[CRYPTO] users: Fix up scatterlist conversion errors
[deliverable/linux.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
22 #include <asm/page.h>
23 #include <asm/unaligned.h>
24
25 #include "dm.h"
26
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
29
30 /*
31 * per bio private data
32 */
33 struct dm_crypt_io {
34 struct dm_target *target;
35 struct bio *base_bio;
36 struct work_struct work;
37 atomic_t pending;
38 int error;
39 };
40
41 /*
42 * context holding the current state of a multi-part conversion
43 */
44 struct convert_context {
45 struct bio *bio_in;
46 struct bio *bio_out;
47 unsigned int offset_in;
48 unsigned int offset_out;
49 unsigned int idx_in;
50 unsigned int idx_out;
51 sector_t sector;
52 int write;
53 };
54
55 struct crypt_config;
56
57 struct crypt_iv_operations {
58 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
59 const char *opts);
60 void (*dtr)(struct crypt_config *cc);
61 const char *(*status)(struct crypt_config *cc);
62 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
63 };
64
65 /*
66 * Crypt: maps a linear range of a block device
67 * and encrypts / decrypts at the same time.
68 */
69 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
70 struct crypt_config {
71 struct dm_dev *dev;
72 sector_t start;
73
74 /*
75 * pool for per bio private data and
76 * for encryption buffer pages
77 */
78 mempool_t *io_pool;
79 mempool_t *page_pool;
80 struct bio_set *bs;
81
82 struct workqueue_struct *io_queue;
83 struct workqueue_struct *crypt_queue;
84 /*
85 * crypto related data
86 */
87 struct crypt_iv_operations *iv_gen_ops;
88 char *iv_mode;
89 union {
90 struct crypto_cipher *essiv_tfm;
91 int benbi_shift;
92 } iv_gen_private;
93 sector_t iv_offset;
94 unsigned int iv_size;
95
96 char cipher[CRYPTO_MAX_ALG_NAME];
97 char chainmode[CRYPTO_MAX_ALG_NAME];
98 struct crypto_blkcipher *tfm;
99 unsigned long flags;
100 unsigned int key_size;
101 u8 key[0];
102 };
103
104 #define MIN_IOS 16
105 #define MIN_POOL_PAGES 32
106 #define MIN_BIO_PAGES 8
107
108 static struct kmem_cache *_crypt_io_pool;
109
110 static void clone_init(struct dm_crypt_io *, struct bio *);
111
112 /*
113 * Different IV generation algorithms:
114 *
115 * plain: the initial vector is the 32-bit little-endian version of the sector
116 * number, padded with zeros if necessary.
117 *
118 * essiv: "encrypted sector|salt initial vector", the sector number is
119 * encrypted with the bulk cipher using a salt as key. The salt
120 * should be derived from the bulk cipher's key via hashing.
121 *
122 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
123 * (needed for LRW-32-AES and possible other narrow block modes)
124 *
125 * null: the initial vector is always zero. Provides compatibility with
126 * obsolete loop_fish2 devices. Do not use for new devices.
127 *
128 * plumb: unimplemented, see:
129 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
130 */
131
132 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
133 {
134 memset(iv, 0, cc->iv_size);
135 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
136
137 return 0;
138 }
139
140 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
141 const char *opts)
142 {
143 struct crypto_cipher *essiv_tfm;
144 struct crypto_hash *hash_tfm;
145 struct hash_desc desc;
146 struct scatterlist sg;
147 unsigned int saltsize;
148 u8 *salt;
149 int err;
150
151 if (opts == NULL) {
152 ti->error = "Digest algorithm missing for ESSIV mode";
153 return -EINVAL;
154 }
155
156 /* Hash the cipher key with the given hash algorithm */
157 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
158 if (IS_ERR(hash_tfm)) {
159 ti->error = "Error initializing ESSIV hash";
160 return PTR_ERR(hash_tfm);
161 }
162
163 saltsize = crypto_hash_digestsize(hash_tfm);
164 salt = kmalloc(saltsize, GFP_KERNEL);
165 if (salt == NULL) {
166 ti->error = "Error kmallocing salt storage in ESSIV";
167 crypto_free_hash(hash_tfm);
168 return -ENOMEM;
169 }
170
171 sg_init_one(&sg, cc->key, cc->key_size);
172 desc.tfm = hash_tfm;
173 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
174 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
