dma-mapping: always provide the dma_map_ops based implementation
[deliverable/linux.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/kthread.h>
22 #include <linux/backing-dev.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <linux/rbtree.h>
26 #include <asm/page.h>
27 #include <asm/unaligned.h>
28 #include <crypto/hash.h>
29 #include <crypto/md5.h>
30 #include <crypto/algapi.h>
31
32 #include <linux/device-mapper.h>
33
34 #define DM_MSG_PREFIX "crypt"
35
36 /*
37 * context holding the current state of a multi-part conversion
38 */
39 struct convert_context {
40 struct completion restart;
41 struct bio *bio_in;
42 struct bio *bio_out;
43 struct bvec_iter iter_in;
44 struct bvec_iter iter_out;
45 sector_t cc_sector;
46 atomic_t cc_pending;
47 struct ablkcipher_request *req;
48 };
49
50 /*
51 * per bio private data
52 */
53 struct dm_crypt_io {
54 struct crypt_config *cc;
55 struct bio *base_bio;
56 struct work_struct work;
57
58 struct convert_context ctx;
59
60 atomic_t io_pending;
61 int error;
62 sector_t sector;
63
64 struct rb_node rb_node;
65 } CRYPTO_MINALIGN_ATTR;
66
67 struct dm_crypt_request {
68 struct convert_context *ctx;
69 struct scatterlist sg_in;
70 struct scatterlist sg_out;
71 sector_t iv_sector;
72 };
73
74 struct crypt_config;
75
76 struct crypt_iv_operations {
77 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
78 const char *opts);
79 void (*dtr)(struct crypt_config *cc);
80 int (*init)(struct crypt_config *cc);
81 int (*wipe)(struct crypt_config *cc);
82 int (*generator)(struct crypt_config *cc, u8 *iv,
83 struct dm_crypt_request *dmreq);
84 int (*post)(struct crypt_config *cc, u8 *iv,
85 struct dm_crypt_request *dmreq);
86 };
87
88 struct iv_essiv_private {
89 struct crypto_hash *hash_tfm;
90 u8 *salt;
91 };
92
93 struct iv_benbi_private {
94 int shift;
95 };
96
97 #define LMK_SEED_SIZE 64 /* hash + 0 */
98 struct iv_lmk_private {
99 struct crypto_shash *hash_tfm;
100 u8 *seed;
101 };
102
103 #define TCW_WHITENING_SIZE 16
104 struct iv_tcw_private {
105 struct crypto_shash *crc32_tfm;
106 u8 *iv_seed;
107 u8 *whitening;
108 };
109
110 /*
111 * Crypt: maps a linear range of a block device
112 * and encrypts / decrypts at the same time.
113 */
114 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
115 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
116 DM_CRYPT_EXIT_THREAD};
117
118 /*
119 * The fields in here must be read only after initialization.
120 */
121 struct crypt_config {
122 struct dm_dev *dev;
123 sector_t start;
124
125 /*
126 * pool for per bio private data, crypto requests and
127 * encryption requeusts/buffer pages
128 */
129 mempool_t *req_pool;
130 mempool_t *page_pool;
131 struct bio_set *bs;
132 struct mutex bio_alloc_lock;
133
134 struct workqueue_struct *io_queue;
135 struct workqueue_struct *crypt_queue;
136
137 struct task_struct *write_thread;
138 wait_queue_head_t write_thread_wait;
139 struct rb_root write_tree;
140
141 char *cipher;
142 char *cipher_string;
143
144 struct crypt_iv_operations *iv_gen_ops;
145 union {
146 struct iv_essiv_private essiv;
147 struct iv_benbi_private benbi;
148 struct iv_lmk_private lmk;
149 struct iv_tcw_private tcw;
150 } iv_gen_private;
151 sector_t iv_offset;
152 unsigned int iv_size;
153
154 /* ESSIV: struct crypto_cipher *essiv_tfm */
155 void *iv_private;
156 struct crypto_ablkcipher **tfms;
157 unsigned tfms_count;
158
159 /*
160 * Layout of each crypto request:
161 *
162 * struct ablkcipher_request
163 * context
164 * padding
165 * struct dm_crypt_request
166 * padding
167 * IV
168 *
169 * The padding is added so that dm_crypt_request and the IV are
170 * correctly aligned.
171 */
172 unsigned int dmreq_start;
173
174 unsigned int per_bio_data_size;
175
176 unsigned long flags;
177 unsigned int key_size;
178 unsigned int key_parts; /* independent parts in key buffer */
179 unsigned int key_extra_size; /* additional keys length */
180 u8 key[0];
181 };
182
183 #define MIN_IOS 16
184
185 static void clone_init(struct dm_crypt_io *, struct bio *);
186 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
187 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
188
189 /*
190 * Use this to access cipher attributes that are the same for each CPU.
191 */
192 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
193 {
194 return cc->tfms[0];
195 }
196
197 /*
198 * Different IV generation algorithms:
199 *
200 * plain: the initial vector is the 32-bit little-endian version of the sector
201 * number, padded with zeros if necessary.
202 *
203 * plain64: the initial vector is the 64-bit little-endian version of the sector
204 * number, padded with zeros if necessary.
205 *
206 * essiv: "encrypted sector|salt initial vector", the sector number is
207 * encrypted with the bulk cipher using a salt as key. The salt
208 * should be derived from the bulk cipher's key via hashing.
209 *
210 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
211 * (needed for LRW-32-AES and possible other narrow block modes)
212 *
213 * null: the initial vector is always zero. Provides compatibility with
214 * obsolete loop_fish2 devices. Do not use for new devices.
215 *
216 * lmk: Compatible implementation of the block chaining mode used
217 * by the Loop-AES block device encryption system
218 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
219 * It operates on full 512 byte sectors and uses CBC
220 * with an IV derived from the sector number, the data and
221 * optionally extra IV seed.
222 * This means that after decryption the first block
223 * of sector must be tweaked according to decrypted data.
224 * Loop-AES can use three encryption schemes:
225 * version 1: is plain aes-cbc mode
226 * version 2: uses 64 multikey scheme with lmk IV generator
227 * version 3: the same as version 2 with additional IV seed
228 * (it uses 65 keys, last key is used as IV seed)
229 *
230 * tcw: Compatible implementation of the block chaining mode used
231 * by the TrueCrypt device encryption system (prior to version 4.1).
232 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
233 * It operates on full 512 byte sectors and uses CBC
234 * with an IV derived from initial key and the sector number.
235 * In addition, whitening value is applied on every sector, whitening
236 * is calculated from initial key, sector number and mixed using CRC32.
237 * Note that this encryption scheme is vulnerable to watermarking attacks
238 * and should be used for old compatible containers access only.
