dm crypt: store sector mapping in dm_crypt_io
[deliverable/linux.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2007 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
22 #include <asm/page.h>
23 #include <asm/unaligned.h>
24
25 #include "dm.h"
26
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
29
30 /*
31 * context holding the current state of a multi-part conversion
32 */
33 struct convert_context {
34 struct bio *bio_in;
35 struct bio *bio_out;
36 unsigned int offset_in;
37 unsigned int offset_out;
38 unsigned int idx_in;
39 unsigned int idx_out;
40 sector_t sector;
41 };
42
43 /*
44 * per bio private data
45 */
46 struct dm_crypt_io {
47 struct dm_target *target;
48 struct bio *base_bio;
49 struct work_struct work;
50
51 struct convert_context ctx;
52
53 atomic_t pending;
54 int error;
55 sector_t sector;
56 };
57
58 struct crypt_config;
59
60 struct crypt_iv_operations {
61 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
62 const char *opts);
63 void (*dtr)(struct crypt_config *cc);
64 const char *(*status)(struct crypt_config *cc);
65 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
66 };
67
68 /*
69 * Crypt: maps a linear range of a block device
70 * and encrypts / decrypts at the same time.
71 */
72 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
73 struct crypt_config {
74 struct dm_dev *dev;
75 sector_t start;
76
77 /*
78 * pool for per bio private data and
79 * for encryption buffer pages
80 */
81 mempool_t *io_pool;
82 mempool_t *page_pool;
83 struct bio_set *bs;
84
85 struct workqueue_struct *io_queue;
86 struct workqueue_struct *crypt_queue;
87 /*
88 * crypto related data
89 */
90 struct crypt_iv_operations *iv_gen_ops;
91 char *iv_mode;
92 union {
93 struct crypto_cipher *essiv_tfm;
94 int benbi_shift;
95 } iv_gen_private;
96 sector_t iv_offset;
97 unsigned int iv_size;
98
99 char cipher[CRYPTO_MAX_ALG_NAME];
100 char chainmode[CRYPTO_MAX_ALG_NAME];
101 struct crypto_blkcipher *tfm;
102 unsigned long flags;
103 unsigned int key_size;
104 u8 key[0];
105 };
106
107 #define MIN_IOS 16
108 #define MIN_POOL_PAGES 32
109 #define MIN_BIO_PAGES 8
110
111 static struct kmem_cache *_crypt_io_pool;
112
113 static void clone_init(struct dm_crypt_io *, struct bio *);
114 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
115
116 /*
117 * Different IV generation algorithms:
118 *
119 * plain: the initial vector is the 32-bit little-endian version of the sector
120 * number, padded with zeros if necessary.
121 *
122 * essiv: "encrypted sector|salt initial vector", the sector number is
123 * encrypted with the bulk cipher using a salt as key. The salt
124 * should be derived from the bulk cipher's key via hashing.
125 *
126 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
127 * (needed for LRW-32-AES and possible other narrow block modes)
128 *
129 * null: the initial vector is always zero. Provides compatibility with
130 * obsolete loop_fish2 devices. Do not use for new devices.
