[PATCH] 9p: null terminate error strings for debug print
[deliverable/linux.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
22 #include <asm/page.h>
23 #include <asm/unaligned.h>
24
25 #include "dm.h"
26
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
29
30 /*
31 * per bio private data
32 */
33 struct crypt_io {
34 struct dm_target *target;
35 struct bio *base_bio;
36 struct bio *first_clone;
37 struct work_struct work;
38 atomic_t pending;
39 int error;
40 int post_process;
41 };
42
43 /*
44 * context holding the current state of a multi-part conversion
45 */
46 struct convert_context {
47 struct bio *bio_in;
48 struct bio *bio_out;
49 unsigned int offset_in;
50 unsigned int offset_out;
51 unsigned int idx_in;
52 unsigned int idx_out;
53 sector_t sector;
54 int write;
55 };
56
57 struct crypt_config;
58
59 struct crypt_iv_operations {
60 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
61 const char *opts);
62 void (*dtr)(struct crypt_config *cc);
63 const char *(*status)(struct crypt_config *cc);
64 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
65 };
66
67 /*
68 * Crypt: maps a linear range of a block device
69 * and encrypts / decrypts at the same time.
70 */
71 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
72 struct crypt_config {
73 struct dm_dev *dev;
74 sector_t start;
75
76 /*
77 * pool for per bio private data and
78 * for encryption buffer pages
79 */
80 mempool_t *io_pool;
81 mempool_t *page_pool;
82 struct bio_set *bs;
83
84 /*
85 * crypto related data
86 */
87 struct crypt_iv_operations *iv_gen_ops;
88 char *iv_mode;
89 union {
90 struct crypto_cipher *essiv_tfm;
91 int benbi_shift;
92 } iv_gen_private;
93 sector_t iv_offset;
94 unsigned int iv_size;
95
96 char cipher[CRYPTO_MAX_ALG_NAME];
97 char chainmode[CRYPTO_MAX_ALG_NAME];
98 struct crypto_blkcipher *tfm;
99 unsigned long flags;
100 unsigned int key_size;
101 u8 key[0];
102 };
103
104 #define MIN_IOS 16
105 #define MIN_POOL_PAGES 32
106 #define MIN_BIO_PAGES 8
107
108 static struct kmem_cache *_crypt_io_pool;
109
110 /*
111 * Different IV generation algorithms:
112 *
113 * plain: the initial vector is the 32-bit little-endian version of the sector
114 * number, padded with zeros if neccessary.
115 *
116 * essiv: "encrypted sector|salt initial vector", the sector number is
117 * encrypted with the bulk cipher using a salt as key. The salt
118 * should be derived from the bulk cipher's key via hashing.
119 *
120 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
121 * (needed for LRW-32-AES and possible other narrow block modes)
122 *
123 * plumb: unimplemented, see:
124 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
125 */
126
127 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
128 {
129 memset(iv, 0, cc->iv_size);
130 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
131
132 return 0;
133 }
134
135 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
136 const char *opts)
137 {
138 struct crypto_cipher *essiv_tfm;
139 struct crypto_hash *hash_tfm;
140 struct hash_desc desc;
141 struct scatterlist sg;
142 unsigned int saltsize;
143 u8 *salt;
144 int err;
145
146 if (opts == NULL) {
147 ti->error = "Digest algorithm missing for ESSIV mode";
148 return -EINVAL;
149 }
150
151 /* Hash the cipher key with the given hash algorithm */
152 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
153 if (IS_ERR(hash_tfm)) {
154 ti->error = "Error initializing ESSIV hash";
155 return PTR_ERR(hash_tfm);
156 }
157
158 saltsize = crypto_hash_digestsize(hash_tfm);
159 salt = kmalloc(saltsize, GFP_KERNEL);
160 if (salt == NULL) {
161 ti->error = "Error kmallocing salt storage in ESSIV";
162 crypto_free_hash(hash_tfm);
163 return -ENOMEM;
164 }
165
166 sg_set_buf(&sg, cc->key, cc->key_size);
