Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6
[deliverable/linux.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
22 #include <asm/page.h>
23 #include <asm/unaligned.h>
24
25 #include "dm.h"
26
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
29
30 /*
31 * per bio private data
32 */
33 struct dm_crypt_io {
34 struct dm_target *target;
35 struct bio *base_bio;
36 struct work_struct work;
37 atomic_t pending;
38 int error;
39 };
40
41 /*
42 * context holding the current state of a multi-part conversion
43 */
44 struct convert_context {
45 struct bio *bio_in;
46 struct bio *bio_out;
47 unsigned int offset_in;
48 unsigned int offset_out;
49 unsigned int idx_in;
50 unsigned int idx_out;
51 sector_t sector;
52 int write;
53 };
54
55 struct crypt_config;
56
57 struct crypt_iv_operations {
58 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
59 const char *opts);
60 void (*dtr)(struct crypt_config *cc);
61 const char *(*status)(struct crypt_config *cc);
62 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
63 };
64
65 /*
66 * Crypt: maps a linear range of a block device
67 * and encrypts / decrypts at the same time.
68 */
69 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
70 struct crypt_config {
71 struct dm_dev *dev;
72 sector_t start;
73
74 /*
75 * pool for per bio private data and
76 * for encryption buffer pages
77 */
78 mempool_t *io_pool;
79 mempool_t *page_pool;
80 struct bio_set *bs;
81
82 struct workqueue_struct *io_queue;
83 struct workqueue_struct *crypt_queue;
84 /*
85 * crypto related data
86 */
87 struct crypt_iv_operations *iv_gen_ops;
88 char *iv_mode;
89 union {
90 struct crypto_cipher *essiv_tfm;
91 int benbi_shift;
92 } iv_gen_private;
93 sector_t iv_offset;
94 unsigned int iv_size;
95
96 char cipher[CRYPTO_MAX_ALG_NAME];
97 char chainmode[CRYPTO_MAX_ALG_NAME];
98 struct crypto_blkcipher *tfm;
99 unsigned long flags;
100 unsigned int key_size;
101 u8 key[0];
102 };
103
104 #define MIN_IOS 16
105 #define MIN_POOL_PAGES 32
106 #define MIN_BIO_PAGES 8
107
108 static struct kmem_cache *_crypt_io_pool;
109
110 static void clone_init(struct dm_crypt_io *, struct bio *);
111
112 /*
113 * Different IV generation algorithms:
114 *
115 * plain: the initial vector is the 32-bit little-endian version of the sector
116 * number, padded with zeros if necessary.
117 *
118 * essiv: "encrypted sector|salt initial vector", the sector number is
119 * encrypted with the bulk cipher using a salt as key. The salt
120 * should be derived from the bulk cipher's key via hashing.
121 *
122 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
123 * (needed for LRW-32-AES and possible other narrow block modes)
124 *
125 * null: the initial vector is always zero. Provides compatibility with
126 * obsolete loop_fish2 devices. Do not use for new devices.
127 *
128 * plumb: unimplemented, see:
129 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
130 */
131
132 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
133 {
134 memset(iv, 0, cc->iv_size);
135 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
136
137 return 0;
138 }
139
140 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
141 const char *opts)
142 {
143 struct crypto_cipher *essiv_tfm;
144 struct crypto_hash *hash_tfm;
145 struct hash_desc desc;
146 struct scatterlist sg;
147 unsigned int saltsize;
148 u8 *salt;
149 int err;
150
151 if (opts == NULL) {
152 ti->error = "Digest algorithm missing for ESSIV mode";
153 return -EINVAL;
154 }
155
156 /* Hash the cipher key with the given hash algorithm */
157 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
158 if (IS_ERR(hash_tfm)) {
159 ti->error = "Error initializing ESSIV hash";
160 return PTR_ERR(hash_tfm);
161 }
162
163 saltsize = crypto_hash_digestsize(hash_tfm);
164 salt = kmalloc(saltsize, GFP_KERNEL);
165 if (salt == NULL) {
166 ti->error = "Error kmallocing salt storage in ESSIV";
167 crypto_free_hash(hash_tfm);
168 return -ENOMEM;
169 }
170
171 sg_set_buf(&sg, cc->key, cc->key_size);
172 desc.tfm = hash_tfm;
173 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
174 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