175 crypto_free_hash(hash_tfm);
176
177 if (err) {
178 ti->error = "Error calculating hash in ESSIV";
179 kfree(salt);
180 return err;
181 }
182
183 /* Setup the essiv_tfm with the given salt */
184 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
185 if (IS_ERR(essiv_tfm)) {
186 ti->error = "Error allocating crypto tfm for ESSIV";
187 kfree(salt);
188 return PTR_ERR(essiv_tfm);
189 }
190 if (crypto_cipher_blocksize(essiv_tfm) !=
191 crypto_blkcipher_ivsize(cc->tfm)) {
192 ti->error = "Block size of ESSIV cipher does "
193 "not match IV size of block cipher";
194 crypto_free_cipher(essiv_tfm);
195 kfree(salt);
196 return -EINVAL;
197 }
198 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
199 if (err) {
200 ti->error = "Failed to set key for ESSIV cipher";
201 crypto_free_cipher(essiv_tfm);
202 kfree(salt);
203 return err;
204 }
205 kfree(salt);
206
207 cc->iv_gen_private.essiv_tfm = essiv_tfm;
208 return 0;
209 }
210
211 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
212 {
213 crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
214 cc->iv_gen_private.essiv_tfm = NULL;
215 }
216
217 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
218 {
219 memset(iv, 0, cc->iv_size);
220 *(u64 *)iv = cpu_to_le64(sector);
221 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
222 return 0;
223 }
224
225 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
226 const char *opts)
227 {
228 unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
229 int log = ilog2(bs);
230
231 /* we need to calculate how far we must shift the sector count
232 * to get the cipher block count, we use this shift in _gen */
233
234 if (1 << log != bs) {
235 ti->error = "cypher blocksize is not a power of 2";
236 return -EINVAL;
237 }
238
239 if (log > 9) {
240 ti->error = "cypher blocksize is > 512";
241 return -EINVAL;
242 }
243
244 cc->iv_gen_private.benbi_shift = 9 - log;
245
246 return 0;
247 }
248
249 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
250 {
251 }
252
253 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
254 {
255 __be64 val;
256
257 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
258
259 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
260 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
261
262 return 0;
263 }
264
265 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
266 {
267 memset(iv, 0, cc->iv_size);
268
269 return 0;
270 }
271
272 static struct crypt_iv_operations crypt_iv_plain_ops = {
273 .generator = crypt_iv_plain_gen
274 };
275
276 static struct crypt_iv_operations crypt_iv_essiv_ops = {
277 .ctr = crypt_iv_essiv_ctr,
278 .dtr = crypt_iv_essiv_dtr,
279 .generator = crypt_iv_essiv_gen
280 };
281
282 static struct crypt_iv_operations crypt_iv_benbi_ops = {
283 .ctr = crypt_iv_benbi_ctr,
284 .dtr = crypt_iv_benbi_dtr,
285 .generator = crypt_iv_benbi_gen
286 };
287
288 static struct crypt_iv_operations crypt_iv_null_ops = {
289 .generator = crypt_iv_null_gen
290 };
291
292 static int
293 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
294 struct scatterlist *in, unsigned int length,
295 int write, sector_t sector)
296 {
297 u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
298 struct blkcipher_desc desc = {
299 .tfm = cc->tfm,
300 .info = iv,
301 .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
302 };
303 int r;
304
305 if (cc->iv_gen_ops) {
306 r = cc->iv_gen_ops->generator(cc, iv, sector);
307 if (r < 0)
308 return r;
309
310 if (write)
311 r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
312 else
313 r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
314 } else {
315 if (write)
316 r = crypto_blkcipher_encrypt(&desc, out, in, length);
317 else
318 r = crypto_blkcipher_decrypt(&desc, out, in, length);
319 }
320
321 return r;
322 }
323
324 static void crypt_convert_init(struct crypt_config *cc,
325 struct convert_context *ctx,
326 struct bio *bio_out, struct bio *bio_in,
327 sector_t sector, int write)
328 {
329 ctx->bio_in = bio_in;
330 ctx->bio_out = bio_out;
331 ctx->offset_in = 0;
332 ctx->offset_out = 0;
333 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