131 *
132 * plumb: unimplemented, see:
133 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
134 */
135
136 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
137 {
138 memset(iv, 0, cc->iv_size);
139 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
140
141 return 0;
142 }
143
144 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
145 const char *opts)
146 {
147 struct crypto_cipher *essiv_tfm;
148 struct crypto_hash *hash_tfm;
149 struct hash_desc desc;
150 struct scatterlist sg;
151 unsigned int saltsize;
152 u8 *salt;
153 int err;
154
155 if (opts == NULL) {
156 ti->error = "Digest algorithm missing for ESSIV mode";
157 return -EINVAL;
158 }
159
160 /* Hash the cipher key with the given hash algorithm */
161 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
162 if (IS_ERR(hash_tfm)) {
163 ti->error = "Error initializing ESSIV hash";
164 return PTR_ERR(hash_tfm);
165 }
166
167 saltsize = crypto_hash_digestsize(hash_tfm);
168 salt = kmalloc(saltsize, GFP_KERNEL);
169 if (salt == NULL) {
170 ti->error = "Error kmallocing salt storage in ESSIV";
171 crypto_free_hash(hash_tfm);
172 return -ENOMEM;
173 }
174
175 sg_init_one(&sg, cc->key, cc->key_size);
176 desc.tfm = hash_tfm;
177 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
178 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
179 crypto_free_hash(hash_tfm);
180
181 if (err) {
182 ti->error = "Error calculating hash in ESSIV";
183 kfree(salt);
184 return err;
185 }
186
187 /* Setup the essiv_tfm with the given salt */
188 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
189 if (IS_ERR(essiv_tfm)) {
190 ti->error = "Error allocating crypto tfm for ESSIV";
191 kfree(salt);
192 return PTR_ERR(essiv_tfm);
193 }
194 if (crypto_cipher_blocksize(essiv_tfm) !=
195 crypto_blkcipher_ivsize(cc->tfm)) {
196 ti->error = "Block size of ESSIV cipher does "
197 "not match IV size of block cipher";
198 crypto_free_cipher(essiv_tfm);
199 kfree(salt);
200 return -EINVAL;
201 }
202 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
203 if (err) {
204 ti->error = "Failed to set key for ESSIV cipher";
205 crypto_free_cipher(essiv_tfm);
206 kfree(salt);
207 return err;
208 }
209 kfree(salt);
210
211 cc->iv_gen_private.essiv_tfm = essiv_tfm;
212 return 0;
213 }
214
215 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
216 {
217 crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
218 cc->iv_gen_private.essiv_tfm = NULL;
219 }
220
221 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
222 {
223 memset(iv, 0, cc->iv_size);
224 *(u64 *)iv = cpu_to_le64(sector);
225 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
226 return 0;
227 }
228
229 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
230 const char *opts)
231 {
232 unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
233 int log = ilog2(bs);
234
235 /* we need to calculate how far we must shift the sector count
236 * to get the cipher block count, we use this shift in _gen */
237
238 if (1 << log != bs) {
239 ti->error = "cypher blocksize is not a power of 2";
240 return -EINVAL;
241 }
242
243 if (log > 9) {
244 ti->error = "cypher blocksize is > 512";
245 return -EINVAL;
246 }
247
248 cc->iv_gen_private.benbi_shift = 9 - log;
249
250 return 0;
251 }
252
253 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
254 {
255 }
256
257 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
258 {
259 __be64 val;
260
261 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
262
263 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
264 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
265
266 return 0;
267 }
268
269 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
270 {
271 memset(iv, 0, cc->iv_size);
272
273 return 0;
274 }
275
276 static struct crypt_iv_operations crypt_iv_plain_ops = {
277 .generator = crypt_iv_plain_gen
278 };
279
280 static struct crypt_iv_operations crypt_iv_essiv_ops = {
281 .ctr = crypt_iv_essiv_ctr,
282 .dtr = crypt_iv_essiv_dtr,
283 .generator = crypt_iv_essiv_gen
284 };
285
286 static struct crypt_iv_operations crypt_iv_benbi_ops = {
287 .ctr = crypt_iv_benbi_ctr,
288 .dtr = crypt_iv_benbi_dtr,
289 .generator = crypt_iv_benbi_gen
290 };
291
292 static struct crypt_iv_operations crypt_iv_null_ops = {
293 .generator = crypt_iv_null_gen
294 };
295
296 static int
297 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
298 struct scatterlist *in, unsigned int length,
299 int write, sector_t sector)
300 {
301 u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
302 struct blkcipher_desc desc = {
303 .tfm = cc->tfm,
304 .info = iv,
305 .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
306 };
307 int r;
308
309 if (cc->iv_gen_ops) {