175 crypto_free_hash(hash_tfm);
176
177 if (err) {
178 ti->error = "Error calculating hash in ESSIV";
179 kfree(salt);
180 return err;
181 }
182
183 /* Setup the essiv_tfm with the given salt */
184 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
185 if (IS_ERR(essiv_tfm)) {
186 ti->error = "Error allocating crypto tfm for ESSIV";
187 kfree(salt);
188 return PTR_ERR(essiv_tfm);
189 }
190 if (crypto_cipher_blocksize(essiv_tfm) !=
191 crypto_blkcipher_ivsize(cc->tfm)) {
192 ti->error = "Block size of ESSIV cipher does "
193 "not match IV size of block cipher";
194 crypto_free_cipher(essiv_tfm);
195 kfree(salt);
196 return -EINVAL;
197 }
198 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
199 if (err) {
200 ti->error = "Failed to set key for ESSIV cipher";
201 crypto_free_cipher(essiv_tfm);
202 kfree(salt);
203 return err;
204 }
205 kfree(salt);
206
207 cc->iv_gen_private.essiv_tfm = essiv_tfm;
208 return 0;
209 }
210
211 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
212 {
213 crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
214 cc->iv_gen_private.essiv_tfm = NULL;
215 }
216
217 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
218 {
219 memset(iv, 0, cc->iv_size);
220 *(u64 *)iv = cpu_to_le64(sector);
221 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
222 return 0;
223 }
224
225 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
226 const char *opts)
227 {
228 unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
229 int log = ilog2(bs);
230
231 /* we need to calculate how far we must shift the sector count
232 * to get the cipher block count, we use this shift in _gen */
233
234 if (1 << log != bs) {
235 ti->error = "cypher blocksize is not a power of 2";
236 return -EINVAL;
237 }
238
239 if (log > 9) {
240 ti->error = "cypher blocksize is > 512";
241 return -EINVAL;
242 }
243
244 cc->iv_gen_private.benbi_shift = 9 - log;
245
246 return 0;
247 }
248
249 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
250 {
251 }
252
253 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
254 {
255 __be64 val;
256
257 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
258
259 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
260 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
261
262 return 0;
263 }
264
265 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
266 {
267 memset(iv, 0, cc->iv_size);
268
269 return 0;
270 }
271
272 static struct crypt_iv_operations crypt_iv_plain_ops = {
273 .generator = crypt_iv_plain_gen
274 };
275
276 static struct crypt_iv_operations crypt_iv_essiv_ops = {
277 .ctr = crypt_iv_essiv_ctr,
278 .dtr = crypt_iv_essiv_dtr,
279 .generator = crypt_iv_essiv_gen
280 };
281
282 static struct crypt_iv_operations crypt_iv_benbi_ops = {
283 .ctr = crypt_iv_benbi_ctr,
284 .dtr = crypt_iv_benbi_dtr,
285 .generator = crypt_iv_benbi_gen
286 };
287
288 static struct crypt_iv_operations crypt_iv_null_ops = {
289 .generator = crypt_iv_null_gen
290 };
291
292 static int
293 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
294 struct scatterlist *in, unsigned int length,
295 int write, sector_t sector)
296 {
297 u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
298 struct blkcipher_desc desc = {
299 .tfm = cc->tfm,
300 .info = iv,
301 .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
302 };
303 int r;
304
305 if (cc->iv_gen_ops) {
306 r = cc->iv_gen_ops->generator(cc, iv, sector);
307 if (r < 0)
308 return r;
309
310 if (write)
311 r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
312 else
313 r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
314 } else {
315 if (write)
316 r = crypto_blkcipher_encrypt(&desc, out, in, length);
317 else
318 r = crypto_blkcipher_decrypt(&desc, out, in, length);
319 }
320
321 return r;
322 }
323
324 static void crypt_convert_init(struct crypt_config *cc,
325 struct convert_context *ctx,
326 struct bio *bio_out, struct bio *bio_in,
327 sector_t sector, int write)
328 {
329 ctx->bio_in = bio_in;
330 ctx->bio_out = bio_out;
331 ctx->offset_in = 0;
332 ctx->offset_out = 0;
333 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
334 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