334 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
335 ctx->sector = sector + cc->iv_offset;
336 ctx->write = write;
337 }
338
339 /*
340 * Encrypt / decrypt data from one bio to another one (can be the same one)
341 */
342 static int crypt_convert(struct crypt_config *cc,
343 struct convert_context *ctx)
344 {
345 int r = 0;
346
347 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
348 ctx->idx_out < ctx->bio_out->bi_vcnt) {
349 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
350 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
351 struct scatterlist sg_in, sg_out;
352
353 sg_init_table(&sg_in, 1);
354 sg_set_page(&sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT, bv_in->bv_offset + ctx->offset_in);
355
356 sg_init_table(&sg_out, 1);
357 sg_set_page(&sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT, bv_out->bv_offset + ctx->offset_out);
358
359 ctx->offset_in += sg_in.length;
360 if (ctx->offset_in >= bv_in->bv_len) {
361 ctx->offset_in = 0;
362 ctx->idx_in++;
363 }
364
365 ctx->offset_out += sg_out.length;
366 if (ctx->offset_out >= bv_out->bv_len) {
367 ctx->offset_out = 0;
368 ctx->idx_out++;
369 }
370
371 r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
372 ctx->write, ctx->sector);
373 if (r < 0)
374 break;
375
376 ctx->sector++;
377 }
378
379 return r;
380 }
381
382 static void dm_crypt_bio_destructor(struct bio *bio)
383 {
384 struct dm_crypt_io *io = bio->bi_private;
385 struct crypt_config *cc = io->target->private;
386
387 bio_free(bio, cc->bs);
388 }
389
390 /*
391 * Generate a new unfragmented bio with the given size
392 * This should never violate the device limitations
393 * May return a smaller bio when running out of pages
394 */
395 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
396 {
397 struct crypt_config *cc = io->target->private;
398 struct bio *clone;
399 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
400 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
401 unsigned int i;
402
403 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
404 if (!clone)
405 return NULL;
406
407 clone_init(io, clone);
408
409 for (i = 0; i < nr_iovecs; i++) {
410 struct bio_vec *bv = bio_iovec_idx(clone, i);
411
412 bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
413 if (!bv->bv_page)
414 break;
415
416 /*
417 * if additional pages cannot be allocated without waiting,
418 * return a partially allocated bio, the caller will then try
419 * to allocate additional bios while submitting this partial bio
420 */
421 if (i == (MIN_BIO_PAGES - 1))
422 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
423
424 bv->bv_offset = 0;
425 if (size > PAGE_SIZE)
426 bv->bv_len = PAGE_SIZE;
427 else
428 bv->bv_len = size;
429
430 clone->bi_size += bv->bv_len;
431 clone->bi_vcnt++;
432 size -= bv->bv_len;
433 }
434
435 if (!clone->bi_size) {
436 bio_put(clone);
437 return NULL;
438 }
439
440 return clone;
441 }
442
443 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
444 {
445 unsigned int i;
446 struct bio_vec *bv;
447
448 for (i = 0; i < clone->bi_vcnt; i++) {
449 bv = bio_iovec_idx(clone, i);
450 BUG_ON(!bv->bv_page);
451 mempool_free(bv->bv_page, cc->page_pool);
452 bv->bv_page = NULL;
453 }
454 }
455
456 /*
457 * One of the bios was finished. Check for completion of
458 * the whole request and correctly clean up the buffer.
459 */
460 static void crypt_dec_pending(struct dm_crypt_io *io, int error)
461 {
462 struct crypt_config *cc = (struct crypt_config *) io->target->private;
463
464 if (error < 0)
465 io->error = error;
466
467 if (!atomic_dec_and_test(&io->pending))
468 return;
469
470 bio_endio(io->base_bio, io->error);
471
472 mempool_free(io, cc->io_pool);
473 }
474
475 /*
476 * kcryptd/kcryptd_io:
477 *
478 * Needed because it would be very unwise to do decryption in an
479 * interrupt context.
480 *
481 * kcryptd performs the actual encryption or decryption.
482 *
483 * kcryptd_io performs the IO submission.
484 *
485 * They must be separated as otherwise the final stages could be
486 * starved by new requests which can block in the first stages due
487 * to memory allocation.
