dm crypt: extract scatterlist processing
[deliverable/linux.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2007 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
22 #include <asm/page.h>
23 #include <asm/unaligned.h>
24
25 #include "dm.h"
26
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
29
30 /*
31 * context holding the current state of a multi-part conversion
32 */
33 struct convert_context {
34 struct bio *bio_in;
35 struct bio *bio_out;
36 unsigned int offset_in;
37 unsigned int offset_out;
38 unsigned int idx_in;
39 unsigned int idx_out;
40 sector_t sector;
41 };
42
43 /*
44 * per bio private data
45 */
46 struct dm_crypt_io {
47 struct dm_target *target;
48 struct bio *base_bio;
49 struct work_struct work;
50
51 struct convert_context ctx;
52
53 atomic_t pending;
54 int error;
55 sector_t sector;
56 };
57
58 struct dm_crypt_request {
59 struct scatterlist sg_in;
60 struct scatterlist sg_out;
61 };
62
63 struct crypt_config;
64
65 struct crypt_iv_operations {
66 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
67 const char *opts);
68 void (*dtr)(struct crypt_config *cc);
69 const char *(*status)(struct crypt_config *cc);
70 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
71 };
72
73 /*
74 * Crypt: maps a linear range of a block device
75 * and encrypts / decrypts at the same time.
76 */
77 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
78 struct crypt_config {
79 struct dm_dev *dev;
80 sector_t start;
81
82 /*
83 * pool for per bio private data and
84 * for encryption buffer pages
85 */
86 mempool_t *io_pool;
87 mempool_t *page_pool;
88 struct bio_set *bs;
89
90 struct workqueue_struct *io_queue;
91 struct workqueue_struct *crypt_queue;
92 /*
93 * crypto related data
94 */
95 struct crypt_iv_operations *iv_gen_ops;
96 char *iv_mode;
97 union {
98 struct crypto_cipher *essiv_tfm;
99 int benbi_shift;
100 } iv_gen_private;
101 sector_t iv_offset;
102 unsigned int iv_size;
103
104 char cipher[CRYPTO_MAX_ALG_NAME];
105 char chainmode[CRYPTO_MAX_ALG_NAME];
106 struct crypto_blkcipher *tfm;
107 unsigned long flags;
108 unsigned int key_size;
109 u8 key[0];
110 };
111
112 #define MIN_IOS 16
113 #define MIN_POOL_PAGES 32
114 #define MIN_BIO_PAGES 8
115
116 static struct kmem_cache *_crypt_io_pool;
117
118 static void clone_init(struct dm_crypt_io *, struct bio *);
119 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
120
121 /*
122 * Different IV generation algorithms:
123 *
124 * plain: the initial vector is the 32-bit little-endian version of the sector
125 * number, padded with zeros if necessary.
126 *
127 * essiv: "encrypted sector|salt initial vector", the sector number is
128 * encrypted with the bulk cipher using a salt as key. The salt
129 * should be derived from the bulk cipher's key via hashing.
130 *
131 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
132 * (needed for LRW-32-AES and possible other narrow block modes)
133 *
134 * null: the initial vector is always zero. Provides compatibility with
135 * obsolete loop_fish2 devices. Do not use for new devices.