335 ctx->sector = sector + cc->iv_offset;
336 ctx->write = write;
337 }
338
339 /*
340 * Encrypt / decrypt data from one bio to another one (can be the same one)
341 */
342 static int crypt_convert(struct crypt_config *cc,
343 struct convert_context *ctx)
344 {
345 int r = 0;
346
347 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
348 ctx->idx_out < ctx->bio_out->bi_vcnt) {
349 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
350 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
351 struct scatterlist sg_in, sg_out;
352
353 sg_init_table(&sg_in, 1);
354 sg_set_page(&sg_in, bv_in->bv_page);
355 sg_in.offset = bv_in->bv_offset + ctx->offset_in;
356 sg_in.length = 1 << SECTOR_SHIFT;
357
358 sg_init_table(&sg_out, 1);
359 sg_set_page(&sg_out, bv_out->bv_page);
360 sg_out.offset = bv_out->bv_offset + ctx->offset_out;
361 sg_out.length = 1 << SECTOR_SHIFT;
362
363 ctx->offset_in += sg_in.length;
364 if (ctx->offset_in >= bv_in->bv_len) {
365 ctx->offset_in = 0;
366 ctx->idx_in++;
367 }
368
369 ctx->offset_out += sg_out.length;
370 if (ctx->offset_out >= bv_out->bv_len) {
371 ctx->offset_out = 0;
372 ctx->idx_out++;
373 }
374
375 r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
376 ctx->write, ctx->sector);
377 if (r < 0)
378 break;
379
380 ctx->sector++;
381 }
382
383 return r;
384 }
385
386 static void dm_crypt_bio_destructor(struct bio *bio)
387 {
388 struct dm_crypt_io *io = bio->bi_private;
389 struct crypt_config *cc = io->target->private;
390
391 bio_free(bio, cc->bs);
392 }
393
394 /*
395 * Generate a new unfragmented bio with the given size
396 * This should never violate the device limitations
397 * May return a smaller bio when running out of pages
398 */
399 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
400 {
401 struct crypt_config *cc = io->target->private;
402 struct bio *clone;
403 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
404 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
405 unsigned int i;
406
407 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
408 if (!clone)
409 return NULL;
410
411 clone_init(io, clone);
412
413 for (i = 0; i < nr_iovecs; i++) {
414 struct bio_vec *bv = bio_iovec_idx(clone, i);
415
416 bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
417 if (!bv->bv_page)
418 break;
419
420 /*
421 * if additional pages cannot be allocated without waiting,
422 * return a partially allocated bio, the caller will then try
423 * to allocate additional bios while submitting this partial bio
424 */
425 if (i == (MIN_BIO_PAGES - 1))
426 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
427
428 bv->bv_offset = 0;
429 if (size > PAGE_SIZE)
430 bv->bv_len = PAGE_SIZE;
431 else
432 bv->bv_len = size;
433
434 clone->bi_size += bv->bv_len;
435 clone->bi_vcnt++;
436 size -= bv->bv_len;
437 }
438
439 if (!clone->bi_size) {
440 bio_put(clone);
441 return NULL;
442 }
443
444 return clone;
445 }
446
447 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
448 {
449 unsigned int i;
450 struct bio_vec *bv;
451
452 for (i = 0; i < clone->bi_vcnt; i++) {
453 bv = bio_iovec_idx(clone, i);
454 BUG_ON(!bv->bv_page);
455 mempool_free(bv->bv_page, cc->page_pool);
456 bv->bv_page = NULL;
457 }
458 }
459
460 /*
461 * One of the bios was finished. Check for completion of
462 * the whole request and correctly clean up the buffer.
463 */
464 static void crypt_dec_pending(struct dm_crypt_io *io, int error)
465 {
466 struct crypt_config *cc = (struct crypt_config *) io->target->private;
467
468 if (error < 0)
469 io->error = error;
470
471 if (!atomic_dec_and_test(&io->pending))
472 return;
473
474 bio_endio(io->base_bio, io->error);
475
476 mempool_free(io, cc->io_pool);
477 }
478
479 /*
480 * kcryptd/kcryptd_io:
481 *
482 * Needed because it would be very unwise to do decryption in an
483 * interrupt context.
484 *
485 * kcryptd performs the actual encryption or decryption.
486 *
487 * kcryptd_io performs the IO submission.
488 *
489 * They must be separated as otherwise the final stages could be
490 * starved by new requests which can block in the first stages due
491 * to memory allocation.
