->wq) {
2902 *error = "could not create workqueue for metadata object";
2903 goto bad;
2904 }
2905 INIT_WORK(&cache->worker, do_worker);
2906 INIT_DELAYED_WORK(&cache->waker, do_waker);
2907 cache->last_commit_jiffies = jiffies;
2908
2909 cache->prison = dm_bio_prison_create();
2910 if (!cache->prison) {
2911 *error = "could not create bio prison";
2912 goto bad;
2913 }
2914
2915 cache->all_io_ds = dm_deferred_set_create();
2916 if (!cache->all_io_ds) {
2917 *error = "could not create all_io deferred set";
2918 goto bad;
2919 }
2920
2921 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2922 migration_cache);
2923 if (!cache->migration_pool) {
2924 *error = "Error creating cache's migration mempool";
2925 goto bad;
2926 }
2927
2928 cache->need_tick_bio = true;
2929 cache->sized = false;
2930 cache->invalidate = false;
2931 cache->commit_requested = false;
2932 cache->loaded_mappings = false;
2933 cache->loaded_discards = false;
2934
2935 load_stats(cache);
2936
2937 atomic_set(&cache->stats.demotion, 0);
2938 atomic_set(&cache->stats.promotion, 0);
2939 atomic_set(&cache->stats.copies_avoided, 0);
2940 atomic_set(&cache->stats.cache_cell_clash, 0);
2941 atomic_set(&cache->stats.commit_count, 0);
2942 atomic_set(&cache->stats.discard_count, 0);
2943
2944 spin_lock_init(&cache->invalidation_lock);
2945 INIT_LIST_HEAD(&cache->invalidation_requests);
2946
2947 iot_init(&cache->origin_tracker);
2948
2949 *result = cache;
2950 return 0;
2951
2952 bad:
2953 destroy(cache);
2954 return r;
2955 }
2956
2957 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2958 {
2959 unsigned i;
2960 const char **copy;
2961
2962 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2963 if (!copy)
2964 return -ENOMEM;
2965 for (i = 0; i < argc; i++) {
2966 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2967 if (!copy[i]) {
2968 while (i--)
2969 kfree(copy[i]);
2970 kfree(copy);
2971 return -ENOMEM;
2972 }
2973 }
2974
2975 cache->nr_ctr_args = argc;
2976 cache->ctr_args = copy;
2977
2978 return 0;
2979 }
2980
2981 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2982 {
2983 int r = -EINVAL;
2984 struct cache_args *ca;
2985 struct cache *cache = NULL;
2986
2987 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2988 if (!ca) {
2989 ti->error = "Error allocating memory for cache";
2990 return -ENOMEM;
2991 }
2992 ca->ti = ti;
2993
2994 r = parse_cache_args(ca, argc, argv, &ti->error);
2995 if (r)
2996 goto out;
2997
2998 r = cache_create(ca, &cache);
2999 if (r)
3000 goto out;
3001
3002 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
3003 if (r) {
3004 destroy(cache);
3005 goto out;
3006 }
3007
3008 ti->private = cache;
3009
3010 out:
3011 destroy_cache_args(ca);
3012 return r;
3013 }
3014
3015 /*----------------------------------------------------------------*/
3016
3017 static int cache_map(struct dm_target *ti, struct bio *bio)
3018 {
3019 struct cache *cache = ti->private;
3020
3021 int r;
3022 struct dm_bio_prison_cell *cell = NULL;
3023 dm_oblock_t block = get_bio_block(cache, bio);
3024 size_t pb_data_size = get_per_bio_data_size(cache);
3025 bool can_migrate = false;
3026 bool fast_promotion;
3027 struct policy_result lookup_result;
3028 struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3029 struct old_oblock_lock ool;
3030
3031 ool.locker.fn = null_locker;
3032
3033 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3034 /*
3035 * This can only occur if the io goes to a partial block at
3036 * the end of the origin device. We don't cache these.