310 r = cc->iv_gen_ops->generator(cc, iv, sector);
311 if (r < 0)
312 return r;
313
314 if (write)
315 r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
316 else
317 r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
318 } else {
319 if (write)
320 r = crypto_blkcipher_encrypt(&desc, out, in, length);
321 else
322 r = crypto_blkcipher_decrypt(&desc, out, in, length);
323 }
324
325 return r;
326 }
327
328 static void crypt_convert_init(struct crypt_config *cc,
329 struct convert_context *ctx,
330 struct bio *bio_out, struct bio *bio_in,
331 sector_t sector)
332 {
333 ctx->bio_in = bio_in;
334 ctx->bio_out = bio_out;
335 ctx->offset_in = 0;
336 ctx->offset_out = 0;
337 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
338 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
339 ctx->sector = sector + cc->iv_offset;
340 }
341
342 /*
343 * Encrypt / decrypt data from one bio to another one (can be the same one)
344 */
345 static int crypt_convert(struct crypt_config *cc,
346 struct convert_context *ctx)
347 {
348 int r = 0;
349
350 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
351 ctx->idx_out < ctx->bio_out->bi_vcnt) {
352 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
353 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
354 struct scatterlist sg_in, sg_out;
355
356 sg_init_table(&sg_in, 1);
357 sg_set_page(&sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT, bv_in->bv_offset + ctx->offset_in);
358
359 sg_init_table(&sg_out, 1);
360 sg_set_page(&sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT, bv_out->bv_offset + ctx->offset_out);
361
362 ctx->offset_in += sg_in.length;
363 if (ctx->offset_in >= bv_in->bv_len) {
364 ctx->offset_in = 0;
365 ctx->idx_in++;
366 }
367
368 ctx->offset_out += sg_out.length;
369 if (ctx->offset_out >= bv_out->bv_len) {
370 ctx->offset_out = 0;
371 ctx->idx_out++;
372 }
373
374 r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
375 bio_data_dir(ctx->bio_in) == WRITE, ctx->sector);
376 if (r < 0)
377 break;
378
379 ctx->sector++;
380 }
381
382 return r;
383 }
384
385 static void dm_crypt_bio_destructor(struct bio *bio)
386 {
387 struct dm_crypt_io *io = bio->bi_private;
388 struct crypt_config *cc = io->target->private;
389
390 bio_free(bio, cc->bs);
391 }
392
393 /*
394 * Generate a new unfragmented bio with the given size
395 * This should never violate the device limitations
396 * May return a smaller bio when running out of pages
397 */
398 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
399 {
400 struct crypt_config *cc = io->target->private;
401 struct bio *clone;
402 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
403 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
404 unsigned i, len;
405 struct page *page;
406
407 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
408 if (!clone)
409 return NULL;
410
411 clone_init(io, clone);
412
413 for (i = 0; i < nr_iovecs; i++) {
414 page = mempool_alloc(cc->page_pool, gfp_mask);
415 if (!page)
416 break;
417
418 /*
419 * if additional pages cannot be allocated without waiting,
420 * return a partially allocated bio, the caller will then try
421 * to allocate additional bios while submitting this partial bio
422 */
423 if (i == (MIN_BIO_PAGES - 1))
424 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
425
426 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
427
428 if (!bio_add_page(clone, page, len, 0)) {
429 mempool_free(page, cc->page_pool);
430 break;
431 }
432
433 size -= len;
434 }
435
436 if (!clone->bi_size) {
437 bio_put(clone);
438 return NULL;
439 }
440
441 return clone;
442 }
443
444 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
445 {
446 unsigned int i;
447 struct bio_vec *bv;
448
449 for (i = 0; i < clone->bi_vcnt; i++) {
450 bv = bio_iovec_idx(clone, i);
451 BUG_ON(!bv->bv_page);
452 mempool_free(bv->bv_page, cc->page_pool);
453 bv->bv_page = NULL;
454 }
455 }
456
457 /*
458 * One of the bios was finished. Check for completion of
459 * the whole request and correctly clean up the buffer.
460 */
461 static void crypt_dec_pending(struct dm_crypt_io *io)
462 {
463 struct crypt_config *cc = io->target->private;
464
465 if (!atomic_dec_and_test(&io->pending))
466 return;
467
468 bio_endio(io->base_bio, io->error);
469 mempool_free(io, cc->io_pool);
470 }
471
472 /*
473 * kcryptd/kcryptd_io:
474 *
475 * Needed because it would be very unwise to do decryption in an
476 * interrupt context.
477 *
478 * kcryptd performs the actual encryption or decryption.
479 *
480 * kcryptd_io performs the IO submission.
481 *
482 * They must be separated as otherwise the final stages could be
483 * starved by new requests which can block in the first stages due
484 * to memory allocation.