492 */
493 static void kcryptd_do_work(struct work_struct *work);
494 static void kcryptd_do_crypt(struct work_struct *work);
495
496 static void kcryptd_queue_io(struct dm_crypt_io *io)
497 {
498 struct crypt_config *cc = io->target->private;
499
500 INIT_WORK(&io->work, kcryptd_do_work);
501 queue_work(cc->io_queue, &io->work);
502 }
503
504 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
505 {
506 struct crypt_config *cc = io->target->private;
507
508 INIT_WORK(&io->work, kcryptd_do_crypt);
509 queue_work(cc->crypt_queue, &io->work);
510 }
511
512 static void crypt_endio(struct bio *clone, int error)
513 {
514 struct dm_crypt_io *io = clone->bi_private;
515 struct crypt_config *cc = io->target->private;
516 unsigned read_io = bio_data_dir(clone) == READ;
517
518 /*
519 * free the processed pages
520 */
521 if (!read_io) {
522 crypt_free_buffer_pages(cc, clone);
523 goto out;
524 }
525
526 if (unlikely(!bio_flagged(clone, BIO_UPTODATE))) {
527 error = -EIO;
528 goto out;
529 }
530
531 bio_put(clone);
532 kcryptd_queue_crypt(io);
533 return;
534
535 out:
536 bio_put(clone);
537 crypt_dec_pending(io, error);
538 }
539
540 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
541 {
542 struct crypt_config *cc = io->target->private;
543
544 clone->bi_private = io;
545 clone->bi_end_io = crypt_endio;
546 clone->bi_bdev = cc->dev->bdev;
547 clone->bi_rw = io->base_bio->bi_rw;
548 clone->bi_destructor = dm_crypt_bio_destructor;
549 }
550
551 static void process_read(struct dm_crypt_io *io)
552 {
553 struct crypt_config *cc = io->target->private;
554 struct bio *base_bio = io->base_bio;
555 struct bio *clone;
556 sector_t sector = base_bio->bi_sector - io->target->begin;
557
558 atomic_inc(&io->pending);
559
560 /*
561 * The block layer might modify the bvec array, so always
562 * copy the required bvecs because we need the original
563 * one in order to decrypt the whole bio data *afterwards*.
564 */
565 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
566 if (unlikely(!clone)) {
567 crypt_dec_pending(io, -ENOMEM);
568 return;
569 }
570
571 clone_init(io, clone);
572 clone->bi_idx = 0;
573 clone->bi_vcnt = bio_segments(base_bio);
574 clone->bi_size = base_bio->bi_size;
575 clone->bi_sector = cc->start + sector;
576 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
577 sizeof(struct bio_vec) * clone->bi_vcnt);
578
579 generic_make_request(clone);
580 }
581
582 static void process_write(struct dm_crypt_io *io)
583 {
584 struct crypt_config *cc = io->target->private;
585 struct bio *base_bio = io->base_bio;
586 struct bio *clone;
587 struct convert_context ctx;
588 unsigned remaining = base_bio->bi_size;
589 sector_t sector = base_bio->bi_sector - io->target->begin;
590
591 atomic_inc(&io->pending);
592
593 crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1);
594
595 /*
596 * The allocated buffers can be smaller than the whole bio,
597 * so repeat the whole process until all the data can be handled.
598 */
599 while (remaining) {
600 clone = crypt_alloc_buffer(io, remaining);
601 if (unlikely(!clone)) {
602 crypt_dec_pending(io, -ENOMEM);
603 return;
604 }
605
606 ctx.bio_out = clone;
607 ctx.idx_out = 0;
608
609 if (unlikely(crypt_convert(cc, &ctx) < 0)) {
610 crypt_free_buffer_pages(cc, clone);
611 bio_put(clone);
612 crypt_dec_pending(io, -EIO);
613 return;
614 }
615
616 /* crypt_convert should have filled the clone bio */
617 BUG_ON(ctx.idx_out < clone->bi_vcnt);
618
619 clone->bi_sector = cc->start + sector;
620 remaining -= clone->bi_size;
621 sector += bio_sectors(clone);
622
623 /* Grab another reference to the io struct
624 * before we kick off the request */
625 if (remaining)
626 atomic_inc(&io->pending);
627
628 generic_make_request(clone);
629
630 /* Do not reference clone after this - it
631 * may be gone already. */
632
633 /* out of memory -> run queues */
634 if (remaining)
635 congestion_wait(WRITE, HZ/100);
636 }
637 }
638
639 static void process_read_endio(struct dm_crypt_io *io)
640 {
