Merge tag 'stable/for-linus-3.19-rc4-tag' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/backing-dev.h>
22 #include <linux/atomic.h>
23 #include <linux/scatterlist.h>
24 #include <asm/page.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
29
30 #include <linux/device-mapper.h>
31
32 #define DM_MSG_PREFIX "crypt"
33
34 /*
35 * context holding the current state of a multi-part conversion
36 */
37 struct convert_context {
38 struct completion restart;
39 struct bio *bio_in;
40 struct bio *bio_out;
41 struct bvec_iter iter_in;
42 struct bvec_iter iter_out;
43 sector_t cc_sector;
44 atomic_t cc_pending;
45 struct ablkcipher_request *req;
46 };
47
48 /*
49 * per bio private data
50 */
51 struct dm_crypt_io {
52 struct crypt_config *cc;
53 struct bio *base_bio;
54 struct work_struct work;
55
56 struct convert_context ctx;
57
58 atomic_t io_pending;
59 int error;
60 sector_t sector;
61 struct dm_crypt_io *base_io;
62 } CRYPTO_MINALIGN_ATTR;
63
64 struct dm_crypt_request {
65 struct convert_context *ctx;
66 struct scatterlist sg_in;
67 struct scatterlist sg_out;
68 sector_t iv_sector;
69 };
70
71 struct crypt_config;
72
73 struct crypt_iv_operations {
74 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
75 const char *opts);
76 void (*dtr)(struct crypt_config *cc);
77 int (*init)(struct crypt_config *cc);
78 int (*wipe)(struct crypt_config *cc);
79 int (*generator)(struct crypt_config *cc, u8 *iv,
80 struct dm_crypt_request *dmreq);
81 int (*post)(struct crypt_config *cc, u8 *iv,
82 struct dm_crypt_request *dmreq);
83 };
84
85 struct iv_essiv_private {
86 struct crypto_hash *hash_tfm;
87 u8 *salt;
88 };
89
90 struct iv_benbi_private {
91 int shift;
92 };
93
94 #define LMK_SEED_SIZE 64 /* hash + 0 */
95 struct iv_lmk_private {
96 struct crypto_shash *hash_tfm;
97 u8 *seed;
98 };
99
100 #define TCW_WHITENING_SIZE 16
101 struct iv_tcw_private {
102 struct crypto_shash *crc32_tfm;
103 u8 *iv_seed;
104 u8 *whitening;
105 };
106
107 /*
108 * Crypt: maps a linear range of a block device
109 * and encrypts / decrypts at the same time.
110 */
111 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
112
113 /*
114 * The fields in here must be read only after initialization.
115 */
116 struct crypt_config {
117 struct dm_dev *dev;
118 sector_t start;
119
120 /*
121 * pool for per bio private data, crypto requests and
122 * encryption requeusts/buffer pages
123 */
124 mempool_t *io_pool;
125 mempool_t *req_pool;
126 mempool_t *page_pool;
127 struct bio_set *bs;
128
129 struct workqueue_struct *io_queue;
130 struct workqueue_struct *crypt_queue;
131
132 char *cipher;
133 char *cipher_string;
134
135 struct crypt_iv_operations *iv_gen_ops;
136 union {
137 struct iv_essiv_private essiv;
138 struct iv_benbi_private benbi;
139 struct iv_lmk_private lmk;
140 struct iv_tcw_private tcw;
141 } iv_gen_private;
142 sector_t iv_offset;
143 unsigned int iv_size;
144
145 /* ESSIV: struct crypto_cipher *essiv_tfm */
146 void *iv_private;
147 struct crypto_ablkcipher **tfms;
148 unsigned tfms_count;
149
150 /*
151 * Layout of each crypto request:
152 *
153 * struct ablkcipher_request
154 * context
155 * padding
156 * struct dm_crypt_request
157 * padding
158 * IV
159 *
160 * The padding is added so that dm_crypt_request and the IV are
161 * correctly aligned.