485 */
486 static void crypt_endio(struct bio *clone, int error)
487 {
488 struct dm_crypt_io *io = clone->bi_private;
489 struct crypt_config *cc = io->target->private;
490 unsigned rw = bio_data_dir(clone);
491
492 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
493 error = -EIO;
494
495 /*
496 * free the processed pages
497 */
498 if (rw == WRITE)
499 crypt_free_buffer_pages(cc, clone);
500
501 bio_put(clone);
502
503 if (rw == READ && !error) {
504 kcryptd_queue_crypt(io);
505 return;
506 }
507
508 if (unlikely(error))
509 io->error = error;
510
511 crypt_dec_pending(io);
512 }
513
514 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
515 {
516 struct crypt_config *cc = io->target->private;
517
518 clone->bi_private = io;
519 clone->bi_end_io = crypt_endio;
520 clone->bi_bdev = cc->dev->bdev;
521 clone->bi_rw = io->base_bio->bi_rw;
522 clone->bi_destructor = dm_crypt_bio_destructor;
523 }
524
525 static void kcryptd_io_read(struct dm_crypt_io *io)
526 {
527 struct crypt_config *cc = io->target->private;
528 struct bio *base_bio = io->base_bio;
529 struct bio *clone;
530
531 atomic_inc(&io->pending);
532
533 /*
534 * The block layer might modify the bvec array, so always
535 * copy the required bvecs because we need the original
536 * one in order to decrypt the whole bio data *afterwards*.
537 */
538 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
539 if (unlikely(!clone)) {
540 io->error = -ENOMEM;
541 crypt_dec_pending(io);
542 return;
543 }
544
545 clone_init(io, clone);
546 clone->bi_idx = 0;
547 clone->bi_vcnt = bio_segments(base_bio);
548 clone->bi_size = base_bio->bi_size;
549 clone->bi_sector = cc->start + io->sector;
550 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
551 sizeof(struct bio_vec) * clone->bi_vcnt);
552
553 generic_make_request(clone);
554 }
555
556 static void kcryptd_io_write(struct dm_crypt_io *io)
557 {
558 }
559
560 static void kcryptd_io(struct work_struct *work)
561 {
562 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
563
564 if (bio_data_dir(io->base_bio) == READ)
565 kcryptd_io_read(io);
566 else
567 kcryptd_io_write(io);
568 }
569
570 static void kcryptd_queue_io(struct dm_crypt_io *io)
571 {
572 struct crypt_config *cc = io->target->private;
573
574 INIT_WORK(&io->work, kcryptd_io);
575 queue_work(cc->io_queue, &io->work);
576 }
577
578 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int error)
579 {
580 }
581
582 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
583 {
584 struct crypt_config *cc = io->target->private;
585 struct bio *base_bio = io->base_bio;
586 struct bio *clone;
587 unsigned remaining = base_bio->bi_size;
588
589 atomic_inc(&io->pending);
590
591 crypt_convert_init(cc, &io->ctx, NULL, base_bio, io->sector);
592
593 /*
594 * The allocated buffers can be smaller than the whole bio,
595 * so repeat the whole process until all the data can be handled.
596 */
597 while (remaining) {
598 clone = crypt_alloc_buffer(io, remaining);
599 if (unlikely(!clone)) {
600 io->error = -ENOMEM;
601 crypt_dec_pending(io);
602 return;
603 }
604
605 io->ctx.bio_out = clone;
606 io->ctx.idx_out = 0;
607
608 if (unlikely(crypt_convert(cc, &io->ctx) < 0)) {
609 crypt_free_buffer_pages(cc, clone);
610 bio_put(clone);
611 io->error = -EIO;
612 crypt_dec_pending(io);
613 return;
614 }
615
616 /* crypt_convert should have filled the clone bio */
617 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
618
619 clone->bi_sector = cc->start + io->sector;
620 remaining -= clone->bi_size;
621 io->sector += bio_sectors(clone);
622
623 /* Grab another reference to the io struct
624 * before we kick off the request */
625 if (remaining)
626 atomic_inc(&io->pending);
627
628 generic_make_request(clone);
629
630 /* Do not reference clone after this - it
631 * may be gone already. */
632
633 /* out of memory -> run queues */
634 if (remaining)
635 congestion_wait(WRITE, HZ/100);
636 }
637 }
638
639 static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
640 {
641 if (unlikely(error < 0))
642 io->error = -EIO;
643
644 crypt_dec_pending(io);