641 struct crypt_config *cc = io->target->private;
642 struct convert_context ctx;
643
644 crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
645 io->base_bio->bi_sector - io->target->begin, 0);
646
647 crypt_dec_pending(io, crypt_convert(cc, &ctx));
648 }
649
650 static void kcryptd_do_work(struct work_struct *work)
651 {
652 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
653
654 if (bio_data_dir(io->base_bio) == READ)
655 process_read(io);
656 }
657
658 static void kcryptd_do_crypt(struct work_struct *work)
659 {
660 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
661
662 if (bio_data_dir(io->base_bio) == READ)
663 process_read_endio(io);
664 else
665 process_write(io);
666 }
667
668 /*
669 * Decode key from its hex representation
670 */
671 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
672 {
673 char buffer[3];
674 char *endp;
675 unsigned int i;
676
677 buffer[2] = '\0';
678
679 for (i = 0; i < size; i++) {
680 buffer[0] = *hex++;
681 buffer[1] = *hex++;
682
683 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
684
685 if (endp != &buffer[2])
686 return -EINVAL;
687 }
688
689 if (*hex != '\0')
690 return -EINVAL;
691
692 return 0;
693 }
694
695 /*
696 * Encode key into its hex representation
697 */
698 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
699 {
700 unsigned int i;
701
702 for (i = 0; i < size; i++) {
703 sprintf(hex, "%02x", *key);
704 hex += 2;
705 key++;
706 }
707 }
708
709 static int crypt_set_key(struct crypt_config *cc, char *key)
710 {
711 unsigned key_size = strlen(key) >> 1;
712
713 if (cc->key_size && cc->key_size != key_size)
714 return -EINVAL;
715
716 cc->key_size = key_size; /* initial settings */
717
718 if ((!key_size && strcmp(key, "-")) ||
719 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
720 return -EINVAL;
721
722 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
723
724 return 0;
725 }
726
727 static int crypt_wipe_key(struct crypt_config *cc)
728 {
729 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
730 memset(&cc->key, 0, cc->key_size * sizeof(u8));
731 return 0;
732 }
733
734 /*
735 * Construct an encryption mapping:
736 * <cipher> <key> <iv_offset> <dev_path> <start>
737 */
738 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
739 {
740 struct crypt_config *cc;
741 struct crypto_blkcipher *tfm;
742 char *tmp;
743 char *cipher;
744 char *chainmode;
745 char *ivmode;
746 char *ivopts;
747 unsigned int key_size;
748 unsigned long long tmpll;
749
750 if (argc != 5) {
751 ti->error = "Not enough arguments";
752 return -EINVAL;
753 }
754
755 tmp = argv[0];
756 cipher = strsep(&tmp, "-");
757 chainmode = strsep(&tmp, "-");
758 ivopts = strsep(&tmp, "-");
759 ivmode = strsep(&ivopts, ":");
760
761 if (tmp)
762 DMWARN("Unexpected additional cipher options");
763
764 key_size = strlen(argv[1]) >> 1;
765
766 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
767 if (cc == NULL) {
768 ti->error =
769 "Cannot allocate transparent encryption context";
770 return -ENOMEM;
771 }
772
773 if (crypt_set_key(cc, argv[1])) {
774 ti->error = "Error decoding key";
775 goto bad_cipher;
776 }
777
778 /* Compatiblity mode for old dm-crypt cipher strings */
779 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
780 chainmode = "cbc";
781 ivmode = "plain";
782 }
783
784 if (strcmp(chainmode, "ecb") && !ivmode) {
785 ti->error = "This chaining mode requires an IV mechanism";
786 goto bad_cipher;
787 }
788
789 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
790 chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
791 ti->error = "Chain mode + cipher name is too long";
792 goto bad_cipher;
793 }
794
795 tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
796 if (IS_ERR(tfm)) {
797 ti->error = "Error allocating crypto tfm";
798 goto bad_cipher;
799 }
800
801 strcpy(cc->cipher, cipher);
802 strcpy(cc->chainmode, chainmode);
803 cc->tfm = tfm;
804
805 /*
806 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
807 * See comments at iv code
808 */
809
810 if (ivmode == NULL)