136 *
137 * plumb: unimplemented, see:
138 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
139 */
140
141 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
142 {
143 memset(iv, 0, cc->iv_size);
144 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
145
146 return 0;
147 }
148
149 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
150 const char *opts)
151 {
152 struct crypto_cipher *essiv_tfm;
153 struct crypto_hash *hash_tfm;
154 struct hash_desc desc;
155 struct scatterlist sg;
156 unsigned int saltsize;
157 u8 *salt;
158 int err;
159
160 if (opts == NULL) {
161 ti->error = "Digest algorithm missing for ESSIV mode";
162 return -EINVAL;
163 }
164
165 /* Hash the cipher key with the given hash algorithm */
166 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
167 if (IS_ERR(hash_tfm)) {
168 ti->error = "Error initializing ESSIV hash";
169 return PTR_ERR(hash_tfm);
170 }
171
172 saltsize = crypto_hash_digestsize(hash_tfm);
173 salt = kmalloc(saltsize, GFP_KERNEL);
174 if (salt == NULL) {
175 ti->error = "Error kmallocing salt storage in ESSIV";
176 crypto_free_hash(hash_tfm);
177 return -ENOMEM;
178 }
179
180 sg_init_one(&sg, cc->key, cc->key_size);
181 desc.tfm = hash_tfm;
182 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
183 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
184 crypto_free_hash(hash_tfm);
185
186 if (err) {
187 ti->error = "Error calculating hash in ESSIV";
188 kfree(salt);
189 return err;
190 }
191
192 /* Setup the essiv_tfm with the given salt */
193 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
194 if (IS_ERR(essiv_tfm)) {
195 ti->error = "Error allocating crypto tfm for ESSIV";
196 kfree(salt);
197 return PTR_ERR(essiv_tfm);
198 }
199 if (crypto_cipher_blocksize(essiv_tfm) !=
200 crypto_blkcipher_ivsize(cc->tfm)) {
201 ti->error = "Block size of ESSIV cipher does "
202 "not match IV size of block cipher";
203 crypto_free_cipher(essiv_tfm);
204 kfree(salt);
205 return -EINVAL;
206 }
207 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
208 if (err) {
209 ti->error = "Failed to set key for ESSIV cipher";
210 crypto_free_cipher(essiv_tfm);
211 kfree(salt);
212 return err;
213 }
214 kfree(salt);
215
216 cc->iv_gen_private.essiv_tfm = essiv_tfm;
217 return 0;
218 }
219
220 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
221 {
222 crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
223 cc->iv_gen_private.essiv_tfm = NULL;
224 }
225
226 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
227 {
228 memset(iv, 0, cc->iv_size);
229 *(u64 *)iv = cpu_to_le64(sector);
230 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
231 return 0;
232 }
233
234 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
235 const char *opts)
236 {
237 unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
238 int log = ilog2(bs);
239
240 /* we need to calculate how far we must shift the sector count
241 * to get the cipher block count, we use this shift in _gen */
242
243 if (1 << log != bs) {
244 ti->error = "cypher blocksize is not a power of 2";
245 return -EINVAL;
246 }
247
248 if (log > 9) {
249 ti->error = "cypher blocksize is > 512";
250 return -EINVAL;
251 }
252
253 cc->iv_gen_private.benbi_shift = 9 - log;
254
255 return 0;
256 }
257
258 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
259 {
260 }
261
262 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
263 {
264 __be64 val;
265
266 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
267
268 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
269 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
270
271 return 0;
272 }
273
274 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
275 {
276 memset(iv, 0, cc->iv_size);
277
278 return 0;
279 }
280
281 static struct crypt_iv_operations crypt_iv_plain_ops = {
282 .generator = crypt_iv_plain_gen
283 };
284
285 static struct crypt_iv_operations crypt_iv_essiv_ops = {
286 .ctr = crypt_iv_essiv_ctr,
287 .dtr = crypt_iv_essiv_dtr,
288 .generator = crypt_iv_essiv_gen
289 };
290
291 static struct crypt_iv_operations crypt_iv_benbi_ops = {
292 .ctr = crypt_iv_benbi_ctr,
293 .dtr = crypt_iv_benbi_dtr,
294 .generator = crypt_iv_benbi_gen
295 };
296
297 static struct crypt_iv_operations crypt_iv_null_ops = {
298 .generator = crypt_iv_null_gen
299 };
300
301 static int
302 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
303 struct scatterlist *in, unsigned int length,
304 int write, sector_t sector)
305 {