488 */
489 static void kcryptd_do_work(struct work_struct *work);
490 static void kcryptd_do_crypt(struct work_struct *work);
491
492 static void kcryptd_queue_io(struct dm_crypt_io *io)
493 {
494 struct crypt_config *cc = io->target->private;
495
496 INIT_WORK(&io->work, kcryptd_do_work);
497 queue_work(cc->io_queue, &io->work);
498 }
499
500 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
501 {
502 struct crypt_config *cc = io->target->private;
503
504 INIT_WORK(&io->work, kcryptd_do_crypt);
505 queue_work(cc->crypt_queue, &io->work);
506 }
507
508 static void crypt_endio(struct bio *clone, int error)
509 {
510 struct dm_crypt_io *io = clone->bi_private;
511 struct crypt_config *cc = io->target->private;
512 unsigned read_io = bio_data_dir(clone) == READ;
513
514 /*
515 * free the processed pages
516 */
517 if (!read_io) {
518 crypt_free_buffer_pages(cc, clone);
519 goto out;
520 }
521
522 if (unlikely(!bio_flagged(clone, BIO_UPTODATE))) {
523 error = -EIO;
524 goto out;
525 }
526
527 bio_put(clone);
528 kcryptd_queue_crypt(io);
529 return;
530
531 out:
532 bio_put(clone);
533 crypt_dec_pending(io, error);
534 }
535
536 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
537 {
538 struct crypt_config *cc = io->target->private;
539
540 clone->bi_private = io;
541 clone->bi_end_io = crypt_endio;
542 clone->bi_bdev = cc->dev->bdev;
543 clone->bi_rw = io->base_bio->bi_rw;
544 clone->bi_destructor = dm_crypt_bio_destructor;
545 }
546
547 static void process_read(struct dm_crypt_io *io)
548 {
549 struct crypt_config *cc = io->target->private;
550 struct bio *base_bio = io->base_bio;
551 struct bio *clone;
552 sector_t sector = base_bio->bi_sector - io->target->begin;
553
554 atomic_inc(&io->pending);
555
556 /*
557 * The block layer might modify the bvec array, so always
558 * copy the required bvecs because we need the original
559 * one in order to decrypt the whole bio data *afterwards*.
560 */
561 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
562 if (unlikely(!clone)) {
563 crypt_dec_pending(io, -ENOMEM);
564 return;
565 }
566
567 clone_init(io, clone);
568 clone->bi_idx = 0;
569 clone->bi_vcnt = bio_segments(base_bio);
570 clone->bi_size = base_bio->bi_size;
571 clone->bi_sector = cc->start + sector;
572 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
573 sizeof(struct bio_vec) * clone->bi_vcnt);
574
575 generic_make_request(clone);
576 }
577
578 static void process_write(struct dm_crypt_io *io)
579 {
580 struct crypt_config *cc = io->target->private;
581 struct bio *base_bio = io->base_bio;
582 struct bio *clone;
583 struct convert_context ctx;
584 unsigned remaining = base_bio->bi_size;
585 sector_t sector = base_bio->bi_sector - io->target->begin;
586
587 atomic_inc(&io->pending);
588
589 crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1);
590
591 /*
592 * The allocated buffers can be smaller than the whole bio,
593 * so repeat the whole process until all the data can be handled.
594 */
595 while (remaining) {
596 clone = crypt_alloc_buffer(io, remaining);
597 if (unlikely(!clone)) {
598 crypt_dec_pending(io, -ENOMEM);
599 return;
600 }
601
602 ctx.bio_out = clone;
603 ctx.idx_out = 0;
604
605 if (unlikely(crypt_convert(cc, &ctx) < 0)) {
606 crypt_free_buffer_pages(cc, clone);
607 bio_put(clone);
608 crypt_dec_pending(io, -EIO);
609 return;
610 }
611
612 /* crypt_convert should have filled the clone bio */
613 BUG_ON(ctx.idx_out < clone->bi_vcnt);
614
615 clone->bi_sector = cc->start + sector;
616 remaining -= clone->bi_size;
617 sector += bio_sectors(clone);
618
619 /* Grab another reference to the io struct
620 * before we kick off the request */
621 if (remaining)
622 atomic_inc(&io->pending);
623
624 generic_make_request(clone);
625
626 /* Do not reference clone after this - it
627 * may be gone already. */
628
629 /* out of memory -> run queues */
630 if (remaining)
631 congestion_wait(WRITE, HZ/100);
632 }
633 }
634
635 static void process_read_endio(struct dm_crypt_io *io)
636 {