811 cc->iv_gen_ops = NULL;
812 else if (strcmp(ivmode, "plain") == 0)
813 cc->iv_gen_ops = &crypt_iv_plain_ops;
814 else if (strcmp(ivmode, "essiv") == 0)
815 cc->iv_gen_ops = &crypt_iv_essiv_ops;
816 else if (strcmp(ivmode, "benbi") == 0)
817 cc->iv_gen_ops = &crypt_iv_benbi_ops;
818 else if (strcmp(ivmode, "null") == 0)
819 cc->iv_gen_ops = &crypt_iv_null_ops;
820 else {
821 ti->error = "Invalid IV mode";
822 goto bad_ivmode;
823 }
824
825 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
826 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
827 goto bad_ivmode;
828
829 cc->iv_size = crypto_blkcipher_ivsize(tfm);
830 if (cc->iv_size)
831 /* at least a 64 bit sector number should fit in our buffer */
832 cc->iv_size = max(cc->iv_size,
833 (unsigned int)(sizeof(u64) / sizeof(u8)));
834 else {
835 if (cc->iv_gen_ops) {
836 DMWARN("Selected cipher does not support IVs");
837 if (cc->iv_gen_ops->dtr)
838 cc->iv_gen_ops->dtr(cc);
839 cc->iv_gen_ops = NULL;
840 }
841 }
842
843 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
844 if (!cc->io_pool) {
845 ti->error = "Cannot allocate crypt io mempool";
846 goto bad_slab_pool;
847 }
848
849 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
850 if (!cc->page_pool) {
851 ti->error = "Cannot allocate page mempool";
852 goto bad_page_pool;
853 }
854
855 cc->bs = bioset_create(MIN_IOS, MIN_IOS);
856 if (!cc->bs) {
857 ti->error = "Cannot allocate crypt bioset";
858 goto bad_bs;
859 }
860
861 if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
862 ti->error = "Error setting key";
863 goto bad_device;
864 }
865
866 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
867 ti->error = "Invalid iv_offset sector";
868 goto bad_device;
869 }
870 cc->iv_offset = tmpll;
871
872 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
873 ti->error = "Invalid device sector";
874 goto bad_device;
875 }
876 cc->start = tmpll;
877
878 if (dm_get_device(ti, argv[3], cc->start, ti->len,
879 dm_table_get_mode(ti->table), &cc->dev)) {
880 ti->error = "Device lookup failed";
881 goto bad_device;
882 }
883
884 if (ivmode && cc->iv_gen_ops) {
885 if (ivopts)
886 *(ivopts - 1) = ':';
887 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
888 if (!cc->iv_mode) {
889 ti->error = "Error kmallocing iv_mode string";
890 goto bad_ivmode_string;
891 }
892 strcpy(cc->iv_mode, ivmode);
893 } else
894 cc->iv_mode = NULL;
895
896 cc->io_queue = create_singlethread_workqueue("kcryptd_io");
897 if (!cc->io_queue) {
898 ti->error = "Couldn't create kcryptd io queue";
899 goto bad_io_queue;
900 }
901
902 cc->crypt_queue = create_singlethread_workqueue("kcryptd");
903 if (!cc->crypt_queue) {
904 ti->error = "Couldn't create kcryptd queue";
905 goto bad_crypt_queue;
906 }
907
908 ti->private = cc;
909 return 0;
910
911 bad_crypt_queue:
912 destroy_workqueue(cc->io_queue);
913 bad_io_queue:
914 kfree(cc->iv_mode);
915 bad_ivmode_string:
916 dm_put_device(ti, cc->dev);
917 bad_device:
918 bioset_free(cc->bs);
919 bad_bs:
920 mempool_destroy(cc->page_pool);
921 bad_page_pool:
922 mempool_destroy(cc->io_pool);
923 bad_slab_pool:
924 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
925 cc->iv_gen_ops->dtr(cc);
926 bad_ivmode:
927 crypto_free_blkcipher(tfm);
928 bad_cipher:
929 /* Must zero key material before freeing */
930 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
931 kfree(cc);
932 return -EINVAL;
933 }
934
935 static void crypt_dtr(struct dm_target *ti)
936 {
937 struct crypt_config *cc = (struct crypt_config *) ti->private;
938
939 destroy_workqueue(cc->io_queue);
940 destroy_workqueue(cc->crypt_queue);
941
942 bioset_free(cc->bs);
943 mempool_destroy(cc->page_pool);
944 mempool_destroy(cc->io_pool);
945
946 kfree(cc->iv_mode);
947 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
948 cc->iv_gen_ops->dtr(cc);
949 crypto_free_blkcipher(cc->tfm);
950 dm_put_device(ti, cc->dev);
951
952 /* Must zero key material before freeing */
953 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