167 desc.tfm = hash_tfm;
168 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
169 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
170 crypto_free_hash(hash_tfm);
171
172 if (err) {
173 ti->error = "Error calculating hash in ESSIV";
174 return err;
175 }
176
177 /* Setup the essiv_tfm with the given salt */
178 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
179 if (IS_ERR(essiv_tfm)) {
180 ti->error = "Error allocating crypto tfm for ESSIV";
181 kfree(salt);
182 return PTR_ERR(essiv_tfm);
183 }
184 if (crypto_cipher_blocksize(essiv_tfm) !=
185 crypto_blkcipher_ivsize(cc->tfm)) {
186 ti->error = "Block size of ESSIV cipher does "
187 "not match IV size of block cipher";
188 crypto_free_cipher(essiv_tfm);
189 kfree(salt);
190 return -EINVAL;
191 }
192 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
193 if (err) {
194 ti->error = "Failed to set key for ESSIV cipher";
195 crypto_free_cipher(essiv_tfm);
196 kfree(salt);
197 return err;
198 }
199 kfree(salt);
200
201 cc->iv_gen_private.essiv_tfm = essiv_tfm;
202 return 0;
203 }
204
205 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
206 {
207 crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
208 cc->iv_gen_private.essiv_tfm = NULL;
209 }
210
211 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
212 {
213 memset(iv, 0, cc->iv_size);
214 *(u64 *)iv = cpu_to_le64(sector);
215 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
216 return 0;
217 }
218
219 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
220 const char *opts)
221 {
222 unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
223 int log = ilog2(bs);
224
225 /* we need to calculate how far we must shift the sector count
226 * to get the cipher block count, we use this shift in _gen */
227
228 if (1 << log != bs) {
229 ti->error = "cypher blocksize is not a power of 2";
230 return -EINVAL;
231 }
232
233 if (log > 9) {
234 ti->error = "cypher blocksize is > 512";
235 return -EINVAL;
236 }
237
238 cc->iv_gen_private.benbi_shift = 9 - log;
239
240 return 0;
241 }
242
243 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
244 {
245 }
246
247 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
248 {
249 __be64 val;
250
251 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
252
253 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
254 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
255
256 return 0;
257 }
258
259 static struct crypt_iv_operations crypt_iv_plain_ops = {
260 .generator = crypt_iv_plain_gen
261 };
262
263 static struct crypt_iv_operations crypt_iv_essiv_ops = {
264 .ctr = crypt_iv_essiv_ctr,
265 .dtr = crypt_iv_essiv_dtr,
266 .generator = crypt_iv_essiv_gen
267 };
268
269 static struct crypt_iv_operations crypt_iv_benbi_ops = {
270 .ctr = crypt_iv_benbi_ctr,
271 .dtr = crypt_iv_benbi_dtr,
272 .generator = crypt_iv_benbi_gen
273 };
274
275 static int
276 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
277 struct scatterlist *in, unsigned int length,
278 int write, sector_t sector)
279 {
280 u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
281 struct blkcipher_desc desc = {
282 .tfm = cc->tfm,
283 .info = iv,
284 .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
285 };
286 int r;
287
288 if (cc->iv_gen_ops) {
289 r = cc->iv_gen_ops->generator(cc, iv, sector);
290 if (r < 0)
291 return r;
292
293 if (write)
294 r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
295 else
296 r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
297 } else {
298 if (write)
299 r = crypto_blkcipher_encrypt(&desc, out, in, length);
300 else
301 r = crypto_blkcipher_decrypt(&desc, out, in, length);
302 }
303
304 return r;
305 }
306
307 static void
308 crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