637 struct crypt_config *cc = io->target->private;
638 struct convert_context ctx;
639
640 crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
641 io->base_bio->bi_sector - io->target->begin, 0);
642
643 crypt_dec_pending(io, crypt_convert(cc, &ctx));
644 }
645
646 static void kcryptd_do_work(struct work_struct *work)
647 {
648 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
649
650 if (bio_data_dir(io->base_bio) == READ)
651 process_read(io);
652 }
653
654 static void kcryptd_do_crypt(struct work_struct *work)
655 {
656 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
657
658 if (bio_data_dir(io->base_bio) == READ)
659 process_read_endio(io);
660 else
661 process_write(io);
662 }
663
664 /*
665 * Decode key from its hex representation
666 */
667 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
668 {
669 char buffer[3];
670 char *endp;
671 unsigned int i;
672
673 buffer[2] = '\0';
674
675 for (i = 0; i < size; i++) {
676 buffer[0] = *hex++;
677 buffer[1] = *hex++;
678
679 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
680
681 if (endp != &buffer[2])
682 return -EINVAL;
683 }
684
685 if (*hex != '\0')
686 return -EINVAL;
687
688 return 0;
689 }
690
691 /*
692 * Encode key into its hex representation
693 */
694 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
695 {
696 unsigned int i;
697
698 for (i = 0; i < size; i++) {
699 sprintf(hex, "%02x", *key);
700 hex += 2;
701 key++;
702 }
703 }
704
705 static int crypt_set_key(struct crypt_config *cc, char *key)
706 {
707 unsigned key_size = strlen(key) >> 1;
708
709 if (cc->key_size && cc->key_size != key_size)
710 return -EINVAL;
711
712 cc->key_size = key_size; /* initial settings */
713
714 if ((!key_size && strcmp(key, "-")) ||
715 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
716 return -EINVAL;
717
718 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
719
720 return 0;
721 }
722
723 static int crypt_wipe_key(struct crypt_config *cc)
724 {
725 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
726 memset(&cc->key, 0, cc->key_size * sizeof(u8));
727 return 0;
728 }
729
730 /*
731 * Construct an encryption mapping:
732 * <cipher> <key> <iv_offset> <dev_path> <start>
733 */
734 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
735 {
736 struct crypt_config *cc;
737 struct crypto_blkcipher *tfm;
738 char *tmp;
739 char *cipher;
740 char *chainmode;
741 char *ivmode;
742 char *ivopts;
743 unsigned int key_size;
744 unsigned long long tmpll;
745
746 if (argc != 5) {
747 ti->error = "Not enough arguments";
748 return -EINVAL;
749 }
750
751 tmp = argv[0];
752 cipher = strsep(&tmp, "-");
753 chainmode = strsep(&tmp, "-");
754 ivopts = strsep(&tmp, "-");
755 ivmode = strsep(&ivopts, ":");
756
757 if (tmp)
758 DMWARN("Unexpected additional cipher options");
759
760 key_size = strlen(argv[1]) >> 1;
761
762 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
763 if (cc == NULL) {
764 ti->error =
765 "Cannot allocate transparent encryption context";
766 return -ENOMEM;
767 }
768
769 if (crypt_set_key(cc, argv[1])) {
770 ti->error = "Error decoding key";
771 goto bad_cipher;
772 }
773
774 /* Compatiblity mode for old dm-crypt cipher strings */
775 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
776 chainmode = "cbc";
777 ivmode = "plain";
778 }
779
780 if (strcmp(chainmode, "ecb") && !ivmode) {
781 ti->error = "This chaining mode requires an IV mechanism";
782 goto bad_cipher;
783 }
784
785 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
786 chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
787 ti->error = "Chain mode + cipher name is too long";
788 goto bad_cipher;
789 }
790
791 tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
792 if (IS_ERR(tfm)) {
793 ti->error = "Error allocating crypto tfm";
794 goto bad_cipher;
795 }
796
797 strcpy(cc->cipher, cipher);
798 strcpy(cc->chainmode, chainmode);
799 cc->tfm = tfm;
800
801 /*
802 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
803 * See comments at iv code
804 */
805
806 if (ivmode == NULL)