3037 * Just remap to the origin and carry on.
3038 */
3039 remap_to_origin(cache, bio);
3040 accounted_begin(cache, bio);
3041 return DM_MAPIO_REMAPPED;
3042 }
3043
3044 if (discard_or_flush(bio)) {
3045 defer_bio(cache, bio);
3046 return DM_MAPIO_SUBMITTED;
3047 }
3048
3049 /*
3050 * Check to see if that block is currently migrating.
3051 */
3052 cell = alloc_prison_cell(cache);
3053 if (!cell) {
3054 defer_bio(cache, bio);
3055 return DM_MAPIO_SUBMITTED;
3056 }
3057
3058 r = bio_detain(cache, block, bio, cell,
3059 (cell_free_fn) free_prison_cell,
3060 cache, &cell);
3061 if (r) {
3062 if (r < 0)
3063 defer_bio(cache, bio);
3064
3065 return DM_MAPIO_SUBMITTED;
3066 }
3067
3068 fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3069
3070 r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3071 bio, &ool.locker, &lookup_result);
3072 if (r == -EWOULDBLOCK) {
3073 cell_defer(cache, cell, true);
3074 return DM_MAPIO_SUBMITTED;
3075
3076 } else if (r) {
3077 DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3078 cache_device_name(cache), r);
3079 cell_defer(cache, cell, false);
3080 bio_io_error(bio);
3081 return DM_MAPIO_SUBMITTED;
3082 }
3083
3084 r = DM_MAPIO_REMAPPED;
3085 switch (lookup_result.op) {
3086 case POLICY_HIT:
3087 if (passthrough_mode(&cache->features)) {
3088 if (bio_data_dir(bio) == WRITE) {
3089 /*
3090 * We need to invalidate this block, so
3091 * defer for the worker thread.
3092 */
3093 cell_defer(cache, cell, true);
3094 r = DM_MAPIO_SUBMITTED;
3095
3096 } else {
3097 inc_miss_counter(cache, bio);
3098 remap_to_origin_clear_discard(cache, bio, block);
3099 accounted_begin(cache, bio);
3100 inc_ds(cache, bio, cell);
3101 // FIXME: we want to remap hits or misses straight
3102 // away rather than passing over to the worker.
3103 cell_defer(cache, cell, false);
3104 }
3105
3106 } else {
3107 inc_hit_counter(cache, bio);
3108 if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3109 !is_dirty(cache, lookup_result.cblock)) {
3110 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3111 accounted_begin(cache, bio);
3112 inc_ds(cache, bio, cell);
3113 cell_defer(cache, cell, false);
3114
3115 } else
3116 remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3117 }
3118 break;
3119
3120 case POLICY_MISS:
3121 inc_miss_counter(cache, bio);
3122 if (pb->req_nr != 0) {
3123 /*
3124 * This is a duplicate writethrough io that is no
3125 * longer needed because the block has been demoted.