309 struct bio *bio_out, struct bio *bio_in,
310 sector_t sector, int write)
311 {
312 ctx->bio_in = bio_in;
313 ctx->bio_out = bio_out;
314 ctx->offset_in = 0;
315 ctx->offset_out = 0;
316 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
317 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
318 ctx->sector = sector + cc->iv_offset;
319 ctx->write = write;
320 }
321
322 /*
323 * Encrypt / decrypt data from one bio to another one (can be the same one)
324 */
325 static int crypt_convert(struct crypt_config *cc,
326 struct convert_context *ctx)
327 {
328 int r = 0;
329
330 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
331 ctx->idx_out < ctx->bio_out->bi_vcnt) {
332 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
333 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
334 struct scatterlist sg_in = {
335 .page = bv_in->bv_page,
336 .offset = bv_in->bv_offset + ctx->offset_in,
337 .length = 1 << SECTOR_SHIFT
338 };
339 struct scatterlist sg_out = {
340 .page = bv_out->bv_page,
341 .offset = bv_out->bv_offset + ctx->offset_out,
342 .length = 1 << SECTOR_SHIFT
343 };
344
345 ctx->offset_in += sg_in.length;
346 if (ctx->offset_in >= bv_in->bv_len) {
347 ctx->offset_in = 0;
348 ctx->idx_in++;
349 }
350
351 ctx->offset_out += sg_out.length;
352 if (ctx->offset_out >= bv_out->bv_len) {
353 ctx->offset_out = 0;
354 ctx->idx_out++;
355 }
356
357 r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
358 ctx->write, ctx->sector);
359 if (r < 0)
360 break;
361
362 ctx->sector++;
363 }
364
365 return r;
366 }
367
368 static void dm_crypt_bio_destructor(struct bio *bio)
369 {
370 struct crypt_io *io = bio->bi_private;
371 struct crypt_config *cc = io->target->private;
372
373 bio_free(bio, cc->bs);
374 }
375
376 /*
377 * Generate a new unfragmented bio with the given size
378 * This should never violate the device limitations
379 * May return a smaller bio when running out of pages
380 */
381 static struct bio *
382 crypt_alloc_buffer(struct crypt_config *cc, unsigned int size,
383 struct bio *base_bio, unsigned int *bio_vec_idx)
384 {
385 struct bio *clone;
386 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
387 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
388 unsigned int i;
389
390 if (base_bio) {
391 clone = bio_alloc_bioset(GFP_NOIO, base_bio->bi_max_vecs, cc->bs);
392 __bio_clone(clone, base_bio);
393 } else
394 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
395
396 if (!clone)
397 return NULL;
398
399 clone->bi_destructor = dm_crypt_bio_destructor;
400
401 /* if the last bio was not complete, continue where that one ended */
402 clone->bi_idx = *bio_vec_idx;
403 clone->bi_vcnt = *bio_vec_idx;
404 clone->bi_size = 0;
405 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
406
407 /* clone->bi_idx pages have already been allocated */
408 size -= clone->bi_idx * PAGE_SIZE;
409
410 for (i = clone->bi_idx; i < nr_iovecs; i++) {
411 struct bio_vec *bv = bio_iovec_idx(clone, i);
412
413 bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
414 if (!bv->bv_page)
415 break;
416
417 /*
418 * if additional pages cannot be allocated without waiting,
419 * return a partially allocated bio, the caller will then try
420 * to allocate additional bios while submitting this partial bio
421 */
422 if ((i - clone->bi_idx) == (MIN_BIO_PAGES - 1))
423 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
424
425 bv->bv_offset = 0;
426 if (size > PAGE_SIZE)
427 bv->bv_len = PAGE_SIZE;
428 else
429 bv->bv_len = size;
430
431 clone->bi_size += bv->bv_len;
432 clone->bi_vcnt++;
433 size -= bv->bv_len;
434 }
435
436 if (!clone->bi_size) {
437 bio_put(clone);
438 return NULL;
439 }
440
441 /*
442 * Remember the last bio_vec allocated to be able
443 * to correctly continue after the splitting.