306 u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
307 struct blkcipher_desc desc = {
308 .tfm = cc->tfm,
309 .info = iv,
310 .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
311 };
312 int r;
313
314 if (cc->iv_gen_ops) {
315 r = cc->iv_gen_ops->generator(cc, iv, sector);
316 if (r < 0)
317 return r;
318
319 if (write)
320 r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
321 else
322 r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
323 } else {
324 if (write)
325 r = crypto_blkcipher_encrypt(&desc, out, in, length);
326 else
327 r = crypto_blkcipher_decrypt(&desc, out, in, length);
328 }
329
330 return r;
331 }
332
333 static void crypt_convert_init(struct crypt_config *cc,
334 struct convert_context *ctx,
335 struct bio *bio_out, struct bio *bio_in,
336 sector_t sector)
337 {
338 ctx->bio_in = bio_in;
339 ctx->bio_out = bio_out;
340 ctx->offset_in = 0;
341 ctx->offset_out = 0;
342 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
343 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
344 ctx->sector = sector + cc->iv_offset;
345 }
346
347 static int crypt_convert_block(struct crypt_config *cc,
348 struct convert_context *ctx)
349 {
350 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
351 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
352 struct dm_crypt_request dmreq;
353
354 sg_init_table(&dmreq.sg_in, 1);
355 sg_set_page(&dmreq.sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
356 bv_in->bv_offset + ctx->offset_in);
357
358 sg_init_table(&dmreq.sg_out, 1);
359 sg_set_page(&dmreq.sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
360 bv_out->bv_offset + ctx->offset_out);
361
362 ctx->offset_in += 1 << SECTOR_SHIFT;
363 if (ctx->offset_in >= bv_in->bv_len) {
364 ctx->offset_in = 0;
365 ctx->idx_in++;
366 }
367
368 ctx->offset_out += 1 << SECTOR_SHIFT;
369 if (ctx->offset_out >= bv_out->bv_len) {
370 ctx->offset_out = 0;
371 ctx->idx_out++;
372 }
373
374 return crypt_convert_scatterlist(cc, &dmreq.sg_out, &dmreq.sg_in,
375 dmreq.sg_in.length,
376 bio_data_dir(ctx->bio_in) == WRITE,
377 ctx->sector);
378 }
379
380 /*
381 * Encrypt / decrypt data from one bio to another one (can be the same one)
382 */
383 static int crypt_convert(struct crypt_config *cc,
384 struct convert_context *ctx)
385 {
386 int r = 0;
387
388 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
389 ctx->idx_out < ctx->bio_out->bi_vcnt) {
390 r = crypt_convert_block(cc, ctx);
391 if (r < 0)
392 break;
393
394 ctx->sector++;
395 }
396
397 return r;
398 }
399
400 static void dm_crypt_bio_destructor(struct bio *bio)
401 {
402 struct dm_crypt_io *io = bio->bi_private;
403 struct crypt_config *cc = io->target->private;
404
405 bio_free(bio, cc->bs);
406 }
407
408 /*
409 * Generate a new unfragmented bio with the given size
410 * This should never violate the device limitations
411 * May return a smaller bio when running out of pages
412 */
413 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
414 {
415 struct crypt_config *cc = io->target->private;
416 struct bio *clone;
417 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
418 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
419 unsigned i, len;
420 struct page *page;
421
422 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
423 if (!clone)
424 return NULL;
425
426 clone_init(io, clone);
427
428 for (i = 0; i < nr_iovecs; i++) {
429 page = mempool_alloc(cc->page_pool, gfp_mask);
430 if (!page)
431 break;
432
433 /*
434 * if additional pages cannot be allocated without waiting,
435 * return a partially allocated bio, the caller will then try
436 * to allocate additional bios while submitting this partial bio
437 */
438 if (i == (MIN_BIO_PAGES - 1))
439 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
440
441 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
442
443 if (!bio_add_page(clone, page, len, 0)) {
444 mempool_free(page, cc->page_pool);
445 break;
446 }
447
448 size -= len;
449 }
450
451 if (!clone->bi_size) {
452 bio_put(clone);
453 return NULL;
454 }
455
456 return clone;
457 }
458
459 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
460 {
461 unsigned int i;
462 struct bio_vec *bv;
463
464 for (i = 0; i < clone->bi_vcnt; i++) {
465 bv = bio_iovec_idx(clone, i);
466 BUG_ON(!bv->bv_page);
467 mempool_free(bv->bv_page, cc->page_pool);
468 bv->bv_page = NULL;
469 }
470 }
471
472 /*
473 * One of the bios was finished. Check for completion of
474 * the whole request and correctly clean up the buffer.