239 *
240 * plumb: unimplemented, see:
241 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
242 */
243
244 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
245 struct dm_crypt_request *dmreq)
246 {
247 memset(iv, 0, cc->iv_size);
248 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
249
250 return 0;
251 }
252
253 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
254 struct dm_crypt_request *dmreq)
255 {
256 memset(iv, 0, cc->iv_size);
257 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
258
259 return 0;
260 }
261
262 /* Initialise ESSIV - compute salt but no local memory allocations */
263 static int crypt_iv_essiv_init(struct crypt_config *cc)
264 {
265 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
266 struct hash_desc desc;
267 struct scatterlist sg;
268 struct crypto_cipher *essiv_tfm;
269 int err;
270
271 sg_init_one(&sg, cc->key, cc->key_size);
272 desc.tfm = essiv->hash_tfm;
273 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
274
275 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
276 if (err)
277 return err;
278
279 essiv_tfm = cc->iv_private;
280
281 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
282 crypto_hash_digestsize(essiv->hash_tfm));
283 if (err)
284 return err;
285
286 return 0;
287 }
288
289 /* Wipe salt and reset key derived from volume key */
290 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
291 {
292 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
293 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
294 struct crypto_cipher *essiv_tfm;
295 int r, err = 0;
296
297 memset(essiv->salt, 0, salt_size);
298
299 essiv_tfm = cc->iv_private;
300 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
301 if (r)
302 err = r;
303
304 return err;
305 }
306
307 /* Set up per cpu cipher state */
308 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
309 struct dm_target *ti,
310 u8 *salt, unsigned saltsize)
311 {
312 struct crypto_cipher *essiv_tfm;
313 int err;
314
315 /* Setup the essiv_tfm with the given salt */
316 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
317 if (IS_ERR(essiv_tfm)) {
318 ti->error = "Error allocating crypto tfm for ESSIV";
319 return essiv_tfm;
320 }
321
322 if (crypto_cipher_blocksize(essiv_tfm) !=
323 crypto_ablkcipher_ivsize(any_tfm(cc))) {
324 ti->error = "Block size of ESSIV cipher does "
325 "not match IV size of block cipher";
326 crypto_free_cipher(essiv_tfm);
327 return ERR_PTR(-EINVAL);
328 }
329
330 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
331 if (err) {
332 ti->error = "Failed to set key for ESSIV cipher";
333 crypto_free_cipher(essiv_tfm);
334 return ERR_PTR(err);
335 }
336
337 return essiv_tfm;
338 }
339
340 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
341 {
342 struct crypto_cipher *essiv_tfm;
343 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
344
345 crypto_free_hash(essiv->hash_tfm);
346 essiv->hash_tfm = NULL;
347
348 kzfree(essiv->salt);
349 essiv->salt = NULL;
350
351 essiv_tfm = cc->iv_private;
352
353 if (essiv_tfm)
354 crypto_free_cipher(essiv_tfm);
355
356 cc->iv_private = NULL;
357 }
358
359 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
360 const char *opts)
361 {
362 struct crypto_cipher *essiv_tfm = NULL;
363 struct crypto_hash *hash_tfm = NULL;
364 u8 *salt = NULL;
365 int err;
366
367 if (!opts) {
368 ti->error = "Digest algorithm missing for ESSIV mode";
369 return -EINVAL;
370 }
371
372 /* Allocate hash algorithm */
373 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
374 if (IS_ERR(hash_tfm)) {
375 ti->error = "Error initializing ESSIV hash";
376 err = PTR_ERR(hash_tfm);
377 goto bad;
378 }
379
380 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
381 if (!salt) {
382 ti->error = "Error kmallocing salt storage in ESSIV";
383 err = -ENOMEM;
384 goto bad;
385 }
386
387 cc->iv_gen_private.essiv.salt = salt;
388 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
389
390 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
391 crypto_hash_digestsize(hash_tfm));
392 if (IS_ERR(essiv_tfm)) {
393 crypt_iv_essiv_dtr(cc);
394 return PTR_ERR(essiv_tfm);
395 }
396 cc->iv_private = essiv_tfm;
397
398 return 0;
399
400 bad:
401 if (hash_tfm && !IS_ERR(hash_tfm))
402 crypto_free_hash(hash_tfm);
403 kfree(salt);
404 return err;
405 }
406
407 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
408 struct dm_crypt_request *dmreq)
409 {
410 struct crypto_cipher *essiv_tfm = cc->iv_private;
411
412 memset(iv, 0, cc->iv_size);
413 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
414 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
415
416 return 0;
417 }
418
419 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
420 const char *opts)
421 {
422 unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
423 int log = ilog2(bs);
424
425 /* we need to calculate how far we must shift the sector count
426 * to get the cipher block count, we use this shift in _gen */
427
428 if (1 << log != bs) {
429 ti->error = "cypher blocksize is not a power of 2";
430 return -EINVAL;
431 }
432
433 if (log > 9) {
434 ti->error = "cypher blocksize is > 512";
435 return -EINVAL;
436 }
437
438 cc->iv_gen_private.benbi.shift = 9 - log;
439
440 return 0;
441 }
442
443 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
444 {
445 }
446
447 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
448 struct dm_crypt_request *dmreq)
449 {
450 __be64 val;
451
452 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
453
454 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
455 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
456
457 return 0;
458 }
459
460 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
461 struct dm_crypt_request *dmreq)
462 {
463 memset(iv, 0, cc->iv_size);
464
465 return 0;
466 }
467
468 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
469 {
470 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
471
472 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
473 crypto_free_shash(lmk->hash_tfm);
474 lmk->hash_tfm = NULL;
475
476 kzfree(lmk->seed);
477 lmk->seed = NULL;
478 }
479
480 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
481 const char *opts)
482 {
483 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
484
485 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
486 if (IS_ERR(lmk->hash_tfm)) {
487 ti->error = "Error initializing LMK hash";
488 return PTR_ERR(lmk->hash_tfm);
489 }
490
491 /* No seed in LMK version 2 */
492 if (cc->key_parts == cc->tfms_count) {
493 lmk->seed = NULL;
494 return 0;
495 }
496
497 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
498 if (!lmk->seed) {
499 crypt_iv_lmk_dtr(cc);
500 ti->error = "Error kmallocing seed storage in LMK";
501 return -ENOMEM;
502 }
503
504 return 0;
505 }
506
507 static int crypt_iv_lmk_init(struct crypt_config *cc)
508 {
509 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
510 int subkey_size = cc->key_size / cc->key_parts;
511
512 /* LMK seed is on the position of LMK_KEYS + 1 key */
513 if (lmk->seed)
514 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
515 crypto_shash_digestsize(lmk->hash_tfm));
516
517 return 0;
518 }
519
520 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
521 {
522 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
523
524 if (lmk->seed)
525 memset(lmk->seed, 0, LMK_SEED_SIZE);
526
527 return 0;
528 }
529
530 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
531 struct dm_crypt_request *dmreq,
532 u8 *data)
533 {
534 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
535 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
536 struct md5_state md5state;
537 __le32 buf[4];
538 int i, r;
539
540 desc->tfm = lmk->hash_tfm;
541 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
542
543 r = crypto_shash_init(desc);
544 if (r)
545 return r;
546
547 if (lmk->seed) {
548 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
549 if (r)
550 return r;
551 }
552
553 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
554 r = crypto_shash_update(desc, data + 16, 16 * 31);
555 if (r)
556 return r;
557
558 /* Sector is cropped to 56 bits here */
559 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
560 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
561 buf[2] = cpu_to_le32(4024);
562 buf[3] = 0;
563 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
564 if (r)
565 return r;
566
567 /* No MD5 padding here */
568 r = crypto_shash_export(desc, &md5state);
569 if (r)
570 return r;
571
572 for (i = 0; i < MD5_HASH_WORDS; i++)
573 __cpu_to_le32s(&md5state.hash[i]);
574 memcpy(iv, &md5state.hash, cc->iv_size);
575
576 return 0;
577 }
578
579 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
580 struct dm_crypt_request *dmreq)
581 {
582 u8 *src;
583 int r = 0;
584
585 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