444 */
445 *bio_vec_idx = clone->bi_vcnt;
446
447 return clone;
448 }
449
450 static void crypt_free_buffer_pages(struct crypt_config *cc,
451 struct bio *clone, unsigned int bytes)
452 {
453 unsigned int i, start, end;
454 struct bio_vec *bv;
455
456 /*
457 * This is ugly, but Jens Axboe thinks that using bi_idx in the
458 * endio function is too dangerous at the moment, so I calculate the
459 * correct position using bi_vcnt and bi_size.
460 * The bv_offset and bv_len fields might already be modified but we
461 * know that we always allocated whole pages.
462 * A fix to the bi_idx issue in the kernel is in the works, so
463 * we will hopefully be able to revert to the cleaner solution soon.
464 */
465 i = clone->bi_vcnt - 1;
466 bv = bio_iovec_idx(clone, i);
467 end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - clone->bi_size;
468 start = end - bytes;
469
470 start >>= PAGE_SHIFT;
471 if (!clone->bi_size)
472 end = clone->bi_vcnt;
473 else
474 end >>= PAGE_SHIFT;
475
476 for (i = start; i < end; i++) {
477 bv = bio_iovec_idx(clone, i);
478 BUG_ON(!bv->bv_page);
479 mempool_free(bv->bv_page, cc->page_pool);
480 bv->bv_page = NULL;
481 }
482 }
483
484 /*
485 * One of the bios was finished. Check for completion of
486 * the whole request and correctly clean up the buffer.
487 */
488 static void dec_pending(struct crypt_io *io, int error)
489 {
490 struct crypt_config *cc = (struct crypt_config *) io->target->private;
491
492 if (error < 0)
493 io->error = error;
494
495 if (!atomic_dec_and_test(&io->pending))
496 return;
497
498 if (io->first_clone)
499 bio_put(io->first_clone);
500
501 bio_endio(io->base_bio, io->base_bio->bi_size, io->error);
502
503 mempool_free(io, cc->io_pool);
504 }
505
506 /*
507 * kcryptd:
508 *
509 * Needed because it would be very unwise to do decryption in an
510 * interrupt context.
511 */
512 static struct workqueue_struct *_kcryptd_workqueue;
513 static void kcryptd_do_work(struct work_struct *work);
514
515 static void kcryptd_queue_io(struct crypt_io *io)
516 {
517 INIT_WORK(&io->work, kcryptd_do_work);
518 queue_work(_kcryptd_workqueue, &io->work);
519 }
520
521 static int crypt_endio(struct bio *clone, unsigned int done, int error)
522 {
523 struct crypt_io *io = clone->bi_private;
524 struct crypt_config *cc = io->target->private;
525 unsigned read_io = bio_data_dir(clone) == READ;
526
527 /*
528 * free the processed pages, even if
529 * it's only a partially completed write
530 */
531 if (!read_io)
532 crypt_free_buffer_pages(cc, clone, done);
533
534 /* keep going - not finished yet */
535 if (unlikely(clone->bi_size))
536 return 1;
537
538 if (!read_io)
539 goto out;
540
541 if (unlikely(!bio_flagged(clone, BIO_UPTODATE))) {
542 error = -EIO;
543 goto out;
544 }
545
546 bio_put(clone);
547 io->post_process = 1;
548 kcryptd_queue_io(io);
549 return 0;
550
551 out:
552 bio_put(clone);
553 dec_pending(io, error);
554 return error;
555 }
556
557 static void clone_init(struct crypt_io *io, struct bio *clone)
558 {
559 struct crypt_config *cc = io->target->private;
560
561 clone->bi_private = io;
562 clone->bi_end_io = crypt_endio;
563 clone->bi_bdev = cc->dev->bdev;
564 clone->bi_rw = io->base_bio->bi_rw;
565 }
566
567 static void process_read(struct crypt_io *io)
568 {
569 struct crypt_config *cc = io->target->private;
570 struct bio *base_bio = io->base_bio;
571 struct bio *clone;
572 sector_t sector = base_bio->bi_sector - io->target->begin;
573
574 atomic_inc(&io->pending);
575
576 /*
577 * The block layer might modify the bvec array, so always
578 * copy the required bvecs because we need the original
579 * one in order to decrypt the whole bio data *afterwards*.