162 */
163 unsigned int dmreq_start;
164
165 unsigned int per_bio_data_size;
166
167 unsigned long flags;
168 unsigned int key_size;
169 unsigned int key_parts; /* independent parts in key buffer */
170 unsigned int key_extra_size; /* additional keys length */
171 u8 key[0];
172 };
173
174 #define MIN_IOS 16
175 #define MIN_POOL_PAGES 32
176
177 static struct kmem_cache *_crypt_io_pool;
178
179 static void clone_init(struct dm_crypt_io *, struct bio *);
180 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
181 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
182
183 /*
184 * Use this to access cipher attributes that are the same for each CPU.
185 */
186 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
187 {
188 return cc->tfms[0];
189 }
190
191 /*
192 * Different IV generation algorithms:
193 *
194 * plain: the initial vector is the 32-bit little-endian version of the sector
195 * number, padded with zeros if necessary.
196 *
197 * plain64: the initial vector is the 64-bit little-endian version of the sector
198 * number, padded with zeros if necessary.
199 *
200 * essiv: "encrypted sector|salt initial vector", the sector number is
201 * encrypted with the bulk cipher using a salt as key. The salt
202 * should be derived from the bulk cipher's key via hashing.
203 *
204 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
205 * (needed for LRW-32-AES and possible other narrow block modes)
206 *
207 * null: the initial vector is always zero. Provides compatibility with
208 * obsolete loop_fish2 devices. Do not use for new devices.
209 *
210 * lmk: Compatible implementation of the block chaining mode used
211 * by the Loop-AES block device encryption system
212 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
213 * It operates on full 512 byte sectors and uses CBC
214 * with an IV derived from the sector number, the data and
215 * optionally extra IV seed.
216 * This means that after decryption the first block
217 * of sector must be tweaked according to decrypted data.
218 * Loop-AES can use three encryption schemes:
219 * version 1: is plain aes-cbc mode
220 * version 2: uses 64 multikey scheme with lmk IV generator
221 * version 3: the same as version 2 with additional IV seed
222 * (it uses 65 keys, last key is used as IV seed)
223 *
224 * tcw: Compatible implementation of the block chaining mode used
225 * by the TrueCrypt device encryption system (prior to version 4.1).
226 * For more info see: http://www.truecrypt.org
227 * It operates on full 512 byte sectors and uses CBC
228 * with an IV derived from initial key and the sector number.
229 * In addition, whitening value is applied on every sector, whitening
230 * is calculated from initial key, sector number and mixed using CRC32.
231 * Note that this encryption scheme is vulnerable to watermarking attacks
232 * and should be used for old compatible containers access only.
233 *
234 * plumb: unimplemented, see:
235 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
236 */
237
238 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
239 struct dm_crypt_request *dmreq)
240 {
241 memset(iv, 0, cc->iv_size);
242 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
243
244 return 0;
245 }
246
247 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
248 struct dm_crypt_request *dmreq)
249 {
250 memset(iv, 0, cc->iv_size);
251 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
252
253 return 0;
254 }
255
256 /* Initialise ESSIV - compute salt but no local memory allocations */
257 static int crypt_iv_essiv_init(struct crypt_config *cc)
258 {
259 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
260 struct hash_desc desc;
261 struct scatterlist sg;
262 struct crypto_cipher *essiv_tfm;
263 int err;
264
265 sg_init_one(&sg, cc->key, cc->key_size);
266 desc.tfm = essiv->hash_tfm;
267 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
268
269 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
270 if (err)
271 return err;
272
273 essiv_tfm = cc->iv_private;
274
275 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
276 crypto_hash_digestsize(essiv->hash_tfm));
277 if (err)
278 return err;
279
280 return 0;
281 }
282
283 /* Wipe salt and reset key derived from volume key */
284 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
285 {
286 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
287 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