586 src = kmap_atomic(sg_page(&dmreq->sg_in));
587 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
588 kunmap_atomic(src);
589 } else
590 memset(iv, 0, cc->iv_size);
591
592 return r;
593 }
594
595 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
596 struct dm_crypt_request *dmreq)
597 {
598 u8 *dst;
599 int r;
600
601 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
602 return 0;
603
604 dst = kmap_atomic(sg_page(&dmreq->sg_out));
605 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
606
607 /* Tweak the first block of plaintext sector */
608 if (!r)
609 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
610
611 kunmap_atomic(dst);
612 return r;
613 }
614
615 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
616 {
617 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
618
619 kzfree(tcw->iv_seed);
620 tcw->iv_seed = NULL;
621 kzfree(tcw->whitening);
622 tcw->whitening = NULL;
623
624 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
625 crypto_free_shash(tcw->crc32_tfm);
626 tcw->crc32_tfm = NULL;
627 }
628
629 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
630 const char *opts)
631 {
632 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
633
634 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
635 ti->error = "Wrong key size for TCW";
636 return -EINVAL;
637 }
638
639 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
640 if (IS_ERR(tcw->crc32_tfm)) {
641 ti->error = "Error initializing CRC32 in TCW";
642 return PTR_ERR(tcw->crc32_tfm);
643 }
644
645 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
646 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
647 if (!tcw->iv_seed || !tcw->whitening) {
648 crypt_iv_tcw_dtr(cc);
649 ti->error = "Error allocating seed storage in TCW";
650 return -ENOMEM;
651 }
652
653 return 0;
654 }
655
656 static int crypt_iv_tcw_init(struct crypt_config *cc)
657 {
658 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
659 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
660
661 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
662 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
663 TCW_WHITENING_SIZE);
664
665 return 0;
666 }
667
668 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
669 {
670 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
671
672 memset(tcw->iv_seed, 0, cc->iv_size);
673 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
674
675 return 0;
676 }
677
678 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
679 struct dm_crypt_request *dmreq,
680 u8 *data)
681 {
682 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
683 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
684 u8 buf[TCW_WHITENING_SIZE];
685 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
686 int i, r;
687
688 /* xor whitening with sector number */
689 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
690 crypto_xor(buf, (u8 *)&sector, 8);
691 crypto_xor(&buf[8], (u8 *)&sector, 8);
692
693 /* calculate crc32 for every 32bit part and xor it */
694 desc->tfm = tcw->crc32_tfm;
695 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
696 for (i = 0; i < 4; i++) {
697 r = crypto_shash_init(desc);
698 if (r)
699 goto out;
700 r = crypto_shash_update(desc, &buf[i * 4], 4);
701 if (r)
702 goto out;
703 r = crypto_shash_final(desc, &buf[i * 4]);
704 if (r)
705 goto out;
706 }
707 crypto_xor(&buf[0], &buf[12], 4);
708 crypto_xor(&buf[4], &buf[8], 4);
709
710 /* apply whitening (8 bytes) to whole sector */
711 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
712 crypto_xor(data + i * 8, buf, 8);
713 out:
714 memzero_explicit(buf, sizeof(buf));
715 return r;
716 }
717
718 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
719 struct dm_crypt_request *dmreq)
720 {
721 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
722 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
723 u8 *src;
724 int r = 0;
725
726 /* Remove whitening from ciphertext */
727 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
728 src = kmap_atomic(sg_page(&dmreq->sg_in));
729 r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
730 kunmap_atomic(src);
731 }
732
733 /* Calculate IV */
734 memcpy(iv, tcw->iv_seed, cc->iv_size);
735 crypto_xor(iv, (u8 *)&sector, 8);
736 if (cc->iv_size > 8)
737 crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
738
739 return r;
740 }
741
742 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
743 struct dm_crypt_request *dmreq)
744 {
745 u8 *dst;
746 int r;
747
748 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
749 return 0;
750
751 /* Apply whitening on ciphertext */
752 dst = kmap_atomic(sg_page(&dmreq->sg_out));
753 r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
754 kunmap_atomic(dst);
755
756 return r;
757 }
758
759 static struct crypt_iv_operations crypt_iv_plain_ops = {
760 .generator = crypt_iv_plain_gen
761 };
762
763 static struct crypt_iv_operations crypt_iv_plain64_ops = {
764 .generator = crypt_iv_plain64_gen
765 };
766
767 static struct crypt_iv_operations crypt_iv_essiv_ops = {
768 .ctr = crypt_iv_essiv_ctr,
769 .dtr = crypt_iv_essiv_dtr,
770 .init = crypt_iv_essiv_init,
771 .wipe = crypt_iv_essiv_wipe,
772 .generator = crypt_iv_essiv_gen
773 };
774
775 static struct crypt_iv_operations crypt_iv_benbi_ops = {
776 .ctr = crypt_iv_benbi_ctr,
777 .dtr = crypt_iv_benbi_dtr,
778 .generator = crypt_iv_benbi_gen
779 };
780
781 static struct crypt_iv_operations crypt_iv_null_ops = {
782 .generator = crypt_iv_null_gen
783 };
784
785 static struct crypt_iv_operations crypt_iv_lmk_ops = {
786 .ctr = crypt_iv_lmk_ctr,
787 .dtr = crypt_iv_lmk_dtr,
788 .init = crypt_iv_lmk_init,
789 .wipe = crypt_iv_lmk_wipe,
790 .generator = crypt_iv_lmk_gen,
791 .post = crypt_iv_lmk_post
792 };
793
794 static struct crypt_iv_operations crypt_iv_tcw_ops = {
795 .ctr = crypt_iv_tcw_ctr,
796 .dtr = crypt_iv_tcw_dtr,
797 .init = crypt_iv_tcw_init,
798 .wipe = crypt_iv_tcw_wipe,
799 .generator = crypt_iv_tcw_gen,
800 .post = crypt_iv_tcw_post
801 };
802
803 static void crypt_convert_init(struct crypt_config *cc,
804 struct convert_context *ctx,
805 struct bio *bio_out, struct bio *bio_in,
806 sector_t sector)
807 {
808 ctx->bio_in = bio_in;
809 ctx->bio_out = bio_out;
810 if (bio_in)
811 ctx->iter_in = bio_in->bi_iter;
812 if (bio_out)
813 ctx->iter_out = bio_out->bi_iter;
814 ctx->cc_sector = sector + cc->iv_offset;
815 init_completion(&ctx->restart);
816 }
817
818 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
819 struct ablkcipher_request *req)
820 {
821 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
822 }
823
824 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
825 struct dm_crypt_request *dmreq)
826 {
827 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
828 }
829
830 static u8 *iv_of_dmreq(struct crypt_config *cc,
831 struct dm_crypt_request *dmreq)
832 {
833 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
834 crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
835 }
836
837 static int crypt_convert_block(struct crypt_config *cc,
838 struct convert_context *ctx,
839 struct ablkcipher_request *req)
840 {
841 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
842 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
843 struct dm_crypt_request *dmreq;
844 u8 *iv;
845 int r;
846
847 dmreq = dmreq_of_req(cc, req);
848 iv = iv_of_dmreq(cc, dmreq);
849
850 dmreq->iv_sector = ctx->cc_sector;
851 dmreq->ctx = ctx;
852 sg_init_table(&dmreq->sg_in, 1);
853 sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
854 bv_in.bv_offset);
855
856 sg_init_table(&dmreq->sg_out, 1);
857 sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
858 bv_out.bv_offset);
859
860 bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
861 bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
862
863 if (cc->iv_gen_ops) {
864 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
865 if (r < 0)
866 return r;
867 }
868
869 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
870 1 << SECTOR_SHIFT, iv);
871
872 if (bio_data_dir(ctx->bio_in) == WRITE)
873 r = crypto_ablkcipher_encrypt(req);
874 else
875 r = crypto_ablkcipher_decrypt(req);
876
877 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
878 r = cc->iv_gen_ops->post(cc, iv, dmreq);
879
880 return r;
881 }
882
883 static void kcryptd_async_done(struct crypto_async_request *async_req,
884 int error);
885
886 static void crypt_alloc_req(struct crypt_config *cc,
887 struct convert_context *ctx)
888 {
889 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
890
891 if (!ctx->req)
892 ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
893
894 ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
895
896 /*
897 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
898 * requests if driver request queue is full.