3126 */
3127 bio_endio(bio);
3128 // FIXME: remap everything as a miss
3129 cell_defer(cache, cell, false);
3130 r = DM_MAPIO_SUBMITTED;
3131
3132 } else
3133 remap_cell_to_origin_clear_discard(cache, cell, block, false);
3134 break;
3135
3136 default:
3137 DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3138 cache_device_name(cache), __func__,
3139 (unsigned) lookup_result.op);
3140 cell_defer(cache, cell, false);
3141 bio_io_error(bio);
3142 r = DM_MAPIO_SUBMITTED;
3143 }
3144
3145 return r;
3146 }
3147
3148 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3149 {
3150 struct cache *cache = ti->private;
3151 unsigned long flags;
3152 size_t pb_data_size = get_per_bio_data_size(cache);
3153 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3154
3155 if (pb->tick) {
3156 policy_tick(cache->policy, false);
3157
3158 spin_lock_irqsave(&cache->lock, flags);
3159 cache->need_tick_bio = true;
3160 spin_unlock_irqrestore(&cache->lock, flags);
3161 }
3162
3163 check_for_quiesced_migrations(cache, pb);
3164 accounted_complete(cache, bio);
3165
3166 return 0;
3167 }
3168
3169 static int write_dirty_bitset(struct cache *cache)
3170 {
3171 unsigned i, r;
3172
3173 if (get_cache_mode(cache) >= CM_READ_ONLY)
3174 return -EINVAL;
3175
3176 for (i = 0; i < from_cblock(cache->cache_size); i++) {
3177 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3178 is_dirty(cache, to_cblock(i)));
3179 if (r) {
3180 metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3181 return r;
3182 }
3183 }
3184
3185 return 0;
3186 }
3187
3188 static int write_discard_bitset(struct cache *cache)
3189 {
3190 unsigned i, r;
3191
3192 if (get_cache_mode(cache) >= CM_READ_ONLY)
3193 return -EINVAL;
3194
3195 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3196 cache->discard_nr_blocks);
3197 if (r) {
3198 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3199 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3200 return r;
3201 }
3202
3203 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3204 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3205 is_discarded(cache, to_dblock(i)));
3206 if (r) {
3207 metadata_operation_failed(cache, "dm_cache_set_discard", r);
3208 return r;
3209 }
3210 }
3211
3212 return 0;
3213 }
3214
3215 static int write_hints(struct cache *cache)
3216 {
3217 int r;
3218
3219 if (get_cache_mode(cache) >= CM_READ_ONLY)
3220 return -EINVAL;
3221
3222 r = dm_cache_write_hints(cache->cmd, cache->policy);
3223 if (r) {
3224 metadata_operation_failed(cache, "dm_cache_write_hints", r);
3225 return r;
3226 }
3227
3228 return 0;
3229 }
3230
3231 /*
3232 * returns true on success
3233 */
3234 static bool sync_metadata(struct cache *cache)
3235 {
3236 int r1, r2, r3, r4;
3237
3238 r1 = write_dirty_bitset(cache);
3239 if (r1)
3240 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3241
3242 r2 = write_discard_bitset(cache);
3243 if (r2)
3244 DMERR("%s: could not write discard bitset", cache_device_name(cache));
3245
3246 save_stats(cache);
3247
3248 r3 = write_hints(cache);
3249 if (r3)
3250 DMERR("%s: could not write hints", cache_device_name(cache));
3251
3252 /*
3253 * If writing the above metadata failed, we still commit, but don't
3254 * set the clean shutdown flag. This will effectively force every
3255 * dirty bit to be set on reload.
3256 */
3257 r4 = commit(cache, !r1 && !r2 && !r3);
3258 if (r4)
3259 DMERR("%s: could not write cache metadata", cache_device_name(cache));
3260
3261 return !r1 && !r2 && !r3 && !r4;
3262 }
3263
3264 static void cache_postsuspend(struct dm_target *ti)
3265 {
3266 struct cache *cache = ti->private;
3267
3268 start_quiescing(cache);
3269 wait_for_migrations(cache);
3270 stop_worker(cache);
3271 requeue_deferred_bios(cache);
3272 requeue_deferred_cells(cache);
3273 stop_quiescing(cache);
3274
3275 if (get_cache_mode(cache) == CM_WRITE)
3276 (void) sync_metadata(cache);
3277 }
3278
3279 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3280 bool dirty, uint32_t hint, bool hint_valid)
3281 {
3282 int r;
3283 struct cache *cache = context;
3284
3285 r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
3286 if (r)
3287 return r;
3288
3289 if (dirty)
3290 set_dirty(cache, oblock, cblock);
3291 else
3292 clear_dirty(cache, oblock, cblock);
3293
3294 return 0;
3295 }
3296
3297 /*
3298 * The discard block size in the on disk metadata is not
3299 * neccessarily the same as we're currently using. So we have to
3300 * be careful to only set the discarded attribute if we know it
3301 * covers a complete block of the new size.