288 struct crypto_cipher *essiv_tfm;
289 int r, err = 0;
290
291 memset(essiv->salt, 0, salt_size);
292
293 essiv_tfm = cc->iv_private;
294 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
295 if (r)
296 err = r;
297
298 return err;
299 }
300
301 /* Set up per cpu cipher state */
302 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
303 struct dm_target *ti,
304 u8 *salt, unsigned saltsize)
305 {
306 struct crypto_cipher *essiv_tfm;
307 int err;
308
309 /* Setup the essiv_tfm with the given salt */
310 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
311 if (IS_ERR(essiv_tfm)) {
312 ti->error = "Error allocating crypto tfm for ESSIV";
313 return essiv_tfm;
314 }
315
316 if (crypto_cipher_blocksize(essiv_tfm) !=
317 crypto_ablkcipher_ivsize(any_tfm(cc))) {
318 ti->error = "Block size of ESSIV cipher does "
319 "not match IV size of block cipher";
320 crypto_free_cipher(essiv_tfm);
321 return ERR_PTR(-EINVAL);
322 }
323
324 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
325 if (err) {
326 ti->error = "Failed to set key for ESSIV cipher";
327 crypto_free_cipher(essiv_tfm);
328 return ERR_PTR(err);
329 }
330
331 return essiv_tfm;
332 }
333
334 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
335 {
336 struct crypto_cipher *essiv_tfm;
337 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
338
339 crypto_free_hash(essiv->hash_tfm);
340 essiv->hash_tfm = NULL;
341
342 kzfree(essiv->salt);
343 essiv->salt = NULL;
344
345 essiv_tfm = cc->iv_private;
346
347 if (essiv_tfm)
348 crypto_free_cipher(essiv_tfm);
349
350 cc->iv_private = NULL;
351 }
352
353 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
354 const char *opts)
355 {
356 struct crypto_cipher *essiv_tfm = NULL;
357 struct crypto_hash *hash_tfm = NULL;
358 u8 *salt = NULL;
359 int err;
360
361 if (!opts) {
362 ti->error = "Digest algorithm missing for ESSIV mode";
363 return -EINVAL;
364 }
365
366 /* Allocate hash algorithm */
367 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
368 if (IS_ERR(hash_tfm)) {
369 ti->error = "Error initializing ESSIV hash";
370 err = PTR_ERR(hash_tfm);
371 goto bad;
372 }
373
374 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
375 if (!salt) {
376 ti->error = "Error kmallocing salt storage in ESSIV";
377 err = -ENOMEM;
378 goto bad;
379 }
380
381 cc->iv_gen_private.essiv.salt = salt;
382 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
383
384 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
385 crypto_hash_digestsize(hash_tfm));
386 if (IS_ERR(essiv_tfm)) {
387 crypt_iv_essiv_dtr(cc);
388 return PTR_ERR(essiv_tfm);
389 }
390 cc->iv_private = essiv_tfm;
391
392 return 0;
393
394 bad:
395 if (hash_tfm && !IS_ERR(hash_tfm))
396 crypto_free_hash(hash_tfm);
397 kfree(salt);
398 return err;
399 }
400
401 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
402 struct dm_crypt_request *dmreq)
403 {
404 struct crypto_cipher *essiv_tfm = cc->iv_private;
405
406 memset(iv, 0, cc->iv_size);
407 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
408 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
409
410 return 0;
411 }
412
413 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
414 const char *opts)
415 {
416 unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
417 int log = ilog2(bs);
418
419 /* we need to calculate how far we must shift the sector count
420 * to get the cipher block count, we use this shift in _gen */
421
422 if (1 << log != bs) {
423 ti->error = "cypher blocksize is not a power of 2";
424 return -EINVAL;
425 }
426
427 if (log > 9) {
428 ti->error = "cypher blocksize is > 512";
429 return -EINVAL;
430 }
431
432 cc->iv_gen_private.benbi.shift = 9 - log;
433
434 return 0;
435 }
436
437 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
438 {
439 }
440
441 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
442 struct dm_crypt_request *dmreq)
443 {
444 __be64 val;
445
446 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
447
448 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
449 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
450
451 return 0;
452 }
453
454 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
455 struct dm_crypt_request *dmreq)
456 {
457 memset(iv, 0, cc->iv_size);
458
459 return 0;
460 }
461
462 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
463 {
464 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