899 */
900 ablkcipher_request_set_callback(ctx->req,
901 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
902 kcryptd_async_done, dmreq_of_req(cc, ctx->req));
903 }
904
905 static void crypt_free_req(struct crypt_config *cc,
906 struct ablkcipher_request *req, struct bio *base_bio)
907 {
908 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
909
910 if ((struct ablkcipher_request *)(io + 1) != req)
911 mempool_free(req, cc->req_pool);
912 }
913
914 /*
915 * Encrypt / decrypt data from one bio to another one (can be the same one)
916 */
917 static int crypt_convert(struct crypt_config *cc,
918 struct convert_context *ctx)
919 {
920 int r;
921
922 atomic_set(&ctx->cc_pending, 1);
923
924 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
925
926 crypt_alloc_req(cc, ctx);
927
928 atomic_inc(&ctx->cc_pending);
929
930 r = crypt_convert_block(cc, ctx, ctx->req);
931
932 switch (r) {
933 /*
934 * The request was queued by a crypto driver
935 * but the driver request queue is full, let's wait.
936 */
937 case -EBUSY:
938 wait_for_completion(&ctx->restart);
939 reinit_completion(&ctx->restart);
940 /* fall through */
941 /*
942 * The request is queued and processed asynchronously,
943 * completion function kcryptd_async_done() will be called.
944 */
945 case -EINPROGRESS:
946 ctx->req = NULL;
947 ctx->cc_sector++;
948 continue;
949 /*
950 * The request was already processed (synchronously).
951 */
952 case 0:
953 atomic_dec(&ctx->cc_pending);
954 ctx->cc_sector++;
955 cond_resched();
956 continue;
957
958 /* There was an error while processing the request. */
959 default:
960 atomic_dec(&ctx->cc_pending);
961 return r;
962 }
963 }
964
965 return 0;
966 }
967
968 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
969
970 /*
971 * Generate a new unfragmented bio with the given size
972 * This should never violate the device limitations (but only because
973 * max_segment_size is being constrained to PAGE_SIZE).
974 *
975 * This function may be called concurrently. If we allocate from the mempool
976 * concurrently, there is a possibility of deadlock. For example, if we have
977 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
978 * the mempool concurrently, it may deadlock in a situation where both processes
979 * have allocated 128 pages and the mempool is exhausted.
980 *
981 * In order to avoid this scenario we allocate the pages under a mutex.
982 *
983 * In order to not degrade performance with excessive locking, we try
984 * non-blocking allocations without a mutex first but on failure we fallback
985 * to blocking allocations with a mutex.
986 */
987 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
988 {
989 struct crypt_config *cc = io->cc;
990 struct bio *clone;
991 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
992 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
993 unsigned i, len, remaining_size;
994 struct page *page;
995 struct bio_vec *bvec;
996
997 retry:
998 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
999 mutex_lock(&cc->bio_alloc_lock);
1000
1001 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1002 if (!clone)
1003 goto return_clone;
1004
1005 clone_init(io, clone);
1006
1007 remaining_size = size;
1008
1009 for (i = 0; i < nr_iovecs; i++) {
1010 page = mempool_alloc(cc->page_pool, gfp_mask);
1011 if (!page) {
1012 crypt_free_buffer_pages(cc, clone);
1013 bio_put(clone);
1014 gfp_mask |= __GFP_DIRECT_RECLAIM;
1015 goto retry;
1016 }
1017
1018 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1019
1020 bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1021 bvec->bv_page = page;
1022 bvec->bv_len = len;
1023 bvec->bv_offset = 0;
1024
1025 clone->bi_iter.bi_size += len;
1026
1027 remaining_size -= len;
1028 }
1029
1030 return_clone:
1031 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1032 mutex_unlock(&cc->bio_alloc_lock);
1033
1034 return clone;
1035 }
1036
1037 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1038 {
1039 unsigned int i;
1040 struct bio_vec *bv;
1041
1042 bio_for_each_segment_all(bv, clone, i) {
1043 BUG_ON(!bv->bv_page);
1044 mempool_free(bv->bv_page, cc->page_pool);
1045 bv->bv_page = NULL;
1046 }
1047 }
1048
1049 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1050 struct bio *bio, sector_t sector)
1051 {
1052 io->cc = cc;
1053 io->base_bio = bio;
1054 io->sector = sector;
1055 io->error = 0;
1056 io->ctx.req = NULL;
1057 atomic_set(&io->io_pending, 0);
1058 }
1059
1060 static void crypt_inc_pending(struct dm_crypt_io *io)
1061 {
1062 atomic_inc(&io->io_pending);
1063 }
1064
1065 /*
1066 * One of the bios was finished. Check for completion of
1067 * the whole request and correctly clean up the buffer.
1068 */
1069 static void crypt_dec_pending(struct dm_crypt_io *io)
1070 {
1071 struct crypt_config *cc = io->cc;
1072 struct bio *base_bio = io->base_bio;
1073 int error = io->error;
1074
1075 if (!atomic_dec_and_test(&io->io_pending))
1076 return;
1077
1078 if (io->ctx.req)
1079 crypt_free_req(cc, io->ctx.req, base_bio);
1080
1081 base_bio->bi_error = error;
1082 bio_endio(base_bio);
1083 }
1084
1085 /*
1086 * kcryptd/kcryptd_io:
1087 *
1088 * Needed because it would be very unwise to do decryption in an
1089 * interrupt context.
1090 *
1091 * kcryptd performs the actual encryption or decryption.
1092 *
1093 * kcryptd_io performs the IO submission.
1094 *
1095 * They must be separated as otherwise the final stages could be
1096 * starved by new requests which can block in the first stages due
1097 * to memory allocation.
1098 *
1099 * The work is done per CPU global for all dm-crypt instances.
1100 * They should not depend on each other and do not block.