3302 */
3303 struct discard_load_info {
3304 struct cache *cache;
3305
3306 /*
3307 * These blocks are sized using the on disk dblock size, rather
3308 * than the current one.
3309 */
3310 dm_block_t block_size;
3311 dm_block_t discard_begin, discard_end;
3312 };
3313
3314 static void discard_load_info_init(struct cache *cache,
3315 struct discard_load_info *li)
3316 {
3317 li->cache = cache;
3318 li->discard_begin = li->discard_end = 0;
3319 }
3320
3321 static void set_discard_range(struct discard_load_info *li)
3322 {
3323 sector_t b, e;
3324
3325 if (li->discard_begin == li->discard_end)
3326 return;
3327
3328 /*
3329 * Convert to sectors.
3330 */
3331 b = li->discard_begin * li->block_size;
3332 e = li->discard_end * li->block_size;
3333
3334 /*
3335 * Then convert back to the current dblock size.
3336 */
3337 b = dm_sector_div_up(b, li->cache->discard_block_size);
3338 sector_div(e, li->cache->discard_block_size);
3339
3340 /*
3341 * The origin may have shrunk, so we need to check we're still in
3342 * bounds.
3343 */
3344 if (e > from_dblock(li->cache->discard_nr_blocks))
3345 e = from_dblock(li->cache->discard_nr_blocks);
3346
3347 for (; b < e; b++)
3348 set_discard(li->cache, to_dblock(b));
3349 }
3350
3351 static int load_discard(void *context, sector_t discard_block_size,
3352 dm_dblock_t dblock, bool discard)
3353 {
3354 struct discard_load_info *li = context;
3355
3356 li->block_size = discard_block_size;
3357
3358 if (discard) {
3359 if (from_dblock(dblock) == li->discard_end)
3360 /*
3361 * We're already in a discard range, just extend it.
3362 */
3363 li->discard_end = li->discard_end + 1ULL;
3364
3365 else {
3366 /*
3367 * Emit the old range and start a new one.
3368 */
3369 set_discard_range(li);
3370 li->discard_begin = from_dblock(dblock);
3371 li->discard_end = li->discard_begin + 1ULL;
3372 }
3373 } else {
3374 set_discard_range(li);
3375 li->discard_begin = li->discard_end = 0;
3376 }
3377
3378 return 0;
3379 }
3380
3381 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3382 {
3383 sector_t size = get_dev_size(cache->cache_dev);
3384 (void) sector_div(size, cache->sectors_per_block);
3385 return to_cblock(size);
3386 }
3387
3388 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3389 {
3390 if (from_cblock(new_size) > from_cblock(cache->cache_size))
3391 return true;
3392
3393 /*
3394 * We can't drop a dirty block when shrinking the cache.
3395 */
3396 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3397 new_size = to_cblock(from_cblock(new_size) + 1);
3398 if (is_dirty(cache, new_size)) {
3399 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3400 cache_device_name(cache),
3401 (unsigned long long) from_cblock(new_size));
3402 return false;
3403 }
3404 }
3405
3406 return true;
3407 }
3408
3409 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3410 {
3411 int r;
3412
3413 r = dm_cache_resize(cache->cmd, new_size);
3414 if (r) {
3415 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3416 metadata_operation_failed(cache, "dm_cache_resize", r);
3417 return r;
3418 }
3419
3420 set_cache_size(cache, new_size);
3421
3422 return 0;
3423 }
3424
3425 static int cache_preresume(struct dm_target *ti)
3426 {
3427 int r = 0;
3428 struct cache *cache = ti->private;
3429 dm_cblock_t csize = get_cache_dev_size(cache);
3430
3431 /*
3432 * Check to see if the cache has resized.