465
466 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
467 crypto_free_shash(lmk->hash_tfm);
468 lmk->hash_tfm = NULL;
469
470 kzfree(lmk->seed);
471 lmk->seed = NULL;
472 }
473
474 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
475 const char *opts)
476 {
477 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
478
479 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
480 if (IS_ERR(lmk->hash_tfm)) {
481 ti->error = "Error initializing LMK hash";
482 return PTR_ERR(lmk->hash_tfm);
483 }
484
485 /* No seed in LMK version 2 */
486 if (cc->key_parts == cc->tfms_count) {
487 lmk->seed = NULL;
488 return 0;
489 }
490
491 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
492 if (!lmk->seed) {
493 crypt_iv_lmk_dtr(cc);
494 ti->error = "Error kmallocing seed storage in LMK";
495 return -ENOMEM;
496 }
497
498 return 0;
499 }
500
501 static int crypt_iv_lmk_init(struct crypt_config *cc)
502 {
503 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
504 int subkey_size = cc->key_size / cc->key_parts;
505
506 /* LMK seed is on the position of LMK_KEYS + 1 key */
507 if (lmk->seed)
508 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
509 crypto_shash_digestsize(lmk->hash_tfm));
510
511 return 0;
512 }
513
514 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
515 {
516 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
517
518 if (lmk->seed)
519 memset(lmk->seed, 0, LMK_SEED_SIZE);
520
521 return 0;
522 }
523
524 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
525 struct dm_crypt_request *dmreq,
526 u8 *data)
527 {
528 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
529 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
530 struct md5_state md5state;
531 __le32 buf[4];
532 int i, r;
533
534 desc->tfm = lmk->hash_tfm;
535 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
536
537 r = crypto_shash_init(desc);
538 if (r)
539 return r;
540
541 if (lmk->seed) {
542 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
543 if (r)
544 return r;
545 }
546
547 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
548 r = crypto_shash_update(desc, data + 16, 16 * 31);
549 if (r)
550 return r;
551
552 /* Sector is cropped to 56 bits here */
553 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
554 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
555 buf[2] = cpu_to_le32(4024);
556 buf[3] = 0;
557 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
558 if (r)
559 return r;
560
561 /* No MD5 padding here */
562 r = crypto_shash_export(desc, &md5state);
563 if (r)
564 return r;
565
566 for (i = 0; i < MD5_HASH_WORDS; i++)
567 __cpu_to_le32s(&md5state.hash[i]);
568 memcpy(iv, &md5state.hash, cc->iv_size);
569
570 return 0;
571 }
572
573 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
574 struct dm_crypt_request *dmreq)
575 {
576 u8 *src;
577 int r = 0;
578
579 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
580 src = kmap_atomic(sg_page(&dmreq->sg_in));
581 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
582 kunmap_atomic(src);
583 } else
584 memset(iv, 0, cc->iv_size);
585
586 return r;
587 }
588
589 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
590 struct dm_crypt_request *dmreq)
591 {
592 u8 *dst;
593 int r;
594
595 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
596 return 0;
597
598 dst = kmap_atomic(sg_page(&dmreq->sg_out));
599 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
600
601 /* Tweak the first block of plaintext sector */
602 if (!r)
603 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
604
605 kunmap_atomic(dst);
606 return r;
607 }
608
609 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
610 {
611 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
612
613 kzfree(tcw->iv_seed);
614 tcw->iv_seed = NULL;
615 kzfree(tcw->whitening);
616 tcw->whitening = NULL;
617
618 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
619 crypto_free_shash(tcw->crc32_tfm);
620 tcw->crc32_tfm = NULL;
621 }
622
623 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
624 const char *opts)
625 {
626 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
627
628 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
629 ti->error = "Wrong key size for TCW";
630 return -EINVAL;
631 }
632
633 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
634 if (IS_ERR(tcw->crc32_tfm)) {