1101 */
1102 static void crypt_endio(struct bio *clone)
1103 {
1104 struct dm_crypt_io *io = clone->bi_private;
1105 struct crypt_config *cc = io->cc;
1106 unsigned rw = bio_data_dir(clone);
1107 int error;
1108
1109 /*
1110 * free the processed pages
1111 */
1112 if (rw == WRITE)
1113 crypt_free_buffer_pages(cc, clone);
1114
1115 error = clone->bi_error;
1116 bio_put(clone);
1117
1118 if (rw == READ && !error) {
1119 kcryptd_queue_crypt(io);
1120 return;
1121 }
1122
1123 if (unlikely(error))
1124 io->error = error;
1125
1126 crypt_dec_pending(io);
1127 }
1128
1129 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1130 {
1131 struct crypt_config *cc = io->cc;
1132
1133 clone->bi_private = io;
1134 clone->bi_end_io = crypt_endio;
1135 clone->bi_bdev = cc->dev->bdev;
1136 clone->bi_rw = io->base_bio->bi_rw;
1137 }
1138
1139 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1140 {
1141 struct crypt_config *cc = io->cc;
1142 struct bio *clone;
1143
1144 /*
1145 * We need the original biovec array in order to decrypt
1146 * the whole bio data *afterwards* -- thanks to immutable
1147 * biovecs we don't need to worry about the block layer
1148 * modifying the biovec array; so leverage bio_clone_fast().
1149 */
1150 clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1151 if (!clone)
1152 return 1;
1153
1154 crypt_inc_pending(io);
1155
1156 clone_init(io, clone);
1157 clone->bi_iter.bi_sector = cc->start + io->sector;
1158
1159 generic_make_request(clone);
1160 return 0;
1161 }
1162
1163 static void kcryptd_io_read_work(struct work_struct *work)
1164 {
1165 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1166
1167 crypt_inc_pending(io);
1168 if (kcryptd_io_read(io, GFP_NOIO))
1169 io->error = -ENOMEM;
1170 crypt_dec_pending(io);
1171 }
1172
1173 static void kcryptd_queue_read(struct dm_crypt_io *io)
1174 {
1175 struct crypt_config *cc = io->cc;
1176
1177 INIT_WORK(&io->work, kcryptd_io_read_work);
1178 queue_work(cc->io_queue, &io->work);
1179 }
1180
1181 static void kcryptd_io_write(struct dm_crypt_io *io)
1182 {
1183 struct bio *clone = io->ctx.bio_out;
1184
1185 generic_make_request(clone);
1186 }
1187
1188 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1189
1190 static int dmcrypt_write(void *data)
1191 {
1192 struct crypt_config *cc = data;
1193 struct dm_crypt_io *io;
1194
1195 while (1) {
1196 struct rb_root write_tree;
1197 struct blk_plug plug;
1198
1199 DECLARE_WAITQUEUE(wait, current);
1200
1201 spin_lock_irq(&cc->write_thread_wait.lock);
1202 continue_locked:
1203
1204 if (!RB_EMPTY_ROOT(&cc->write_tree))
1205 goto pop_from_list;
1206
1207 if (unlikely(test_bit(DM_CRYPT_EXIT_THREAD, &cc->flags))) {
1208 spin_unlock_irq(&cc->write_thread_wait.lock);
1209 break;
1210 }
1211
1212 __set_current_state(TASK_INTERRUPTIBLE);
1213 __add_wait_queue(&cc->write_thread_wait, &wait);
1214
1215 spin_unlock_irq(&cc->write_thread_wait.lock);
1216
1217 schedule();
1218
1219 spin_lock_irq(&cc->write_thread_wait.lock);
1220 __remove_wait_queue(&cc->write_thread_wait, &wait);
1221 goto continue_locked;
1222
1223 pop_from_list:
1224 write_tree = cc->write_tree;
1225 cc->write_tree = RB_ROOT;
1226 spin_unlock_irq(&cc->write_thread_wait.lock);
1227
1228 BUG_ON(rb_parent(write_tree.rb_node));
1229
1230 /*
1231 * Note: we cannot walk the tree here with rb_next because
1232 * the structures may be freed when kcryptd_io_write is called.
1233 */
1234 blk_start_plug(&plug);
1235 do {
1236 io = crypt_io_from_node(rb_first(&write_tree));
1237 rb_erase(&io->rb_node, &write_tree);
1238 kcryptd_io_write(io);
1239 } while (!RB_EMPTY_ROOT(&write_tree));
1240 blk_finish_plug(&plug);
1241 }
1242 return 0;
1243 }
1244
1245 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1246 {
1247 struct bio *clone = io->ctx.bio_out;
1248 struct crypt_config *cc = io->cc;
1249 unsigned long flags;
1250 sector_t sector;
1251 struct rb_node **rbp, *parent;
1252
1253 if (unlikely(io->error < 0)) {
1254 crypt_free_buffer_pages(cc, clone);
1255 bio_put(clone);
1256 crypt_dec_pending(io);
1257 return;
1258 }
1259
1260 /* crypt_convert should have filled the clone bio */
1261 BUG_ON(io->ctx.iter_out.bi_size);
1262
1263 clone->bi_iter.bi_sector = cc->start + io->sector;
1264
1265 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1266 generic_make_request(clone);
1267 return;
1268 }
1269
1270 spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1271 rbp = &cc->write_tree.rb_node;
1272 parent = NULL;
1273 sector = io->sector;
1274 while (*rbp) {
1275 parent = *rbp;
1276 if (sector < crypt_io_from_node(parent)->sector)
1277 rbp = &(*rbp)->rb_left;
1278 else
1279 rbp = &(*rbp)->rb_right;
1280 }
1281 rb_link_node(&io->rb_node, parent, rbp);
1282 rb_insert_color(&io->rb_node, &cc->write_tree);
1283
1284 wake_up_locked(&cc->write_thread_wait);
1285 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1286 }
1287
1288 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1289 {
1290 struct crypt_config *cc = io->cc;
1291 struct bio *clone;
1292 int crypt_finished;
1293 sector_t sector = io->sector;
1294 int r;
1295
1296 /*
1297 * Prevent io from disappearing until this function completes.
1298 */
1299 crypt_inc_pending(io);
1300 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1301
1302 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1303 if (unlikely(!clone)) {
1304 io->error = -EIO;
1305 goto dec;
1306 }
1307
1308 io->ctx.bio_out = clone;
1309 io->ctx.iter_out = clone->bi_iter;
1310
1311 sector += bio_sectors(clone);
1312
1313 crypt_inc_pending(io);
1314 r = crypt_convert(cc, &io->ctx);
1315 if (r)
1316 io->error = -EIO;
1317 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1318
1319 /* Encryption was already finished, submit io now */
1320 if (crypt_finished) {
1321 kcryptd_crypt_write_io_submit(io, 0);
1322 io->sector = sector;
1323 }
1324
1325 dec:
1326 crypt_dec_pending(io);
1327 }
1328
1329 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1330 {
1331 crypt_dec_pending(io);
1332 }
1333
1334 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1335 {
1336 struct crypt_config *cc = io->cc;
1337 int r = 0;
1338
1339 crypt_inc_pending(io);
1340
1341 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1342 io->sector);
1343
1344 r = crypt_convert(cc, &io->ctx);
1345 if (r < 0)
1346 io->error = -EIO;
1347
1348 if (atomic_dec_and_test(&io->ctx.cc_pending))
1349 kcryptd_crypt_read_done(io);
1350
1351 crypt_dec_pending(io);
1352 }
1353
1354 static void kcryptd_async_done(struct crypto_async_request *async_req,
1355 int error)
1356 {
1357 struct dm_crypt_request *dmreq = async_req->data;
1358 struct convert_context *ctx = dmreq->ctx;
1359 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1360 struct crypt_config *cc = io->cc;
1361
1362 /*
1363 * A request from crypto driver backlog is going to be processed now,
1364 * finish the completion and continue in crypt_convert().