3433 */
3434 if (!cache->sized) {
3435 r = resize_cache_dev(cache, csize);
3436 if (r)
3437 return r;
3438
3439 cache->sized = true;
3440
3441 } else if (csize != cache->cache_size) {
3442 if (!can_resize(cache, csize))
3443 return -EINVAL;
3444
3445 r = resize_cache_dev(cache, csize);
3446 if (r)
3447 return r;
3448 }
3449
3450 if (!cache->loaded_mappings) {
3451 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3452 load_mapping, cache);
3453 if (r) {
3454 DMERR("%s: could not load cache mappings", cache_device_name(cache));
3455 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3456 return r;
3457 }
3458
3459 cache->loaded_mappings = true;
3460 }
3461
3462 if (!cache->loaded_discards) {
3463 struct discard_load_info li;
3464
3465 /*
3466 * The discard bitset could have been resized, or the
3467 * discard block size changed. To be safe we start by
3468 * setting every dblock to not discarded.
3469 */
3470 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3471
3472 discard_load_info_init(cache, &li);
3473 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3474 if (r) {
3475 DMERR("%s: could not load origin discards", cache_device_name(cache));
3476 metadata_operation_failed(cache, "dm_cache_load_discards", r);
3477 return r;
3478 }
3479 set_discard_range(&li);
3480
3481 cache->loaded_discards = true;
3482 }
3483
3484 return r;
3485 }
3486
3487 static void cache_resume(struct dm_target *ti)
3488 {
3489 struct cache *cache = ti->private;
3490
3491 cache->need_tick_bio = true;
3492 do_waker(&cache->waker.work);
3493 }
3494
3495 /*
3496 * Status format:
3497 *
3498 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3499 * <cache block size> <#used cache blocks>/<#total cache blocks>
3500 * <#read hits> <#read misses> <#write hits> <#write misses>
3501 * <#demotions> <#promotions> <#dirty>
3502 * <#features> <features>*
3503 * <#core args> <core args>
3504 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3505 */
3506 static void cache_status(struct dm_target *ti, status_type_t type,
3507 unsigned status_flags, char *result, unsigned maxlen)
3508 {
3509 int r = 0;
3510 unsigned i;
3511 ssize_t sz = 0;
3512 dm_block_t nr_free_blocks_metadata = 0;
3513 dm_block_t nr_blocks_metadata = 0;
3514 char buf[BDEVNAME_SIZE];
3515 struct cache *cache = ti->private;
3516 dm_cblock_t residency;
3517
3518 switch (type) {
3519 case STATUSTYPE_INFO:
3520 if (get_cache_mode(cache) == CM_FAIL) {
3521 DMEMIT("Fail");
3522 break;
3523 }
3524
3525 /* Commit to ensure statistics aren't out-of-date */
3526 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3527 (void) commit(cache, false);
3528
3529 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3530 if (r) {
3531 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3532 cache_device_name(cache), r);
3533 goto err;
3534 }
3535
3536 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3537 if (r) {
3538 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3539 cache_device_name(cache), r);
3540 goto err;
3541 }
3542
3543 residency = policy_residency(cache->policy);
3544
3545 DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3546 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3547 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3548 (unsigned long long)nr_blocks_metadata,
3549 cache->sectors_per_block,
3550 (unsigned long long) from_cblock(residency),
3551 (unsigned long long) from_cblock(cache->cache_size),
3552 (unsigned) atomic_read(&cache->stats.read_hit),
3553 (unsigned) atomic_read(&cache->stats.read_miss),
3554 (unsigned) atomic_read(&cache->stats.write_hit),
3555 (unsigned) atomic_read(&cache->stats.write_miss),
3556 (unsigned) atomic_read(&cache->stats.demotion),
3557 (unsigned) atomic_read(&cache->stats.promotion),
3558 (unsigned long) atomic_read(&cache->nr_dirty));
3559
3560 if (writethrough_mode(&cache->features))
3561 DMEMIT("1 writethrough ");
3562
3563 else if (passthrough_mode(&cache->features))
3564 DMEMIT("1 passthrough ");
3565
3566 else if (writeback_mode(&cache->features))
3567 DMEMIT("1 writeback ");