580 */
581 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
582 if (unlikely(!clone)) {
583 dec_pending(io, -ENOMEM);
584 return;
585 }
586
587 clone_init(io, clone);
588 clone->bi_destructor = dm_crypt_bio_destructor;
589 clone->bi_idx = 0;
590 clone->bi_vcnt = bio_segments(base_bio);
591 clone->bi_size = base_bio->bi_size;
592 clone->bi_sector = cc->start + sector;
593 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
594 sizeof(struct bio_vec) * clone->bi_vcnt);
595
596 generic_make_request(clone);
597 }
598
599 static void process_write(struct crypt_io *io)
600 {
601 struct crypt_config *cc = io->target->private;
602 struct bio *base_bio = io->base_bio;
603 struct bio *clone;
604 struct convert_context ctx;
605 unsigned remaining = base_bio->bi_size;
606 sector_t sector = base_bio->bi_sector - io->target->begin;
607 unsigned bvec_idx = 0;
608
609 atomic_inc(&io->pending);
610
611 crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1);
612
613 /*
614 * The allocated buffers can be smaller than the whole bio,
615 * so repeat the whole process until all the data can be handled.
616 */
617 while (remaining) {
618 clone = crypt_alloc_buffer(cc, base_bio->bi_size,
619 io->first_clone, &bvec_idx);
620 if (unlikely(!clone)) {
621 dec_pending(io, -ENOMEM);
622 return;
623 }
624
625 ctx.bio_out = clone;
626
627 if (unlikely(crypt_convert(cc, &ctx) < 0)) {
628 crypt_free_buffer_pages(cc, clone, clone->bi_size);
629 bio_put(clone);
630 dec_pending(io, -EIO);
631 return;
632 }
633
634 clone_init(io, clone);
635 clone->bi_sector = cc->start + sector;
636
637 if (!io->first_clone) {
638 /*
639 * hold a reference to the first clone, because it
640 * holds the bio_vec array and that can't be freed
641 * before all other clones are released
642 */
643 bio_get(clone);
644 io->first_clone = clone;
645 }
646
647 remaining -= clone->bi_size;
648 sector += bio_sectors(clone);
649
650 /* prevent bio_put of first_clone */
651 if (remaining)
652 atomic_inc(&io->pending);
653
654 generic_make_request(clone);
655
656 /* out of memory -> run queues */
657 if (remaining)
658 congestion_wait(bio_data_dir(clone), HZ/100);
659 }
660 }
661
662 static void process_read_endio(struct crypt_io *io)
663 {
664 struct crypt_config *cc = io->target->private;
665 struct convert_context ctx;
666
667 crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
668 io->base_bio->bi_sector - io->target->begin, 0);
669
670 dec_pending(io, crypt_convert(cc, &ctx));
671 }
672
673 static void kcryptd_do_work(struct work_struct *work)
674 {
675 struct crypt_io *io = container_of(work, struct crypt_io, work);
676
677 if (io->post_process)
678 process_read_endio(io);
679 else if (bio_data_dir(io->base_bio) == READ)
680 process_read(io);
681 else
682 process_write(io);
683 }
684
685 /*
686 * Decode key from its hex representation
687 */
688 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
689 {
690 char buffer[3];
691 char *endp;
692 unsigned int i;
693
694 buffer[2] = '\0';
695
696 for (i = 0; i < size; i++) {
697 buffer[0] = *hex++;
698 buffer[1] = *hex++;
699
700 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
701
702 if (endp != &buffer[2])
703 return -EINVAL;
704 }
705
706 if (*hex != '\0')
707 return -EINVAL;
708
709 return 0;
710 }
711
712 /*
713 * Encode key into its hex representation
714 */
715 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
716 {
717 unsigned int i;