807 cc->iv_gen_ops = NULL;
808 else if (strcmp(ivmode, "plain") == 0)
809 cc->iv_gen_ops = &crypt_iv_plain_ops;
810 else if (strcmp(ivmode, "essiv") == 0)
811 cc->iv_gen_ops = &crypt_iv_essiv_ops;
812 else if (strcmp(ivmode, "benbi") == 0)
813 cc->iv_gen_ops = &crypt_iv_benbi_ops;
814 else if (strcmp(ivmode, "null") == 0)
815 cc->iv_gen_ops = &crypt_iv_null_ops;
816 else {
817 ti->error = "Invalid IV mode";
818 goto bad_ivmode;
819 }
820
821 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
822 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
823 goto bad_ivmode;
824
825 cc->iv_size = crypto_blkcipher_ivsize(tfm);
826 if (cc->iv_size)
827 /* at least a 64 bit sector number should fit in our buffer */
828 cc->iv_size = max(cc->iv_size,
829 (unsigned int)(sizeof(u64) / sizeof(u8)));
830 else {
831 if (cc->iv_gen_ops) {
832 DMWARN("Selected cipher does not support IVs");
833 if (cc->iv_gen_ops->dtr)
834 cc->iv_gen_ops->dtr(cc);
835 cc->iv_gen_ops = NULL;
836 }
837 }
838
839 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
840 if (!cc->io_pool) {
841 ti->error = "Cannot allocate crypt io mempool";
842 goto bad_slab_pool;
843 }
844
845 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
846 if (!cc->page_pool) {
847 ti->error = "Cannot allocate page mempool";
848 goto bad_page_pool;
849 }
850
851 cc->bs = bioset_create(MIN_IOS, MIN_IOS);
852 if (!cc->bs) {
853 ti->error = "Cannot allocate crypt bioset";
854 goto bad_bs;
855 }
856
857 if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
858 ti->error = "Error setting key";
859 goto bad_device;
860 }
861
862 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
863 ti->error = "Invalid iv_offset sector";
864 goto bad_device;
865 }
866 cc->iv_offset = tmpll;
867
868 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
869 ti->error = "Invalid device sector";
870 goto bad_device;
871 }
872 cc->start = tmpll;
873
874 if (dm_get_device(ti, argv[3], cc->start, ti->len,
875 dm_table_get_mode(ti->table), &cc->dev)) {
876 ti->error = "Device lookup failed";
877 goto bad_device;
878 }
879
880 if (ivmode && cc->iv_gen_ops) {
881 if (ivopts)
882 *(ivopts - 1) = ':';
883 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
884 if (!cc->iv_mode) {
885 ti->error = "Error kmallocing iv_mode string";
886 goto bad_ivmode_string;
887 }
888 strcpy(cc->iv_mode, ivmode);
889 } else
890 cc->iv_mode = NULL;
891
892 cc->io_queue = create_singlethread_workqueue("kcryptd_io");
893 if (!cc->io_queue) {
894 ti->error = "Couldn't create kcryptd io queue";
895 goto bad_io_queue;
896 }
897
898 cc->crypt_queue = create_singlethread_workqueue("kcryptd");
899 if (!cc->crypt_queue) {
900 ti->error = "Couldn't create kcryptd queue";
901 goto bad_crypt_queue;
902 }
903
904 ti->private = cc;
905 return 0;
906
907 bad_crypt_queue:
908 destroy_workqueue(cc->io_queue);
909 bad_io_queue:
910 kfree(cc->iv_mode);
911 bad_ivmode_string:
912 dm_put_device(ti, cc->dev);
913 bad_device:
914 bioset_free(cc->bs);
915 bad_bs:
916 mempool_destroy(cc->page_pool);
917 bad_page_pool:
918 mempool_destroy(cc->io_pool);
919 bad_slab_pool:
920 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
921 cc->iv_gen_ops->dtr(cc);
922 bad_ivmode:
923 crypto_free_blkcipher(tfm);
924 bad_cipher:
925 /* Must zero key material before freeing */
926 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
927 kfree(cc);
928 return -EINVAL;
929 }
930
931 static void crypt_dtr(struct dm_target *ti)
932 {
933 struct crypt_config *cc = (struct crypt_config *) ti->private;
934
935 destroy_workqueue(cc->io_queue);
936 destroy_workqueue(cc->crypt_queue);
937
938 bioset_free(cc->bs);
939 mempool_destroy(cc->page_pool);
940 mempool_destroy(cc->io_pool);
941
942 kfree(cc->iv_mode);
943 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
944 cc->iv_gen_ops->dtr(cc);
945 crypto_free_blkcipher(cc->tfm);
946 dm_put_device(ti, cc->dev);
947
948 /* Must zero key material before freeing */
949 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