635 ti->error = "Error initializing CRC32 in TCW";
636 return PTR_ERR(tcw->crc32_tfm);
637 }
638
639 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
640 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
641 if (!tcw->iv_seed || !tcw->whitening) {
642 crypt_iv_tcw_dtr(cc);
643 ti->error = "Error allocating seed storage in TCW";
644 return -ENOMEM;
645 }
646
647 return 0;
648 }
649
650 static int crypt_iv_tcw_init(struct crypt_config *cc)
651 {
652 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
653 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
654
655 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
656 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
657 TCW_WHITENING_SIZE);
658
659 return 0;
660 }
661
662 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
663 {
664 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
665
666 memset(tcw->iv_seed, 0, cc->iv_size);
667 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
668
669 return 0;
670 }
671
672 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
673 struct dm_crypt_request *dmreq,
674 u8 *data)
675 {
676 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
677 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
678 u8 buf[TCW_WHITENING_SIZE];
679 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
680 int i, r;
681
682 /* xor whitening with sector number */
683 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
684 crypto_xor(buf, (u8 *)&sector, 8);
685 crypto_xor(&buf[8], (u8 *)&sector, 8);
686
687 /* calculate crc32 for every 32bit part and xor it */
688 desc->tfm = tcw->crc32_tfm;
689 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
690 for (i = 0; i < 4; i++) {
691 r = crypto_shash_init(desc);
692 if (r)
693 goto out;
694 r = crypto_shash_update(desc, &buf[i * 4], 4);
695 if (r)
696 goto out;
697 r = crypto_shash_final(desc, &buf[i * 4]);
698 if (r)
699 goto out;
700 }
701 crypto_xor(&buf[0], &buf[12], 4);
702 crypto_xor(&buf[4], &buf[8], 4);
703
704 /* apply whitening (8 bytes) to whole sector */
705 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
706 crypto_xor(data + i * 8, buf, 8);
707 out:
708 memzero_explicit(buf, sizeof(buf));
709 return r;
710 }
711
712 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
713 struct dm_crypt_request *dmreq)
714 {
715 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
716 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
717 u8 *src;
718 int r = 0;
719
720 /* Remove whitening from ciphertext */
721 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
722 src = kmap_atomic(sg_page(&dmreq->sg_in));
723 r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
724 kunmap_atomic(src);
725 }
726
727 /* Calculate IV */
728 memcpy(iv, tcw->iv_seed, cc->iv_size);
729 crypto_xor(iv, (u8 *)&sector, 8);
730 if (cc->iv_size > 8)
731 crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
732
733 return r;
734 }
735
736 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
737 struct dm_crypt_request *dmreq)
738 {
739 u8 *dst;
740 int r;
741
742 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
743 return 0;
744
745 /* Apply whitening on ciphertext */
746 dst = kmap_atomic(sg_page(&dmreq->sg_out));
747 r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
748 kunmap_atomic(dst);
749
750 return r;
751 }
752
753 static struct crypt_iv_operations crypt_iv_plain_ops = {
754 .generator = crypt_iv_plain_gen
755 };
756
757 static struct crypt_iv_operations crypt_iv_plain64_ops = {
758 .generator = crypt_iv_plain64_gen
759 };
760
761 static struct crypt_iv_operations crypt_iv_essiv_ops = {
762 .ctr = crypt_iv_essiv_ctr,
763 .dtr = crypt_iv_essiv_dtr,
764 .init = crypt_iv_essiv_init,
765 .wipe = crypt_iv_essiv_wipe,
766 .generator = crypt_iv_essiv_gen
767 };
768
769 static struct crypt_iv_operations crypt_iv_benbi_ops = {
770 .ctr = crypt_iv_benbi_ctr,
771 .dtr = crypt_iv_benbi_dtr,
772 .generator = crypt_iv_benbi_gen
773 };
774
775 static struct crypt_iv_operations crypt_iv_null_ops = {
776 .generator = crypt_iv_null_gen
777 };
778
779 static struct crypt_iv_operations crypt_iv_lmk_ops = {
780 .ctr = crypt_iv_lmk_ctr,
781 .dtr = crypt_iv_lmk_dtr,
782 .init = crypt_iv_lmk_init,
783 .wipe = crypt_iv_lmk_wipe,
784 .generator = crypt_iv_lmk_gen,
785 .post = crypt_iv_lmk_post
786 };
787
788 static struct crypt_iv_operations crypt_iv_tcw_ops = {
789 .ctr = crypt_iv_tcw_ctr,