475 */
476 static void crypt_dec_pending(struct dm_crypt_io *io)
477 {
478 struct crypt_config *cc = io->target->private;
479
480 if (!atomic_dec_and_test(&io->pending))
481 return;
482
483 bio_endio(io->base_bio, io->error);
484 mempool_free(io, cc->io_pool);
485 }
486
487 /*
488 * kcryptd/kcryptd_io:
489 *
490 * Needed because it would be very unwise to do decryption in an
491 * interrupt context.
492 *
493 * kcryptd performs the actual encryption or decryption.
494 *
495 * kcryptd_io performs the IO submission.
496 *
497 * They must be separated as otherwise the final stages could be
498 * starved by new requests which can block in the first stages due
499 * to memory allocation.
500 */
501 static void crypt_endio(struct bio *clone, int error)
502 {
503 struct dm_crypt_io *io = clone->bi_private;
504 struct crypt_config *cc = io->target->private;
505 unsigned rw = bio_data_dir(clone);
506
507 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
508 error = -EIO;
509
510 /*
511 * free the processed pages
512 */
513 if (rw == WRITE)
514 crypt_free_buffer_pages(cc, clone);
515
516 bio_put(clone);
517
518 if (rw == READ && !error) {
519 kcryptd_queue_crypt(io);
520 return;
521 }
522
523 if (unlikely(error))
524 io->error = error;
525
526 crypt_dec_pending(io);
527 }
528
529 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
530 {
531 struct crypt_config *cc = io->target->private;
532
533 clone->bi_private = io;
534 clone->bi_end_io = crypt_endio;
535 clone->bi_bdev = cc->dev->bdev;
536 clone->bi_rw = io->base_bio->bi_rw;
537 clone->bi_destructor = dm_crypt_bio_destructor;
538 }
539
540 static void kcryptd_io_read(struct dm_crypt_io *io)
541 {
542 struct crypt_config *cc = io->target->private;
543 struct bio *base_bio = io->base_bio;
544 struct bio *clone;
545
546 atomic_inc(&io->pending);
547
548 /*
549 * The block layer might modify the bvec array, so always
550 * copy the required bvecs because we need the original
551 * one in order to decrypt the whole bio data *afterwards*.
552 */
553 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
554 if (unlikely(!clone)) {
555 io->error = -ENOMEM;
556 crypt_dec_pending(io);
557 return;
558 }
559
560 clone_init(io, clone);
561 clone->bi_idx = 0;
562 clone->bi_vcnt = bio_segments(base_bio);
563 clone->bi_size = base_bio->bi_size;
564 clone->bi_sector = cc->start + io->sector;
565 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
566 sizeof(struct bio_vec) * clone->bi_vcnt);
567
568 generic_make_request(clone);
569 }
570
571 static void kcryptd_io_write(struct dm_crypt_io *io)
572 {
573 }
574
575 static void kcryptd_io(struct work_struct *work)
576 {
577 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
578
579 if (bio_data_dir(io->base_bio) == READ)
580 kcryptd_io_read(io);
581 else
582 kcryptd_io_write(io);
583 }
584
585 static void kcryptd_queue_io(struct dm_crypt_io *io)
586 {
587 struct crypt_config *cc = io->target->private;
588
589 INIT_WORK(&io->work, kcryptd_io);
590 queue_work(cc->io_queue, &io->work);
591 }
592
593 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int error)
594 {
595 struct bio *clone = io->ctx.bio_out;
596 struct crypt_config *cc = io->target->private;
597
598 if (unlikely(error < 0)) {
599 crypt_free_buffer_pages(cc, clone);
600 bio_put(clone);
601 io->error = -EIO;
602 return;
603 }
604
605 /* crypt_convert should have filled the clone bio */
606 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
607
608 clone->bi_sector = cc->start + io->sector;
609 io->sector += bio_sectors(clone);
610
611 atomic_inc(&io->pending);
612 generic_make_request(clone);
613 }
614
615 static void kcryptd_crypt_write_convert_loop(struct dm_crypt_io *io)
616 {
617 struct crypt_config *cc = io->target->private;
618 struct bio *clone;
619 unsigned remaining = io->base_bio->bi_size;
620 int r;
621
622 /*
623 * The allocated buffers can be smaller than the whole bio,
624 * so repeat the whole process until all the data can be handled.