950 kfree(cc);
951 }
952
953 static int crypt_map(struct dm_target *ti, struct bio *bio,
954 union map_info *map_context)
955 {
956 struct crypt_config *cc = ti->private;
957 struct dm_crypt_io *io;
958
959 io = mempool_alloc(cc->io_pool, GFP_NOIO);
960 io->target = ti;
961 io->base_bio = bio;
962 io->error = 0;
963 atomic_set(&io->pending, 0);
964
965 if (bio_data_dir(io->base_bio) == READ)
966 kcryptd_queue_io(io);
967 else
968 kcryptd_queue_crypt(io);
969
970 return DM_MAPIO_SUBMITTED;
971 }
972
973 static int crypt_status(struct dm_target *ti, status_type_t type,
974 char *result, unsigned int maxlen)
975 {
976 struct crypt_config *cc = (struct crypt_config *) ti->private;
977 unsigned int sz = 0;
978
979 switch (type) {
980 case STATUSTYPE_INFO:
981 result[0] = '\0';
982 break;
983
984 case STATUSTYPE_TABLE:
985 if (cc->iv_mode)
986 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
987 cc->iv_mode);
988 else
989 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
990
991 if (cc->key_size > 0) {
992 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
993 return -ENOMEM;
994
995 crypt_encode_key(result + sz, cc->key, cc->key_size);
996 sz += cc->key_size << 1;
997 } else {
998 if (sz >= maxlen)
999 return -ENOMEM;
1000 result[sz++] = '-';
1001 }
1002
1003 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1004 cc->dev->name, (unsigned long long)cc->start);
1005 break;
1006 }
1007 return 0;
1008 }
1009
1010 static void crypt_postsuspend(struct dm_target *ti)
1011 {
1012 struct crypt_config *cc = ti->private;
1013
1014 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1015 }
1016
1017 static int crypt_preresume(struct dm_target *ti)
1018 {
1019 struct crypt_config *cc = ti->private;
1020
1021 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1022 DMERR("aborting resume - crypt key is not set.");
1023 return -EAGAIN;
1024 }
1025
1026 return 0;
1027 }
1028
1029 static void crypt_resume(struct dm_target *ti)
1030 {
1031 struct crypt_config *cc = ti->private;
1032
1033 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1034 }
1035
1036 /* Message interface
1037 * key set <key>
1038 * key wipe
1039 */
1040 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1041 {
1042 struct crypt_config *cc = ti->private;
1043
1044 if (argc < 2)
1045 goto error;
1046
1047 if (!strnicmp(argv[0], MESG_STR("key"))) {
1048 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1049 DMWARN("not suspended during key manipulation.");
1050 return -EINVAL;
1051 }
1052 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1053 return crypt_set_key(cc, argv[2]);
1054 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1055 return crypt_wipe_key(cc);
1056 }
1057
1058 error:
1059 DMWARN("unrecognised message received.");
1060 return -EINVAL;
1061 }
1062
1063 static struct target_type crypt_target = {
1064 .name = "crypt",
1065 .version= {1, 5, 0},
1066 .module = THIS_MODULE,
1067 .ctr = crypt_ctr,
1068 .dtr = crypt_dtr,
1069 .map = crypt_map,
1070 .status = crypt_status,
1071 .postsuspend = crypt_postsuspend,
1072 .preresume = crypt_preresume,
1073 .resume = crypt_resume,
1074 .message = crypt_message,
1075 };
1076
1077 static int __init dm_crypt_init(void)
1078 {
1079 int r;
1080
1081 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1082 if (!_crypt_io_pool)
1083 return -ENOMEM;
1084
1085 r = dm_register_target(&crypt_target);
1086 if (r < 0) {
1087 DMERR("register failed %d", r);
1088 kmem_cache_destroy(_crypt_io_pool);
1089 }
1090
1091 return r;
1092 }
1093
1094 static void __exit dm_crypt_exit(void)
1095 {
1096 int r = dm_unregister_target(&crypt_target);
1097
1098 if (r < 0)
1099 DMERR("unregister failed %d", r);
1100
1101 kmem_cache_destroy(_crypt_io_pool);
1102 }
1103
1104 module_init(dm_crypt_init);
1105 module_exit(dm_crypt_exit);
1106
1107 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1108 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1109 MODULE_LICENSE("GPL");
This page took 0.060969 seconds and 5 git commands to generate.