790 .dtr = crypt_iv_tcw_dtr,
791 .init = crypt_iv_tcw_init,
792 .wipe = crypt_iv_tcw_wipe,
793 .generator = crypt_iv_tcw_gen,
794 .post = crypt_iv_tcw_post
795 };
796
797 static void crypt_convert_init(struct crypt_config *cc,
798 struct convert_context *ctx,
799 struct bio *bio_out, struct bio *bio_in,
800 sector_t sector)
801 {
802 ctx->bio_in = bio_in;
803 ctx->bio_out = bio_out;
804 if (bio_in)
805 ctx->iter_in = bio_in->bi_iter;
806 if (bio_out)
807 ctx->iter_out = bio_out->bi_iter;
808 ctx->cc_sector = sector + cc->iv_offset;
809 init_completion(&ctx->restart);
810 }
811
812 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
813 struct ablkcipher_request *req)
814 {
815 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
816 }
817
818 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
819 struct dm_crypt_request *dmreq)
820 {
821 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
822 }
823
824 static u8 *iv_of_dmreq(struct crypt_config *cc,
825 struct dm_crypt_request *dmreq)
826 {
827 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
828 crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
829 }
830
831 static int crypt_convert_block(struct crypt_config *cc,
832 struct convert_context *ctx,
833 struct ablkcipher_request *req)
834 {
835 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
836 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
837 struct dm_crypt_request *dmreq;
838 u8 *iv;
839 int r;
840
841 dmreq = dmreq_of_req(cc, req);
842 iv = iv_of_dmreq(cc, dmreq);
843
844 dmreq->iv_sector = ctx->cc_sector;
845 dmreq->ctx = ctx;
846 sg_init_table(&dmreq->sg_in, 1);
847 sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
848 bv_in.bv_offset);
849
850 sg_init_table(&dmreq->sg_out, 1);
851 sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
852 bv_out.bv_offset);
853
854 bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
855 bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
856
857 if (cc->iv_gen_ops) {
858 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
859 if (r < 0)
860 return r;
861 }
862
863 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
864 1 << SECTOR_SHIFT, iv);
865
866 if (bio_data_dir(ctx->bio_in) == WRITE)
867 r = crypto_ablkcipher_encrypt(req);
868 else
869 r = crypto_ablkcipher_decrypt(req);
870
871 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
872 r = cc->iv_gen_ops->post(cc, iv, dmreq);
873
874 return r;
875 }
876
877 static void kcryptd_async_done(struct crypto_async_request *async_req,
878 int error);
879
880 static void crypt_alloc_req(struct crypt_config *cc,
881 struct convert_context *ctx)
882 {
883 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
884
885 if (!ctx->req)
886 ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
887
888 ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
889 ablkcipher_request_set_callback(ctx->req,
890 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
891 kcryptd_async_done, dmreq_of_req(cc, ctx->req));
892 }
893
894 static void crypt_free_req(struct crypt_config *cc,
895 struct ablkcipher_request *req, struct bio *base_bio)
896 {
897 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
898
899 if ((struct ablkcipher_request *)(io + 1) != req)
900 mempool_free(req, cc->req_pool);
901 }
902
903 /*
904 * Encrypt / decrypt data from one bio to another one (can be the same one)
905 */
906 static int crypt_convert(struct crypt_config *cc,
907 struct convert_context *ctx)
908 {
909 int r;
910
911 atomic_set(&ctx->cc_pending, 1);
912
913 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
914
915 crypt_alloc_req(cc, ctx);
916
917 atomic_inc(&ctx->cc_pending);
918
919 r = crypt_convert_block(cc, ctx, ctx->req);
920
921 switch (r) {
922 /* async */
923 case -EBUSY:
924 wait_for_completion(&ctx->restart);
925 reinit_completion(&ctx->restart);
926 /* fall through*/
927 case -EINPROGRESS:
928 ctx->req = NULL;
929 ctx->cc_sector++;
930 continue;
931
932 /* sync */
933 case 0:
934 atomic_dec(&ctx->cc_pending);
935 ctx->cc_sector++;
936 cond_resched();
937 continue;
938
939 /* error */
940 default:
941 atomic_dec(&ctx->cc_pending);
942 return r;
943 }
944 }
945
946 return 0;
947 }
948
949 /*
950 * Generate a new unfragmented bio with the given size
951 * This should never violate the device limitations
952 * May return a smaller bio when running out of pages, indicated by
953 * *out_of_pages set to 1.