645 }
646
647 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
648 {
649 struct crypt_config *cc = io->target->private;
650 int r = 0;
651
652 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
653 io->sector);
654
655 r = crypt_convert(cc, &io->ctx);
656
657 kcryptd_crypt_read_done(io, r);
658 }
659
660 static void kcryptd_crypt(struct work_struct *work)
661 {
662 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
663
664 if (bio_data_dir(io->base_bio) == READ)
665 kcryptd_crypt_read_convert(io);
666 else
667 kcryptd_crypt_write_convert(io);
668 }
669
670 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
671 {
672 struct crypt_config *cc = io->target->private;
673
674 INIT_WORK(&io->work, kcryptd_crypt);
675 queue_work(cc->crypt_queue, &io->work);
676 }
677
678 /*
679 * Decode key from its hex representation
680 */
681 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
682 {
683 char buffer[3];
684 char *endp;
685 unsigned int i;
686
687 buffer[2] = '\0';
688
689 for (i = 0; i < size; i++) {
690 buffer[0] = *hex++;
691 buffer[1] = *hex++;
692
693 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
694
695 if (endp != &buffer[2])
696 return -EINVAL;
697 }
698
699 if (*hex != '\0')
700 return -EINVAL;
701
702 return 0;
703 }
704
705 /*
706 * Encode key into its hex representation
707 */
708 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
709 {
710 unsigned int i;
711
712 for (i = 0; i < size; i++) {
713 sprintf(hex, "%02x", *key);
714 hex += 2;
715 key++;
716 }
717 }
718
719 static int crypt_set_key(struct crypt_config *cc, char *key)
720 {
721 unsigned key_size = strlen(key) >> 1;
722
723 if (cc->key_size && cc->key_size != key_size)
724 return -EINVAL;
725
726 cc->key_size = key_size; /* initial settings */
727
728 if ((!key_size && strcmp(key, "-")) ||
729 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
730 return -EINVAL;
731
732 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
733
734 return 0;
735 }
736
737 static int crypt_wipe_key(struct crypt_config *cc)
738 {
739 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
740 memset(&cc->key, 0, cc->key_size * sizeof(u8));
741 return 0;
742 }
743
744 /*
745 * Construct an encryption mapping:
746 * <cipher> <key> <iv_offset> <dev_path> <start>
747 */
748 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
749 {
750 struct crypt_config *cc;
751 struct crypto_blkcipher *tfm;
752 char *tmp;
753 char *cipher;
754 char *chainmode;
755 char *ivmode;
756 char *ivopts;
757 unsigned int key_size;
758 unsigned long long tmpll;
759
760 if (argc != 5) {
761 ti->error = "Not enough arguments";
762 return -EINVAL;
763 }
764
765 tmp = argv[0];
766 cipher = strsep(&tmp, "-");
767 chainmode = strsep(&tmp, "-");
768 ivopts = strsep(&tmp, "-");
769 ivmode = strsep(&ivopts, ":");
770
771 if (tmp)
772 DMWARN("Unexpected additional cipher options");
773
774 key_size = strlen(argv[1]) >> 1;
775
776 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
777 if (cc == NULL) {
778 ti->error =
779 "Cannot allocate transparent encryption context";
780 return -ENOMEM;
781 }
782
783 if (crypt_set_key(cc, argv[1])) {
784 ti->error = "Error decoding key";
785 goto bad_cipher;
786 }
787
788 /* Compatiblity mode for old dm-crypt cipher strings */
789 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
790 chainmode = "cbc";
791 ivmode = "plain";
792 }
793
794 if (strcmp(chainmode, "ecb") && !ivmode) {
795 ti->error = "This chaining mode requires an IV mechanism";
796 goto bad_cipher;
797 }
798
799 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
800 chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
801 ti->error = "Chain mode + cipher name is too long";
802 goto bad_cipher;
803 }
804
805 tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
806 if (IS_ERR(tfm)) {
807 ti->error = "Error allocating crypto tfm";
808 goto bad_cipher;
809 }
810
811 strcpy(cc->cipher, cipher);
812 strcpy(cc->chainmode, chainmode);
813 cc->tfm = tfm;
814
815 /*
816 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