625 */
626 while (remaining) {
627 clone = crypt_alloc_buffer(io, remaining);
628 if (unlikely(!clone)) {
629 io->error = -ENOMEM;
630 return;
631 }
632
633 io->ctx.bio_out = clone;
634 io->ctx.idx_out = 0;
635
636 remaining -= clone->bi_size;
637
638 r = crypt_convert(cc, &io->ctx);
639
640 kcryptd_crypt_write_io_submit(io, r);
641 if (unlikely(r < 0))
642 return;
643
644 /* out of memory -> run queues */
645 if (unlikely(remaining))
646 congestion_wait(WRITE, HZ/100);
647 }
648 }
649
650 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
651 {
652 struct crypt_config *cc = io->target->private;
653
654 /*
655 * Prevent io from disappearing until this function completes.
656 */
657 atomic_inc(&io->pending);
658
659 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, io->sector);
660 kcryptd_crypt_write_convert_loop(io);
661
662 crypt_dec_pending(io);
663 }
664
665 static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
666 {
667 if (unlikely(error < 0))
668 io->error = -EIO;
669
670 crypt_dec_pending(io);
671 }
672
673 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
674 {
675 struct crypt_config *cc = io->target->private;
676 int r = 0;
677
678 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
679 io->sector);
680
681 r = crypt_convert(cc, &io->ctx);
682
683 kcryptd_crypt_read_done(io, r);
684 }
685
686 static void kcryptd_crypt(struct work_struct *work)
687 {
688 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
689
690 if (bio_data_dir(io->base_bio) == READ)
691 kcryptd_crypt_read_convert(io);
692 else
693 kcryptd_crypt_write_convert(io);
694 }
695
696 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
697 {
698 struct crypt_config *cc = io->target->private;
699
700 INIT_WORK(&io->work, kcryptd_crypt);
701 queue_work(cc->crypt_queue, &io->work);
702 }
703
704 /*
705 * Decode key from its hex representation
706 */
707 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
708 {
709 char buffer[3];
710 char *endp;
711 unsigned int i;
712
713 buffer[2] = '\0';
714
715 for (i = 0; i < size; i++) {
716 buffer[0] = *hex++;
717 buffer[1] = *hex++;
718
719 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
720
721 if (endp != &buffer[2])
722 return -EINVAL;
723 }
724
725 if (*hex != '\0')
726 return -EINVAL;
727
728 return 0;
729 }
730
731 /*
732 * Encode key into its hex representation
733 */
734 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
735 {
736 unsigned int i;
737
738 for (i = 0; i < size; i++) {
739 sprintf(hex, "%02x", *key);
740 hex += 2;
741 key++;
742 }
743 }
744
745 static int crypt_set_key(struct crypt_config *cc, char *key)
746 {
747 unsigned key_size = strlen(key) >> 1;
748
749 if (cc->key_size && cc->key_size != key_size)
750 return -EINVAL;
751
752 cc->key_size = key_size; /* initial settings */
753
754 if ((!key_size && strcmp(key, "-")) ||
755 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
756 return -EINVAL;
757
758 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
759
760 return 0;
761 }
762
763 static int crypt_wipe_key(struct crypt_config *cc)
764 {
765 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
766 memset(&cc->key, 0, cc->key_size * sizeof(u8));
767 return 0;
768 }
769
770 /*
771 * Construct an encryption mapping:
772 * <cipher> <key> <iv_offset> <dev_path> <start>
773 */