718
719 for (i = 0; i < size; i++) {
720 sprintf(hex, "%02x", *key);
721 hex += 2;
722 key++;
723 }
724 }
725
726 static int crypt_set_key(struct crypt_config *cc, char *key)
727 {
728 unsigned key_size = strlen(key) >> 1;
729
730 if (cc->key_size && cc->key_size != key_size)
731 return -EINVAL;
732
733 cc->key_size = key_size; /* initial settings */
734
735 if ((!key_size && strcmp(key, "-")) ||
736 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
737 return -EINVAL;
738
739 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
740
741 return 0;
742 }
743
744 static int crypt_wipe_key(struct crypt_config *cc)
745 {
746 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
747 memset(&cc->key, 0, cc->key_size * sizeof(u8));
748 return 0;
749 }
750
751 /*
752 * Construct an encryption mapping:
753 * <cipher> <key> <iv_offset> <dev_path> <start>
754 */
755 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
756 {
757 struct crypt_config *cc;
758 struct crypto_blkcipher *tfm;
759 char *tmp;
760 char *cipher;
761 char *chainmode;
762 char *ivmode;
763 char *ivopts;
764 unsigned int key_size;
765 unsigned long long tmpll;
766
767 if (argc != 5) {
768 ti->error = "Not enough arguments";
769 return -EINVAL;
770 }
771
772 tmp = argv[0];
773 cipher = strsep(&tmp, "-");
774 chainmode = strsep(&tmp, "-");
775 ivopts = strsep(&tmp, "-");
776 ivmode = strsep(&ivopts, ":");
777
778 if (tmp)
779 DMWARN("Unexpected additional cipher options");
780
781 key_size = strlen(argv[1]) >> 1;
782
783 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
784 if (cc == NULL) {
785 ti->error =
786 "Cannot allocate transparent encryption context";
787 return -ENOMEM;
788 }
789
790 if (crypt_set_key(cc, argv[1])) {
791 ti->error = "Error decoding key";
792 goto bad1;
793 }
794
795 /* Compatiblity mode for old dm-crypt cipher strings */
796 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
797 chainmode = "cbc";
798 ivmode = "plain";
799 }
800
801 if (strcmp(chainmode, "ecb") && !ivmode) {
802 ti->error = "This chaining mode requires an IV mechanism";
803 goto bad1;
804 }
805
806 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)", chainmode,
807 cipher) >= CRYPTO_MAX_ALG_NAME) {
808 ti->error = "Chain mode + cipher name is too long";
809 goto bad1;
810 }
811
812 tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
813 if (IS_ERR(tfm)) {
814 ti->error = "Error allocating crypto tfm";
815 goto bad1;
816 }
817
818 strcpy(cc->cipher, cipher);
819 strcpy(cc->chainmode, chainmode);
820 cc->tfm = tfm;
821
822 /*
823 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
824 * See comments at iv code
825 */
826
827 if (ivmode == NULL)
828 cc->iv_gen_ops = NULL;
829 else if (strcmp(ivmode, "plain") == 0)
830 cc->iv_gen_ops = &crypt_iv_plain_ops;
831 else if (strcmp(ivmode, "essiv") == 0)
832 cc->iv_gen_ops = &crypt_iv_essiv_ops;
833 else if (strcmp(ivmode, "benbi") == 0)
834 cc->iv_gen_ops = &crypt_iv_benbi_ops;
835 else {
836 ti->error = "Invalid IV mode";
837 goto bad2;
838 }
839
840 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
841 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
842 goto bad2;
843
844 cc->iv_size = crypto_blkcipher_ivsize(tfm);
845 if (cc->iv_size)
846 /* at least a 64 bit sector number should fit in our buffer */
847 cc->iv_size = max(cc->iv_size,
848 (unsigned int)(sizeof(u64) / sizeof(u8)));
849 else {
850 if (cc->iv_gen_ops) {