1365 * (Callback will be called for the second time for this request.)
1366 */
1367 if (error == -EINPROGRESS) {
1368 complete(&ctx->restart);
1369 return;
1370 }
1371
1372 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1373 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1374
1375 if (error < 0)
1376 io->error = -EIO;
1377
1378 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1379
1380 if (!atomic_dec_and_test(&ctx->cc_pending))
1381 return;
1382
1383 if (bio_data_dir(io->base_bio) == READ)
1384 kcryptd_crypt_read_done(io);
1385 else
1386 kcryptd_crypt_write_io_submit(io, 1);
1387 }
1388
1389 static void kcryptd_crypt(struct work_struct *work)
1390 {
1391 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1392
1393 if (bio_data_dir(io->base_bio) == READ)
1394 kcryptd_crypt_read_convert(io);
1395 else
1396 kcryptd_crypt_write_convert(io);
1397 }
1398
1399 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1400 {
1401 struct crypt_config *cc = io->cc;
1402
1403 INIT_WORK(&io->work, kcryptd_crypt);
1404 queue_work(cc->crypt_queue, &io->work);
1405 }
1406
1407 /*
1408 * Decode key from its hex representation
1409 */
1410 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1411 {
1412 char buffer[3];
1413 unsigned int i;
1414
1415 buffer[2] = '\0';
1416
1417 for (i = 0; i < size; i++) {
1418 buffer[0] = *hex++;
1419 buffer[1] = *hex++;
1420
1421 if (kstrtou8(buffer, 16, &key[i]))
1422 return -EINVAL;
1423 }
1424
1425 if (*hex != '\0')
1426 return -EINVAL;
1427
1428 return 0;
1429 }
1430
1431 static void crypt_free_tfms(struct crypt_config *cc)
1432 {
1433 unsigned i;
1434
1435 if (!cc->tfms)
1436 return;
1437
1438 for (i = 0; i < cc->tfms_count; i++)
1439 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1440 crypto_free_ablkcipher(cc->tfms[i]);
1441 cc->tfms[i] = NULL;
1442 }
1443
1444 kfree(cc->tfms);
1445 cc->tfms = NULL;
1446 }
1447
1448 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1449 {
1450 unsigned i;
1451 int err;
1452
1453 cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1454 GFP_KERNEL);
1455 if (!cc->tfms)
1456 return -ENOMEM;
1457
1458 for (i = 0; i < cc->tfms_count; i++) {
1459 cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1460 if (IS_ERR(cc->tfms[i])) {
1461 err = PTR_ERR(cc->tfms[i]);
1462 crypt_free_tfms(cc);
1463 return err;
1464 }
1465 }
1466
1467 return 0;
1468 }
1469
1470 static int crypt_setkey_allcpus(struct crypt_config *cc)
1471 {
1472 unsigned subkey_size;
1473 int err = 0, i, r;
1474
1475 /* Ignore extra keys (which are used for IV etc) */
1476 subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1477
1478 for (i = 0; i < cc->tfms_count; i++) {
1479 r = crypto_ablkcipher_setkey(cc->tfms[i],
1480 cc->key + (i * subkey_size),
1481 subkey_size);
1482 if (r)
1483 err = r;
1484 }
1485
1486 return err;
1487 }
1488
1489 static int crypt_set_key(struct crypt_config *cc, char *key)
1490 {
1491 int r = -EINVAL;
1492 int key_string_len = strlen(key);
1493
1494 /* The key size may not be changed. */
1495 if (cc->key_size != (key_string_len >> 1))
1496 goto out;
1497
1498 /* Hyphen (which gives a key_size of zero) means there is no key. */
1499 if (!cc->key_size && strcmp(key, "-"))
1500 goto out;
1501
1502 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1503 goto out;
1504
1505 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1506
1507 r = crypt_setkey_allcpus(cc);
1508
1509 out:
1510 /* Hex key string not needed after here, so wipe it. */
1511 memset(key, '0', key_string_len);
1512
1513 return r;
1514 }
1515
1516 static int crypt_wipe_key(struct crypt_config *cc)
1517 {
1518 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1519 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1520
1521 return crypt_setkey_allcpus(cc);
1522 }
1523
1524 static void crypt_dtr(struct dm_target *ti)
1525 {
1526 struct crypt_config *cc = ti->private;
1527
1528 ti->private = NULL;
1529
1530 if (!cc)
1531 return;
1532
1533 if (cc->write_thread) {
1534 spin_lock_irq(&cc->write_thread_wait.lock);
1535 set_bit(DM_CRYPT_EXIT_THREAD, &cc->flags);
1536 wake_up_locked(&cc->write_thread_wait);
1537 spin_unlock_irq(&cc->write_thread_wait.lock);
1538 kthread_stop(cc->write_thread);
1539 }
1540
1541 if (cc->io_queue)
1542 destroy_workqueue(cc->io_queue);
1543 if (cc->crypt_queue)
1544 destroy_workqueue(cc->crypt_queue);
1545
1546 crypt_free_tfms(cc);
1547
1548 if (cc->bs)
1549 bioset_free(cc->bs);
1550
1551 mempool_destroy(cc->page_pool);
1552 mempool_destroy(cc->req_pool);
1553
1554 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1555 cc->iv_gen_ops->dtr(cc);
1556
1557 if (cc->dev)
1558 dm_put_device(ti, cc->dev);
1559
1560 kzfree(cc->cipher);
1561 kzfree(cc->cipher_string);
1562
1563 /* Must zero key material before freeing */
1564 kzfree(cc);
1565 }
1566
1567 static int crypt_ctr_cipher(struct dm_target *ti,
1568 char *cipher_in, char *key)
1569 {
1570 struct crypt_config *cc = ti->private;
1571 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1572 char *cipher_api = NULL;
1573 int ret = -EINVAL;
1574 char dummy;
1575
1576 /* Convert to crypto api definition? */
1577 if (strchr(cipher_in, '(')) {
1578 ti->error = "Bad cipher specification";
1579 return -EINVAL;
1580 }
1581
1582 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1583 if (!cc->cipher_string)
1584 goto bad_mem;
1585
1586 /*
1587 * Legacy dm-crypt cipher specification
1588 * cipher[:keycount]-mode-iv:ivopts
1589 */
1590 tmp = cipher_in;
1591 keycount = strsep(&tmp, "-");
1592 cipher = strsep(&keycount, ":");
1593
1594 if (!keycount)
1595 cc->tfms_count = 1;
1596 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1597 !is_power_of_2(cc->tfms_count)) {
1598 ti->error = "Bad cipher key count specification";
1599 return -EINVAL;
1600 }
1601 cc->key_parts = cc->tfms_count;
1602 cc->key_extra_size = 0;
1603
1604 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1605 if (!cc->cipher)
1606 goto bad_mem;
1607
1608 chainmode = strsep(&tmp, "-");
1609 ivopts = strsep(&tmp, "-");
1610 ivmode = strsep(&ivopts, ":");
1611
1612 if (tmp)
1613 DMWARN("Ignoring unexpected additional cipher options");
1614
1615 /*
1616 * For compatibility with the original dm-crypt mapping format, if
1617 * only the cipher name is supplied, use cbc-plain.