774 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
775 {
776 struct crypt_config *cc;
777 struct crypto_blkcipher *tfm;
778 char *tmp;
779 char *cipher;
780 char *chainmode;
781 char *ivmode;
782 char *ivopts;
783 unsigned int key_size;
784 unsigned long long tmpll;
785
786 if (argc != 5) {
787 ti->error = "Not enough arguments";
788 return -EINVAL;
789 }
790
791 tmp = argv[0];
792 cipher = strsep(&tmp, "-");
793 chainmode = strsep(&tmp, "-");
794 ivopts = strsep(&tmp, "-");
795 ivmode = strsep(&ivopts, ":");
796
797 if (tmp)
798 DMWARN("Unexpected additional cipher options");
799
800 key_size = strlen(argv[1]) >> 1;
801
802 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
803 if (cc == NULL) {
804 ti->error =
805 "Cannot allocate transparent encryption context";
806 return -ENOMEM;
807 }
808
809 if (crypt_set_key(cc, argv[1])) {
810 ti->error = "Error decoding key";
811 goto bad_cipher;
812 }
813
814 /* Compatiblity mode for old dm-crypt cipher strings */
815 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
816 chainmode = "cbc";
817 ivmode = "plain";
818 }
819
820 if (strcmp(chainmode, "ecb") && !ivmode) {
821 ti->error = "This chaining mode requires an IV mechanism";
822 goto bad_cipher;
823 }
824
825 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
826 chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
827 ti->error = "Chain mode + cipher name is too long";
828 goto bad_cipher;
829 }
830
831 tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
832 if (IS_ERR(tfm)) {
833 ti->error = "Error allocating crypto tfm";
834 goto bad_cipher;
835 }
836
837 strcpy(cc->cipher, cipher);
838 strcpy(cc->chainmode, chainmode);
839 cc->tfm = tfm;
840
841 /*
842 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
843 * See comments at iv code
844 */
845
846 if (ivmode == NULL)
847 cc->iv_gen_ops = NULL;
848 else if (strcmp(ivmode, "plain") == 0)
849 cc->iv_gen_ops = &crypt_iv_plain_ops;
850 else if (strcmp(ivmode, "essiv") == 0)
851 cc->iv_gen_ops = &crypt_iv_essiv_ops;
852 else if (strcmp(ivmode, "benbi") == 0)
853 cc->iv_gen_ops = &crypt_iv_benbi_ops;
854 else if (strcmp(ivmode, "null") == 0)
855 cc->iv_gen_ops = &crypt_iv_null_ops;
856 else {
857 ti->error = "Invalid IV mode";
858 goto bad_ivmode;
859 }
860
861 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
862 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
863 goto bad_ivmode;
864
865 cc->iv_size = crypto_blkcipher_ivsize(tfm);
866 if (cc->iv_size)
867 /* at least a 64 bit sector number should fit in our buffer */
868 cc->iv_size = max(cc->iv_size,
869 (unsigned int)(sizeof(u64) / sizeof(u8)));
870 else {
871 if (cc->iv_gen_ops) {
872 DMWARN("Selected cipher does not support IVs");
873 if (cc->iv_gen_ops->dtr)
874 cc->iv_gen_ops->dtr(cc);
875 cc->iv_gen_ops = NULL;
876 }
877 }
878
879 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
880 if (!cc->io_pool) {
881 ti->error = "Cannot allocate crypt io mempool";
882 goto bad_slab_pool;
883 }
884
885 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
886 if (!cc->page_pool) {
887 ti->error = "Cannot allocate page mempool";
888 goto bad_page_pool;
889 }
890
891 cc->bs = bioset_create(MIN_IOS, MIN_IOS);
892 if (!cc->bs) {
893 ti->error = "Cannot allocate crypt bioset";
894 goto bad_bs;
895 }
896