817 * See comments at iv code
818 */
819
820 if (ivmode == NULL)
821 cc->iv_gen_ops = NULL;
822 else if (strcmp(ivmode, "plain") == 0)
823 cc->iv_gen_ops = &crypt_iv_plain_ops;
824 else if (strcmp(ivmode, "essiv") == 0)
825 cc->iv_gen_ops = &crypt_iv_essiv_ops;
826 else if (strcmp(ivmode, "benbi") == 0)
827 cc->iv_gen_ops = &crypt_iv_benbi_ops;
828 else if (strcmp(ivmode, "null") == 0)
829 cc->iv_gen_ops = &crypt_iv_null_ops;
830 else {
831 ti->error = "Invalid IV mode";
832 goto bad_ivmode;
833 }
834
835 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
836 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
837 goto bad_ivmode;
838
839 cc->iv_size = crypto_blkcipher_ivsize(tfm);
840 if (cc->iv_size)
841 /* at least a 64 bit sector number should fit in our buffer */
842 cc->iv_size = max(cc->iv_size,
843 (unsigned int)(sizeof(u64) / sizeof(u8)));
844 else {
845 if (cc->iv_gen_ops) {
846 DMWARN("Selected cipher does not support IVs");
847 if (cc->iv_gen_ops->dtr)
848 cc->iv_gen_ops->dtr(cc);
849 cc->iv_gen_ops = NULL;
850 }
851 }
852
853 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
854 if (!cc->io_pool) {
855 ti->error = "Cannot allocate crypt io mempool";
856 goto bad_slab_pool;
857 }
858
859 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
860 if (!cc->page_pool) {
861 ti->error = "Cannot allocate page mempool";
862 goto bad_page_pool;
863 }
864
865 cc->bs = bioset_create(MIN_IOS, MIN_IOS);
866 if (!cc->bs) {
867 ti->error = "Cannot allocate crypt bioset";
868 goto bad_bs;
869 }
870
871 if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
872 ti->error = "Error setting key";
873 goto bad_device;
874 }
875
876 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
877 ti->error = "Invalid iv_offset sector";
878 goto bad_device;
879 }
880 cc->iv_offset = tmpll;
881
882 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
883 ti->error = "Invalid device sector";
884 goto bad_device;
885 }
886 cc->start = tmpll;
887
888 if (dm_get_device(ti, argv[3], cc->start, ti->len,
889 dm_table_get_mode(ti->table), &cc->dev)) {
890 ti->error = "Device lookup failed";
891 goto bad_device;
892 }
893
894 if (ivmode && cc->iv_gen_ops) {
895 if (ivopts)
896 *(ivopts - 1) = ':';
897 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
898 if (!cc->iv_mode) {
899 ti->error = "Error kmallocing iv_mode string";
900 goto bad_ivmode_string;
901 }
902 strcpy(cc->iv_mode, ivmode);
903 } else
904 cc->iv_mode = NULL;
905
906 cc->io_queue = create_singlethread_workqueue("kcryptd_io");
907 if (!cc->io_queue) {
908 ti->error = "Couldn't create kcryptd io queue";
909 goto bad_io_queue;
910 }
911
912 cc->crypt_queue = create_singlethread_workqueue("kcryptd");
913 if (!cc->crypt_queue) {
914 ti->error = "Couldn't create kcryptd queue";
915 goto bad_crypt_queue;
916 }
917
918 ti->private = cc;
919 return 0;
920
921 bad_crypt_queue:
922 destroy_workqueue(cc->io_queue);
923 bad_io_queue:
924 kfree(cc->iv_mode);
925 bad_ivmode_string:
926 dm_put_device(ti, cc->dev);
927 bad_device:
928 bioset_free(cc->bs);
929 bad_bs:
930 mempool_destroy(cc->page_pool);
931 bad_page_pool:
932 mempool_destroy(cc->io_pool);
933 bad_slab_pool:
934 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
935 cc->iv_gen_ops->dtr(cc);
936 bad_ivmode:
937 crypto_free_blkcipher(tfm);
938 bad_cipher:
939 /* Must zero key material before freeing */
940 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
941 kfree(cc);
942 return -EINVAL;
943 }
944
945 static void crypt_dtr(struct dm_target *ti)
946 {
947 struct crypt_config *cc = (struct crypt_config *) ti->private;
948
949 destroy_workqueue(cc->io_queue);
950 destroy_workqueue(cc->crypt_queue);
951
952 bioset_free(cc->bs);
953 mempool_destroy(cc->page_pool);
954 mempool_destroy(cc->io_pool);
955
956 kfree(cc->iv_mode);
957 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
958 cc->iv_gen_ops->dtr(cc);
959 crypto_free_blkcipher(cc->tfm);
960 dm_put_device(ti, cc->dev);
961
962 /* Must zero key material before freeing */
963 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
964 kfree(cc);