851 DMWARN("Selected cipher does not support IVs");
852 if (cc->iv_gen_ops->dtr)
853 cc->iv_gen_ops->dtr(cc);
854 cc->iv_gen_ops = NULL;
855 }
856 }
857
858 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
859 if (!cc->io_pool) {
860 ti->error = "Cannot allocate crypt io mempool";
861 goto bad3;
862 }
863
864 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
865 if (!cc->page_pool) {
866 ti->error = "Cannot allocate page mempool";
867 goto bad4;
868 }
869
870 cc->bs = bioset_create(MIN_IOS, MIN_IOS, 4);
871 if (!cc->bs) {
872 ti->error = "Cannot allocate crypt bioset";
873 goto bad_bs;
874 }
875
876 if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
877 ti->error = "Error setting key";
878 goto bad5;
879 }
880
881 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
882 ti->error = "Invalid iv_offset sector";
883 goto bad5;
884 }
885 cc->iv_offset = tmpll;
886
887 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
888 ti->error = "Invalid device sector";
889 goto bad5;
890 }
891 cc->start = tmpll;
892
893 if (dm_get_device(ti, argv[3], cc->start, ti->len,
894 dm_table_get_mode(ti->table), &cc->dev)) {
895 ti->error = "Device lookup failed";
896 goto bad5;
897 }
898
899 if (ivmode && cc->iv_gen_ops) {
900 if (ivopts)
901 *(ivopts - 1) = ':';
902 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
903 if (!cc->iv_mode) {
904 ti->error = "Error kmallocing iv_mode string";
905 goto bad5;
906 }
907 strcpy(cc->iv_mode, ivmode);
908 } else
909 cc->iv_mode = NULL;
910
911 ti->private = cc;
912 return 0;
913
914 bad5:
915 bioset_free(cc->bs);
916 bad_bs:
917 mempool_destroy(cc->page_pool);
918 bad4:
919 mempool_destroy(cc->io_pool);
920 bad3:
921 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
922 cc->iv_gen_ops->dtr(cc);
923 bad2:
924 crypto_free_blkcipher(tfm);
925 bad1:
926 /* Must zero key material before freeing */
927 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
928 kfree(cc);
929 return -EINVAL;
930 }
931
932 static void crypt_dtr(struct dm_target *ti)
933 {
934 struct crypt_config *cc = (struct crypt_config *) ti->private;
935
936 bioset_free(cc->bs);
937 mempool_destroy(cc->page_pool);
938 mempool_destroy(cc->io_pool);
939
940 kfree(cc->iv_mode);
941 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
942 cc->iv_gen_ops->dtr(cc);
943 crypto_free_blkcipher(cc->tfm);
944 dm_put_device(ti, cc->dev);
945
946 /* Must zero key material before freeing */
947 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
948 kfree(cc);
949 }
950
951 static int crypt_map(struct dm_target *ti, struct bio *bio,
952 union map_info *map_context)
953 {
954 struct crypt_config *cc = ti->private;
955 struct crypt_io *io;
956
957 io = mempool_alloc(cc->io_pool, GFP_NOIO);
958 io->target = ti;
959 io->base_bio = bio;
960 io->first_clone = NULL;
961 io->error = io->post_process = 0;
962 atomic_set(&io->pending, 0);
963 kcryptd_queue_io(io);
964
965 return DM_MAPIO_SUBMITTED;
966 }
967
968 static int crypt_status(struct dm_target *ti, status_type_t type,
969 char *result, unsigned int maxlen)
970 {
971 struct crypt_config *cc = (struct crypt_config *) ti->private;
972 unsigned int sz = 0;
973
974 switch (type) {
975 case STATUSTYPE_INFO:
976 result[0] = '\0';
977 break;
978
979 case STATUSTYPE_TABLE:
980 if (cc->iv_mode)
981 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
982 cc->iv_mode);
983 else
984 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