897 if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
898 ti->error = "Error setting key";
899 goto bad_device;
900 }
901
902 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
903 ti->error = "Invalid iv_offset sector";
904 goto bad_device;
905 }
906 cc->iv_offset = tmpll;
907
908 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
909 ti->error = "Invalid device sector";
910 goto bad_device;
911 }
912 cc->start = tmpll;
913
914 if (dm_get_device(ti, argv[3], cc->start, ti->len,
915 dm_table_get_mode(ti->table), &cc->dev)) {
916 ti->error = "Device lookup failed";
917 goto bad_device;
918 }
919
920 if (ivmode && cc->iv_gen_ops) {
921 if (ivopts)
922 *(ivopts - 1) = ':';
923 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
924 if (!cc->iv_mode) {
925 ti->error = "Error kmallocing iv_mode string";
926 goto bad_ivmode_string;
927 }
928 strcpy(cc->iv_mode, ivmode);
929 } else
930 cc->iv_mode = NULL;
931
932 cc->io_queue = create_singlethread_workqueue("kcryptd_io");
933 if (!cc->io_queue) {
934 ti->error = "Couldn't create kcryptd io queue";
935 goto bad_io_queue;
936 }
937
938 cc->crypt_queue = create_singlethread_workqueue("kcryptd");
939 if (!cc->crypt_queue) {
940 ti->error = "Couldn't create kcryptd queue";
941 goto bad_crypt_queue;
942 }
943
944 ti->private = cc;
945 return 0;
946
947 bad_crypt_queue:
948 destroy_workqueue(cc->io_queue);
949 bad_io_queue:
950 kfree(cc->iv_mode);
951 bad_ivmode_string:
952 dm_put_device(ti, cc->dev);
953 bad_device:
954 bioset_free(cc->bs);
955 bad_bs:
956 mempool_destroy(cc->page_pool);
957 bad_page_pool:
958 mempool_destroy(cc->io_pool);
959 bad_slab_pool:
960 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
961 cc->iv_gen_ops->dtr(cc);
962 bad_ivmode:
963 crypto_free_blkcipher(tfm);
964 bad_cipher:
965 /* Must zero key material before freeing */
966 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
967 kfree(cc);
968 return -EINVAL;
969 }
970
971 static void crypt_dtr(struct dm_target *ti)
972 {
973 struct crypt_config *cc = (struct crypt_config *) ti->private;
974
975 destroy_workqueue(cc->io_queue);
976 destroy_workqueue(cc->crypt_queue);
977
978 bioset_free(cc->bs);
979 mempool_destroy(cc->page_pool);
980 mempool_destroy(cc->io_pool);
981
982 kfree(cc->iv_mode);
983 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
984 cc->iv_gen_ops->dtr(cc);
985 crypto_free_blkcipher(cc->tfm);
986 dm_put_device(ti, cc->dev);
987
988 /* Must zero key material before freeing */
989 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
990 kfree(cc);
991 }
992
993 static int crypt_map(struct dm_target *ti, struct bio *bio,
994 union map_info *map_context)
995 {
996 struct crypt_config *cc = ti->private;
997 struct dm_crypt_io *io;
998
999 io = mempool_alloc(cc->io_pool, GFP_NOIO);
1000 io->target = ti;
1001 io->base_bio = bio;
1002 io->sector = bio->bi_sector - ti->begin;
1003 io->error = 0;
1004 atomic_set(&io->pending, 0);
1005
1006 if (bio_data_dir(io->base_bio) == READ)
1007 kcryptd_queue_io(io);
1008 else
1009 kcryptd_queue_crypt(io);
1010
1011 return DM_MAPIO_SUBMITTED;
1012 }
1013
1014 static int crypt_status(struct dm_target *ti, status_type_t type,
1015 char *result, unsigned int maxlen)
1016 {
1017 struct crypt_config *cc = (struct crypt_config *) ti->private;
1018 unsigned int sz = 0;
1019