3568
3569 else {
3570 DMERR("%s: internal error: unknown io mode: %d",
3571 cache_device_name(cache), (int) cache->features.io_mode);
3572 goto err;
3573 }
3574
3575 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3576
3577 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3578 if (sz < maxlen) {
3579 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3580 if (r)
3581 DMERR("%s: policy_emit_config_values returned %d",
3582 cache_device_name(cache), r);
3583 }
3584
3585 if (get_cache_mode(cache) == CM_READ_ONLY)
3586 DMEMIT("ro ");
3587 else
3588 DMEMIT("rw ");
3589
3590 if (dm_cache_metadata_needs_check(cache->cmd))
3591 DMEMIT("needs_check ");
3592 else
3593 DMEMIT("- ");
3594
3595 break;
3596
3597 case STATUSTYPE_TABLE:
3598 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3599 DMEMIT("%s ", buf);
3600 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3601 DMEMIT("%s ", buf);
3602 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3603 DMEMIT("%s", buf);
3604
3605 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3606 DMEMIT(" %s", cache->ctr_args[i]);
3607 if (cache->nr_ctr_args)
3608 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3609 }
3610
3611 return;
3612
3613 err:
3614 DMEMIT("Error");
3615 }
3616
3617 /*
3618 * A cache block range can take two forms:
3619 *
3620 * i) A single cblock, eg. '3456'
3621 * ii) A begin and end cblock with dots between, eg. 123-234
3622 */
3623 static int parse_cblock_range(struct cache *cache, const char *str,
3624 struct cblock_range *result)
3625 {
3626 char dummy;
3627 uint64_t b, e;
3628 int r;
3629
3630 /*
3631 * Try and parse form (ii) first.
3632 */
3633 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3634 if (r < 0)
3635 return r;
3636
3637 if (r == 2) {
3638 result->begin = to_cblock(b);
3639 result->end = to_cblock(e);
3640 return 0;
3641 }
3642
3643 /*
3644 * That didn't work, try form (i).
3645 */
3646 r = sscanf(str, "%llu%c", &b, &dummy);
3647 if (r < 0)
3648 return r;
3649
3650 if (r == 1) {
3651 result->begin = to_cblock(b);
3652 result->end = to_cblock(from_cblock(result->begin) + 1u);
3653 return 0;
3654 }
3655
3656 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3657 return -EINVAL;
3658 }
3659
3660 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3661 {
3662 uint64_t b = from_cblock(range->begin);
3663 uint64_t e = from_cblock(range->end);
3664 uint64_t n = from_cblock(cache->cache_size);
3665
3666 if (b >= n) {
3667 DMERR("%s: begin cblock out of range: %llu >= %llu",
3668 cache_device_name(cache), b, n);
3669 return -EINVAL;
3670 }
3671
3672 if (e > n) {
3673 DMERR("%s: end cblock out of range: %llu > %llu",
3674 cache_device_name(cache), e, n);
3675 return -EINVAL;
3676 }
3677
3678 if (b >= e) {
3679 DMERR("%s: invalid cblock range: %llu >= %llu",
3680 cache_device_name(cache), b, e);
3681 return -EINVAL;
3682 }
3683
3684 return 0;
3685 }
3686
3687 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3688 {
3689 struct invalidation_request req;
3690
3691 INIT_LIST_HEAD(&req.list);
3692 req.cblocks = range;
3693 atomic_set(&req.complete, 0);
3694 req.err = 0;
3695 init_waitqueue_head(&req.result_wait);
3696
3697 spin_lock(&cache->invalidation_lock);
3698 list_add(&req.list, &cache->invalidation_requests);
3699 spin_unlock(&cache->invalidation_lock);
3700 wake_worker(cache);
3701
3702 wait_event(req.result_wait, atomic_read(&req.complete));
3703 return req.err;
3704 }
3705
3706 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3707 const char **cblock_ranges)
3708 {
3709 int r = 0;
3710 unsigned i;
3711 struct cblock_range range;
3712
3713 if (!passthrough_mode(&cache->features)) {
3714 DMERR("%s: cache has to be in passthrough mode for invalidation",
3715 cache_device_name(cache));
3716 return -EPERM;
3717 }
3718
3719 for (i = 0; i < count; i++) {
3720 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3721 if (r)
3722 break;
3723
3724 r = validate_cblock_range(cache, &range);
3725 if (r)
3726 break;
3727
3728 /*
3729 * Pass begin and end origin blocks to the worker and wake it.