1618 */
1619 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1620 chainmode = "cbc";
1621 ivmode = "plain";
1622 }
1623
1624 if (strcmp(chainmode, "ecb") && !ivmode) {
1625 ti->error = "IV mechanism required";
1626 return -EINVAL;
1627 }
1628
1629 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1630 if (!cipher_api)
1631 goto bad_mem;
1632
1633 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1634 "%s(%s)", chainmode, cipher);
1635 if (ret < 0) {
1636 kfree(cipher_api);
1637 goto bad_mem;
1638 }
1639
1640 /* Allocate cipher */
1641 ret = crypt_alloc_tfms(cc, cipher_api);
1642 if (ret < 0) {
1643 ti->error = "Error allocating crypto tfm";
1644 goto bad;
1645 }
1646
1647 /* Initialize IV */
1648 cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1649 if (cc->iv_size)
1650 /* at least a 64 bit sector number should fit in our buffer */
1651 cc->iv_size = max(cc->iv_size,
1652 (unsigned int)(sizeof(u64) / sizeof(u8)));
1653 else if (ivmode) {
1654 DMWARN("Selected cipher does not support IVs");
1655 ivmode = NULL;
1656 }
1657
1658 /* Choose ivmode, see comments at iv code. */
1659 if (ivmode == NULL)
1660 cc->iv_gen_ops = NULL;
1661 else if (strcmp(ivmode, "plain") == 0)
1662 cc->iv_gen_ops = &crypt_iv_plain_ops;
1663 else if (strcmp(ivmode, "plain64") == 0)
1664 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1665 else if (strcmp(ivmode, "essiv") == 0)
1666 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1667 else if (strcmp(ivmode, "benbi") == 0)
1668 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1669 else if (strcmp(ivmode, "null") == 0)
1670 cc->iv_gen_ops = &crypt_iv_null_ops;
1671 else if (strcmp(ivmode, "lmk") == 0) {
1672 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1673 /*
1674 * Version 2 and 3 is recognised according
1675 * to length of provided multi-key string.
1676 * If present (version 3), last key is used as IV seed.
1677 * All keys (including IV seed) are always the same size.
1678 */
1679 if (cc->key_size % cc->key_parts) {
1680 cc->key_parts++;
1681 cc->key_extra_size = cc->key_size / cc->key_parts;
1682 }
1683 } else if (strcmp(ivmode, "tcw") == 0) {
1684 cc->iv_gen_ops = &crypt_iv_tcw_ops;
1685 cc->key_parts += 2; /* IV + whitening */
1686 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1687 } else {
1688 ret = -EINVAL;
1689 ti->error = "Invalid IV mode";
1690 goto bad;
1691 }
1692
1693 /* Initialize and set key */
1694 ret = crypt_set_key(cc, key);
1695 if (ret < 0) {
1696 ti->error = "Error decoding and setting key";
1697 goto bad;
1698 }
1699
1700 /* Allocate IV */
1701 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1702 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1703 if (ret < 0) {
1704 ti->error = "Error creating IV";
1705 goto bad;
1706 }
1707 }
1708
1709 /* Initialize IV (set keys for ESSIV etc) */
1710 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1711 ret = cc->iv_gen_ops->init(cc);
1712 if (ret < 0) {
1713 ti->error = "Error initialising IV";
1714 goto bad;
1715 }
1716 }
1717
1718 ret = 0;
1719 bad:
1720 kfree(cipher_api);
1721 return ret;
1722
1723 bad_mem:
1724 ti->error = "Cannot allocate cipher strings";
1725 return -ENOMEM;
1726 }
1727
1728 /*
1729 * Construct an encryption mapping:
1730 * <cipher> <key> <iv_offset> <dev_path> <start>
1731 */
1732 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1733 {
1734 struct crypt_config *cc;
1735 unsigned int key_size, opt_params;
1736 unsigned long long tmpll;
1737 int ret;
1738 size_t iv_size_padding;
1739 struct dm_arg_set as;
1740 const char *opt_string;
1741 char dummy;
1742
1743 static struct dm_arg _args[] = {
1744 {0, 3, "Invalid number of feature args"},
1745 };
1746
1747 if (argc < 5) {
1748 ti->error = "Not enough arguments";
1749 return -EINVAL;
1750 }
1751
1752 key_size = strlen(argv[1]) >> 1;
1753
1754 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1755 if (!cc) {
1756 ti->error = "Cannot allocate encryption context";
1757 return -ENOMEM;
1758 }
1759 cc->key_size = key_size;
1760
1761 ti->private = cc;
1762 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1763 if (ret < 0)
1764 goto bad;
1765
1766 cc->dmreq_start = sizeof(struct ablkcipher_request);
1767 cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1768 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1769
1770 if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1771 /* Allocate the padding exactly */
1772 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1773 & crypto_ablkcipher_alignmask(any_tfm(cc));
1774 } else {
1775 /*
1776 * If the cipher requires greater alignment than kmalloc
1777 * alignment, we don't know the exact position of the
1778 * initialization vector. We must assume worst case.