954 kfree(cc);
955 }
956
957 static int crypt_map(struct dm_target *ti, struct bio *bio,
958 union map_info *map_context)
959 {
960 struct crypt_config *cc = ti->private;
961 struct dm_crypt_io *io;
962
963 io = mempool_alloc(cc->io_pool, GFP_NOIO);
964 io->target = ti;
965 io->base_bio = bio;
966 io->error = 0;
967 atomic_set(&io->pending, 0);
968
969 if (bio_data_dir(io->base_bio) == READ)
970 kcryptd_queue_io(io);
971 else
972 kcryptd_queue_crypt(io);
973
974 return DM_MAPIO_SUBMITTED;
975 }
976
977 static int crypt_status(struct dm_target *ti, status_type_t type,
978 char *result, unsigned int maxlen)
979 {
980 struct crypt_config *cc = (struct crypt_config *) ti->private;
981 unsigned int sz = 0;
982
983 switch (type) {
984 case STATUSTYPE_INFO:
985 result[0] = '\0';
986 break;
987
988 case STATUSTYPE_TABLE:
989 if (cc->iv_mode)
990 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
991 cc->iv_mode);
992 else
993 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
994
995 if (cc->key_size > 0) {
996 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
997 return -ENOMEM;
998
999 crypt_encode_key(result + sz, cc->key, cc->key_size);
1000 sz += cc->key_size << 1;
1001 } else {
1002 if (sz >= maxlen)
1003 return -ENOMEM;
1004 result[sz++] = '-';
1005 }
1006
1007 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1008 cc->dev->name, (unsigned long long)cc->start);
1009 break;
1010 }
1011 return 0;
1012 }
1013
1014 static void crypt_postsuspend(struct dm_target *ti)
1015 {
1016 struct crypt_config *cc = ti->private;
1017
1018 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1019 }
1020
1021 static int crypt_preresume(struct dm_target *ti)
1022 {
1023 struct crypt_config *cc = ti->private;
1024
1025 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1026 DMERR("aborting resume - crypt key is not set.");
1027 return -EAGAIN;
1028 }
1029
1030 return 0;
1031 }
1032
1033 static void crypt_resume(struct dm_target *ti)
1034 {
1035 struct crypt_config *cc = ti->private;
1036
1037 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1038 }
1039
1040 /* Message interface
1041 * key set <key>
1042 * key wipe
1043 */
1044 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1045 {
1046 struct crypt_config *cc = ti->private;
1047
1048 if (argc < 2)
1049 goto error;
1050
1051 if (!strnicmp(argv[0], MESG_STR("key"))) {
1052 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1053 DMWARN("not suspended during key manipulation.");
1054 return -EINVAL;
1055 }
1056 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1057 return crypt_set_key(cc, argv[2]);
1058 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1059 return crypt_wipe_key(cc);
1060 }
1061
1062 error:
1063 DMWARN("unrecognised message received.");
1064 return -EINVAL;
1065 }
1066
1067 static struct target_type crypt_target = {
1068 .name = "crypt",
1069 .version= {1, 5, 0},
1070 .module = THIS_MODULE,
1071 .ctr = crypt_ctr,
1072 .dtr = crypt_dtr,
1073 .map = crypt_map,
1074 .status = crypt_status,
1075 .postsuspend = crypt_postsuspend,
1076 .preresume = crypt_preresume,
1077 .resume = crypt_resume,
1078 .message = crypt_message,
1079 };
1080
1081 static int __init dm_crypt_init(void)
1082 {
1083 int r;
1084
1085 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1086 if (!_crypt_io_pool)
1087 return -ENOMEM;
1088
1089 r = dm_register_target(&crypt_target);
1090 if (r < 0) {
1091 DMERR("register failed %d", r);
1092 kmem_cache_destroy(_crypt_io_pool);
1093 }
1094
1095 return r;
1096 }
1097
1098 static void __exit dm_crypt_exit(void)
1099 {
1100 int r = dm_unregister_target(&crypt_target);
1101
1102 if (r < 0)
1103 DMERR("unregister failed %d", r);
1104
1105 kmem_cache_destroy(_crypt_io_pool);
1106 }
1107
1108 module_init(dm_crypt_init);
1109 module_exit(dm_crypt_exit);
1110
1111 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1112 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1113 MODULE_LICENSE("GPL");
This page took 0.054031 seconds and 6 git commands to generate.