3730 */
3731 r = request_invalidation(cache, &range);
3732 if (r)
3733 break;
3734 }
3735
3736 return r;
3737 }
3738
3739 /*
3740 * Supports
3741 * "<key> <value>"
3742 * and
3743 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3744 *
3745 * The key migration_threshold is supported by the cache target core.
3746 */
3747 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3748 {
3749 struct cache *cache = ti->private;
3750
3751 if (!argc)
3752 return -EINVAL;
3753
3754 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3755 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3756 cache_device_name(cache));
3757 return -EOPNOTSUPP;
3758 }
3759
3760 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3761 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3762
3763 if (argc != 2)
3764 return -EINVAL;
3765
3766 return set_config_value(cache, argv[0], argv[1]);
3767 }
3768
3769 static int cache_iterate_devices(struct dm_target *ti,
3770 iterate_devices_callout_fn fn, void *data)
3771 {
3772 int r = 0;
3773 struct cache *cache = ti->private;
3774
3775 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3776 if (!r)
3777 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3778
3779 return r;
3780 }
3781
3782 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3783 {
3784 /*
3785 * FIXME: these limits may be incompatible with the cache device
3786 */
3787 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3788 cache->origin_sectors);
3789 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3790 }
3791
3792 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3793 {
3794 struct cache *cache = ti->private;
3795 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3796
3797 /*
3798 * If the system-determined stacked limits are compatible with the
3799 * cache's blocksize (io_opt is a factor) do not override them.
3800 */
3801 if (io_opt_sectors < cache->sectors_per_block ||
3802 do_div(io_opt_sectors, cache->sectors_per_block)) {
3803 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3804 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3805 }
3806 set_discard_limits(cache, limits);
3807 }
3808
3809 /*----------------------------------------------------------------*/
3810
3811 static struct target_type cache_target = {
3812 .name = "cache",
3813 .version = {1, 8, 0},
3814 .module = THIS_MODULE,
3815 .ctr = cache_ctr,
3816 .dtr = cache_dtr,
3817 .map = cache_map,
3818 .end_io = cache_end_io,
3819 .postsuspend = cache_postsuspend,
3820 .preresume = cache_preresume,
3821 .resume = cache_resume,
3822 .status = cache_status,
3823 .message = cache_message,
3824 .iterate_devices = cache_iterate_devices,
3825 .io_hints = cache_io_hints,
3826 };
3827
3828 static int __init dm_cache_init(void)
3829 {
3830 int r;
3831
3832 r = dm_register_target(&cache_target);
3833 if (r) {
3834 DMERR("cache target registration failed: %d", r);
3835 return r;
3836 }
3837
3838 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3839 if (!migration_cache) {
3840 dm_unregister_target(&cache_target);
3841 return -ENOMEM;
3842 }
3843
3844 return 0;
3845 }
3846
3847 static void __exit dm_cache_exit(void)
3848 {
3849 dm_unregister_target(&cache_target);
3850 kmem_cache_destroy(migration_cache);
3851 }
3852
3853 module_init(dm_cache_init);
3854 module_exit(dm_cache_exit);
3855
3856 MODULE_DESCRIPTION(DM_NAME " cache target");
3857 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3858 MODULE_LICENSE("GPL");
This page took 0.148781 seconds and 5 git commands to generate.