1779 */
1780 iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc));
1781 }
1782
1783 ret = -ENOMEM;
1784 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1785 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1786 if (!cc->req_pool) {
1787 ti->error = "Cannot allocate crypt request mempool";
1788 goto bad;
1789 }
1790
1791 cc->per_bio_data_size = ti->per_bio_data_size =
1792 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1793 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1794 ARCH_KMALLOC_MINALIGN);
1795
1796 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1797 if (!cc->page_pool) {
1798 ti->error = "Cannot allocate page mempool";
1799 goto bad;
1800 }
1801
1802 cc->bs = bioset_create(MIN_IOS, 0);
1803 if (!cc->bs) {
1804 ti->error = "Cannot allocate crypt bioset";
1805 goto bad;
1806 }
1807
1808 mutex_init(&cc->bio_alloc_lock);
1809
1810 ret = -EINVAL;
1811 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1812 ti->error = "Invalid iv_offset sector";
1813 goto bad;
1814 }
1815 cc->iv_offset = tmpll;
1816
1817 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1818 if (ret) {
1819 ti->error = "Device lookup failed";
1820 goto bad;
1821 }
1822
1823 ret = -EINVAL;
1824 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1825 ti->error = "Invalid device sector";
1826 goto bad;
1827 }
1828 cc->start = tmpll;
1829
1830 argv += 5;
1831 argc -= 5;
1832
1833 /* Optional parameters */
1834 if (argc) {
1835 as.argc = argc;
1836 as.argv = argv;
1837
1838 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1839 if (ret)
1840 goto bad;
1841
1842 ret = -EINVAL;
1843 while (opt_params--) {
1844 opt_string = dm_shift_arg(&as);
1845 if (!opt_string) {
1846 ti->error = "Not enough feature arguments";
1847 goto bad;
1848 }
1849
1850 if (!strcasecmp(opt_string, "allow_discards"))
1851 ti->num_discard_bios = 1;
1852
1853 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1854 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1855
1856 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1857 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1858
1859 else {
1860 ti->error = "Invalid feature arguments";
1861 goto bad;
1862 }
1863 }
1864 }
1865
1866 ret = -ENOMEM;
1867 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1868 if (!cc->io_queue) {
1869 ti->error = "Couldn't create kcryptd io queue";
1870 goto bad;
1871 }
1872
1873 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1874 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1875 else
1876 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1877 num_online_cpus());
1878 if (!cc->crypt_queue) {
1879 ti->error = "Couldn't create kcryptd queue";
1880 goto bad;
1881 }
1882
1883 init_waitqueue_head(&cc->write_thread_wait);
1884 cc->write_tree = RB_ROOT;
1885
1886 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1887 if (IS_ERR(cc->write_thread)) {
1888 ret = PTR_ERR(cc->write_thread);
1889 cc->write_thread = NULL;
1890 ti->error = "Couldn't spawn write thread";
1891 goto bad;
1892 }
1893 wake_up_process(cc->write_thread);
1894
1895 ti->num_flush_bios = 1;
1896 ti->discard_zeroes_data_unsupported = true;
1897
1898 return 0;
1899
1900 bad:
1901 crypt_dtr(ti);
1902 return ret;
1903 }
1904
1905 static int crypt_map(struct dm_target *ti, struct bio *bio)
1906 {
1907 struct dm_crypt_io *io;
1908 struct crypt_config *cc = ti->private;
1909
1910 /*
1911 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1912 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1913 * - for REQ_DISCARD caller must use flush if IO ordering matters
1914 */
1915 if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1916 bio->bi_bdev = cc->dev->bdev;
1917 if (bio_sectors(bio))
1918 bio->bi_iter.bi_sector = cc->start +
1919 dm_target_offset(ti, bio->bi_iter.bi_sector);
1920 return DM_MAPIO_REMAPPED;
1921 }
1922
1923 io = dm_per_bio_data(bio, cc->per_bio_data_size);
1924 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1925 io->ctx.req = (struct ablkcipher_request *)(io + 1);
1926
1927 if (bio_data_dir(io->base_bio) == READ) {
1928 if (kcryptd_io_read(io, GFP_NOWAIT))
1929 kcryptd_queue_read(io);
1930 } else
1931 kcryptd_queue_crypt(io);
1932
1933 return DM_MAPIO_SUBMITTED;
1934 }
1935
1936 static void crypt_status(struct dm_target *ti, status_type_t type,
1937 unsigned status_flags, char *result, unsigned maxlen)
1938 {
1939 struct crypt_config *cc = ti->private;
1940 unsigned i, sz = 0;
1941 int num_feature_args = 0;
1942
1943 switch (type) {
1944 case STATUSTYPE_INFO:
1945 result[0] = '\0';
1946 break;
1947
1948 case STATUSTYPE_TABLE:
1949 DMEMIT("%s ", cc->cipher_string);
1950
1951 if (cc->key_size > 0)
1952 for (i = 0; i < cc->key_size; i++)
1953 DMEMIT("%02x", cc->key[i]);
1954 else
1955 DMEMIT("-");
1956
1957 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1958 cc->dev->name, (unsigned long long)cc->start);
1959
1960 num_feature_args += !!ti->num_discard_bios;
1961 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1962 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1963 if (num_feature_args) {
1964 DMEMIT(" %d", num_feature_args);
1965 if (ti->num_discard_bios)
1966 DMEMIT(" allow_discards");
1967 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1968 DMEMIT(" same_cpu_crypt");
1969 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1970 DMEMIT(" submit_from_crypt_cpus");
1971 }
1972
1973 break;
1974 }
1975 }
1976
1977 static void crypt_postsuspend(struct dm_target *ti)
1978 {
1979 struct crypt_config *cc = ti->private;
1980
1981 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1982 }
1983
1984 static int crypt_preresume(struct dm_target *ti)
1985 {
1986 struct crypt_config *cc = ti->private;
1987
1988 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1989 DMERR("aborting resume - crypt key is not set.");
1990 return -EAGAIN;
1991 }
1992
1993 return 0;
1994 }
1995
1996 static void crypt_resume(struct dm_target *ti)
1997 {
1998 struct crypt_config *cc = ti->private;
1999
2000 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2001 }
2002
2003 /* Message interface
2004 * key set <key>
2005 * key wipe
2006 */
2007 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2008 {
2009 struct crypt_config *cc = ti->private;
2010 int ret = -EINVAL;
2011
2012 if (argc < 2)
2013 goto error;
2014
2015 if (!strcasecmp(argv[0], "key")) {
2016 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2017 DMWARN("not suspended during key manipulation.");
2018 return -EINVAL;
2019 }
2020 if (argc == 3 && !strcasecmp(argv[1], "set")) {
2021 ret = crypt_set_key(cc, argv[2]);
2022 if (ret)
2023 return ret;
2024 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2025 ret = cc->iv_gen_ops->init(cc);
2026 return ret;
2027 }
2028 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2029 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2030 ret = cc->iv_gen_ops->wipe(cc);
2031 if (ret)
2032 return ret;
2033 }
2034 return crypt_wipe_key(cc);
2035 }
2036 }
2037
2038 error:
2039 DMWARN("unrecognised message received.");
2040 return -EINVAL;
2041 }
2042
2043 static int crypt_iterate_devices(struct dm_target *ti,
2044 iterate_devices_callout_fn fn, void *data)
2045 {
2046 struct crypt_config *cc = ti->private;
2047
2048 return fn(ti, cc->dev, cc->start, ti->len, data);
2049 }
2050
2051 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2052 {
2053 /*
2054 * Unfortunate constraint that is required to avoid the potential
2055 * for exceeding underlying device's max_segments limits -- due to
2056 * crypt_alloc_buffer() possibly allocating pages for the encryption
2057 * bio that are not as physically contiguous as the original bio.
2058 */
2059 limits->max_segment_size = PAGE_SIZE;
2060 }
2061
2062 static struct target_type crypt_target = {
2063 .name = "crypt",
2064 .version = {1, 14, 1},
2065 .module = THIS_MODULE,
2066 .ctr = crypt_ctr,
2067 .dtr = crypt_dtr,
2068 .map = crypt_map,
2069 .status = crypt_status,
2070 .postsuspend = crypt_postsuspend,
2071 .preresume = crypt_preresume,
2072 .resume = crypt_resume,
2073 .message = crypt_message,
2074 .iterate_devices = crypt_iterate_devices,
2075 .io_hints = crypt_io_hints,
2076 };
2077
2078 static int __init dm_crypt_init(void)
2079 {
2080 int r;
2081
2082 r = dm_register_target(&crypt_target);
2083 if (r < 0)
2084 DMERR("register failed %d", r);
2085
2086 return r;
2087 }
2088
2089 static void __exit dm_crypt_exit(void)
2090 {
2091 dm_unregister_target(&crypt_target);
2092 }
2093
2094 module_init(dm_crypt_init);
2095 module_exit(dm_crypt_exit);
2096
2097 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2098 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2099 MODULE_LICENSE("GPL");
This page took 0.122643 seconds and 5 git commands to generate.