985
986 if (cc->key_size > 0) {
987 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
988 return -ENOMEM;
989
990 crypt_encode_key(result + sz, cc->key, cc->key_size);
991 sz += cc->key_size << 1;
992 } else {
993 if (sz >= maxlen)
994 return -ENOMEM;
995 result[sz++] = '-';
996 }
997
998 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
999 cc->dev->name, (unsigned long long)cc->start);
1000 break;
1001 }
1002 return 0;
1003 }
1004
1005 static void crypt_postsuspend(struct dm_target *ti)
1006 {
1007 struct crypt_config *cc = ti->private;
1008
1009 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1010 }
1011
1012 static int crypt_preresume(struct dm_target *ti)
1013 {
1014 struct crypt_config *cc = ti->private;
1015
1016 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1017 DMERR("aborting resume - crypt key is not set.");
1018 return -EAGAIN;
1019 }
1020
1021 return 0;
1022 }
1023
1024 static void crypt_resume(struct dm_target *ti)
1025 {
1026 struct crypt_config *cc = ti->private;
1027
1028 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1029 }
1030
1031 /* Message interface
1032 * key set <key>
1033 * key wipe
1034 */
1035 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1036 {
1037 struct crypt_config *cc = ti->private;
1038
1039 if (argc < 2)
1040 goto error;
1041
1042 if (!strnicmp(argv[0], MESG_STR("key"))) {
1043 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1044 DMWARN("not suspended during key manipulation.");
1045 return -EINVAL;
1046 }
1047 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1048 return crypt_set_key(cc, argv[2]);
1049 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1050 return crypt_wipe_key(cc);
1051 }
1052
1053 error:
1054 DMWARN("unrecognised message received.");
1055 return -EINVAL;
1056 }
1057
1058 static struct target_type crypt_target = {
1059 .name = "crypt",
1060 .version= {1, 3, 0},
1061 .module = THIS_MODULE,
1062 .ctr = crypt_ctr,
1063 .dtr = crypt_dtr,
1064 .map = crypt_map,
1065 .status = crypt_status,
1066 .postsuspend = crypt_postsuspend,
1067 .preresume = crypt_preresume,
1068 .resume = crypt_resume,
1069 .message = crypt_message,
1070 };
1071
1072 static int __init dm_crypt_init(void)
1073 {
1074 int r;
1075
1076 _crypt_io_pool = kmem_cache_create("dm-crypt_io",
1077 sizeof(struct crypt_io),
1078 0, 0, NULL, NULL);
1079 if (!_crypt_io_pool)
1080 return -ENOMEM;
1081
1082 _kcryptd_workqueue = create_workqueue("kcryptd");
1083 if (!_kcryptd_workqueue) {
1084 r = -ENOMEM;
1085 DMERR("couldn't create kcryptd");
1086 goto bad1;
1087 }
1088
1089 r = dm_register_target(&crypt_target);
1090 if (r < 0) {
1091 DMERR("register failed %d", r);
1092 goto bad2;
1093 }
1094
1095 return 0;
1096
1097 bad2:
1098 destroy_workqueue(_kcryptd_workqueue);
1099 bad1:
1100 kmem_cache_destroy(_crypt_io_pool);
1101 return r;
1102 }
1103
1104 static void __exit dm_crypt_exit(void)
1105 {
1106 int r = dm_unregister_target(&crypt_target);
1107
1108 if (r < 0)
1109 DMERR("unregister failed %d", r);
1110
1111 destroy_workqueue(_kcryptd_workqueue);
1112 kmem_cache_destroy(_crypt_io_pool);
1113 }
1114
1115 module_init(dm_crypt_init);
1116 module_exit(dm_crypt_exit);
1117
1118 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1119 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1120 MODULE_LICENSE("GPL");
This page took 0.113969 seconds and 5 git commands to generate.