1020 switch (type) {
1021 case STATUSTYPE_INFO:
1022 result[0] = '\0';
1023 break;
1024
1025 case STATUSTYPE_TABLE:
1026 if (cc->iv_mode)
1027 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
1028 cc->iv_mode);
1029 else
1030 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
1031
1032 if (cc->key_size > 0) {
1033 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1034 return -ENOMEM;
1035
1036 crypt_encode_key(result + sz, cc->key, cc->key_size);
1037 sz += cc->key_size << 1;
1038 } else {
1039 if (sz >= maxlen)
1040 return -ENOMEM;
1041 result[sz++] = '-';
1042 }
1043
1044 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1045 cc->dev->name, (unsigned long long)cc->start);
1046 break;
1047 }
1048 return 0;
1049 }
1050
1051 static void crypt_postsuspend(struct dm_target *ti)
1052 {
1053 struct crypt_config *cc = ti->private;
1054
1055 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1056 }
1057
1058 static int crypt_preresume(struct dm_target *ti)
1059 {
1060 struct crypt_config *cc = ti->private;
1061
1062 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1063 DMERR("aborting resume - crypt key is not set.");
1064 return -EAGAIN;
1065 }
1066
1067 return 0;
1068 }
1069
1070 static void crypt_resume(struct dm_target *ti)
1071 {
1072 struct crypt_config *cc = ti->private;
1073
1074 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1075 }
1076
1077 /* Message interface
1078 * key set <key>
1079 * key wipe
1080 */
1081 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1082 {
1083 struct crypt_config *cc = ti->private;
1084
1085 if (argc < 2)
1086 goto error;
1087
1088 if (!strnicmp(argv[0], MESG_STR("key"))) {
1089 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1090 DMWARN("not suspended during key manipulation.");
1091 return -EINVAL;
1092 }
1093 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1094 return crypt_set_key(cc, argv[2]);
1095 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1096 return crypt_wipe_key(cc);
1097 }
1098
1099 error:
1100 DMWARN("unrecognised message received.");
1101 return -EINVAL;
1102 }
1103
1104 static struct target_type crypt_target = {
1105 .name = "crypt",
1106 .version= {1, 5, 0},
1107 .module = THIS_MODULE,
1108 .ctr = crypt_ctr,
1109 .dtr = crypt_dtr,
1110 .map = crypt_map,
1111 .status = crypt_status,
1112 .postsuspend = crypt_postsuspend,
1113 .preresume = crypt_preresume,
1114 .resume = crypt_resume,
1115 .message = crypt_message,
1116 };
1117
1118 static int __init dm_crypt_init(void)
1119 {
1120 int r;
1121
1122 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1123 if (!_crypt_io_pool)
1124 return -ENOMEM;
1125
1126 r = dm_register_target(&crypt_target);
1127 if (r < 0) {
1128 DMERR("register failed %d", r);
1129 kmem_cache_destroy(_crypt_io_pool);
1130 }
1131
1132 return r;
1133 }
1134
1135 static void __exit dm_crypt_exit(void)
1136 {
1137 int r = dm_unregister_target(&crypt_target);
1138
1139 if (r < 0)
1140 DMERR("unregister failed %d", r);
1141
1142 kmem_cache_destroy(_crypt_io_pool);
1143 }
1144
1145 module_init(dm_crypt_init);
1146 module_exit(dm_crypt_exit);
1147
1148 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1149 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1150 MODULE_LICENSE("GPL");
This page took 0.058273 seconds and 5 git commands to generate.