965 }
966
967 static int crypt_map(struct dm_target *ti, struct bio *bio,
968 union map_info *map_context)
969 {
970 struct crypt_config *cc = ti->private;
971 struct dm_crypt_io *io;
972
973 io = mempool_alloc(cc->io_pool, GFP_NOIO);
974 io->target = ti;
975 io->base_bio = bio;
976 io->sector = bio->bi_sector - ti->begin;
977 io->error = 0;
978 atomic_set(&io->pending, 0);
979
980 if (bio_data_dir(io->base_bio) == READ)
981 kcryptd_queue_io(io);
982 else
983 kcryptd_queue_crypt(io);
984
985 return DM_MAPIO_SUBMITTED;
986 }
987
988 static int crypt_status(struct dm_target *ti, status_type_t type,
989 char *result, unsigned int maxlen)
990 {
991 struct crypt_config *cc = (struct crypt_config *) ti->private;
992 unsigned int sz = 0;
993
994 switch (type) {
995 case STATUSTYPE_INFO:
996 result[0] = '\0';
997 break;
998
999 case STATUSTYPE_TABLE:
1000 if (cc->iv_mode)
1001 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
1002 cc->iv_mode);
1003 else
1004 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
1005
1006 if (cc->key_size > 0) {
1007 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1008 return -ENOMEM;
1009
1010 crypt_encode_key(result + sz, cc->key, cc->key_size);
1011 sz += cc->key_size << 1;
1012 } else {
1013 if (sz >= maxlen)
1014 return -ENOMEM;
1015 result[sz++] = '-';
1016 }
1017
1018 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1019 cc->dev->name, (unsigned long long)cc->start);
1020 break;
1021 }
1022 return 0;
1023 }
1024
1025 static void crypt_postsuspend(struct dm_target *ti)
1026 {
1027 struct crypt_config *cc = ti->private;
1028
1029 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1030 }
1031
1032 static int crypt_preresume(struct dm_target *ti)
1033 {
1034 struct crypt_config *cc = ti->private;
1035
1036 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1037 DMERR("aborting resume - crypt key is not set.");
1038 return -EAGAIN;
1039 }
1040
1041 return 0;
1042 }
1043
1044 static void crypt_resume(struct dm_target *ti)
1045 {
1046 struct crypt_config *cc = ti->private;
1047
1048 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1049 }
1050
1051 /* Message interface
1052 * key set <key>
1053 * key wipe
1054 */
1055 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1056 {
1057 struct crypt_config *cc = ti->private;
1058
1059 if (argc < 2)
1060 goto error;
1061
1062 if (!strnicmp(argv[0], MESG_STR("key"))) {
1063 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1064 DMWARN("not suspended during key manipulation.");
1065 return -EINVAL;
1066 }
1067 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1068 return crypt_set_key(cc, argv[2]);
1069 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1070 return crypt_wipe_key(cc);
1071 }
1072
1073 error:
1074 DMWARN("unrecognised message received.");
1075 return -EINVAL;
1076 }
1077
1078 static struct target_type crypt_target = {
1079 .name = "crypt",
1080 .version= {1, 5, 0},
1081 .module = THIS_MODULE,
1082 .ctr = crypt_ctr,
1083 .dtr = crypt_dtr,
1084 .map = crypt_map,
1085 .status = crypt_status,
1086 .postsuspend = crypt_postsuspend,
1087 .preresume = crypt_preresume,
1088 .resume = crypt_resume,
1089 .message = crypt_message,
1090 };
1091
1092 static int __init dm_crypt_init(void)
1093 {
1094 int r;
1095
1096 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1097 if (!_crypt_io_pool)
1098 return -ENOMEM;
1099
1100 r = dm_register_target(&crypt_target);
1101 if (r < 0) {
1102 DMERR("register failed %d", r);
1103 kmem_cache_destroy(_crypt_io_pool);
1104 }
1105
1106 return r;
1107 }
1108
1109 static void __exit dm_crypt_exit(void)
1110 {
1111 int r = dm_unregister_target(&crypt_target);
1112
1113 if (r < 0)
1114 DMERR("unregister failed %d", r);
1115
1116 kmem_cache_destroy(_crypt_io_pool);
1117 }
1118
1119 module_init(dm_crypt_init);
1120 module_exit(dm_crypt_exit);
1121
1122 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1123 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1124 MODULE_LICENSE("GPL");
This page took 0.060814 seconds and 5 git commands to generate.