954 */
955 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
956 unsigned *out_of_pages)
957 {
958 struct crypt_config *cc = io->cc;
959 struct bio *clone;
960 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
961 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
962 unsigned i, len;
963 struct page *page;
964
965 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
966 if (!clone)
967 return NULL;
968
969 clone_init(io, clone);
970 *out_of_pages = 0;
971
972 for (i = 0; i < nr_iovecs; i++) {
973 page = mempool_alloc(cc->page_pool, gfp_mask);
974 if (!page) {
975 *out_of_pages = 1;
976 break;
977 }
978
979 /*
980 * If additional pages cannot be allocated without waiting,
981 * return a partially-allocated bio. The caller will then try
982 * to allocate more bios while submitting this partial bio.
983 */
984 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
985
986 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
987
988 if (!bio_add_page(clone, page, len, 0)) {
989 mempool_free(page, cc->page_pool);
990 break;
991 }
992
993 size -= len;
994 }
995
996 if (!clone->bi_iter.bi_size) {
997 bio_put(clone);
998 return NULL;
999 }
1000
1001 return clone;
1002 }
1003
1004 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1005 {
1006 unsigned int i;
1007 struct bio_vec *bv;
1008
1009 bio_for_each_segment_all(bv, clone, i) {
1010 BUG_ON(!bv->bv_page);
1011 mempool_free(bv->bv_page, cc->page_pool);
1012 bv->bv_page = NULL;
1013 }
1014 }
1015
1016 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1017 struct bio *bio, sector_t sector)
1018 {
1019 io->cc = cc;
1020 io->base_bio = bio;
1021 io->sector = sector;
1022 io->error = 0;
1023 io->base_io = NULL;
1024 io->ctx.req = NULL;
1025 atomic_set(&io->io_pending, 0);
1026 }
1027
1028 static void crypt_inc_pending(struct dm_crypt_io *io)
1029 {
1030 atomic_inc(&io->io_pending);
1031 }
1032
1033 /*
1034 * One of the bios was finished. Check for completion of
1035 * the whole request and correctly clean up the buffer.
1036 * If base_io is set, wait for the last fragment to complete.
1037 */
1038 static void crypt_dec_pending(struct dm_crypt_io *io)
1039 {
1040 struct crypt_config *cc = io->cc;
1041 struct bio *base_bio = io->base_bio;
1042 struct dm_crypt_io *base_io = io->base_io;
1043 int error = io->error;
1044
1045 if (!atomic_dec_and_test(&io->io_pending))
1046 return;
1047
1048 if (io->ctx.req)
1049 crypt_free_req(cc, io->ctx.req, base_bio);
1050 if (io != dm_per_bio_data(base_bio, cc->per_bio_data_size))
1051 mempool_free(io, cc->io_pool);
1052
1053 if (likely(!base_io))
1054 bio_endio(base_bio, error);
1055 else {
1056 if (error && !base_io->error)
1057 base_io->error = error;
1058 crypt_dec_pending(base_io);
1059 }
1060 }
1061
1062 /*
1063 * kcryptd/kcryptd_io:
1064 *
1065 * Needed because it would be very unwise to do decryption in an
1066 * interrupt context.
1067 *
1068 * kcryptd performs the actual encryption or decryption.
1069 *
1070 * kcryptd_io performs the IO submission.
1071 *
1072 * They must be separated as otherwise the final stages could be
1073 * starved by new requests which can block in the first stages due
1074 * to memory allocation.
1075 *
1076 * The work is done per CPU global for all dm-crypt instances.
1077 * They should not depend on each other and do not block.
1078 */
1079 static void crypt_endio(struct bio *clone, int error)
1080 {
1081 struct dm_crypt_io *io = clone->bi_private;
1082 struct crypt_config *cc = io->cc;
1083 unsigned rw = bio_data_dir(clone);
1084
1085 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
1086 error = -EIO;
1087
1088 /*
1089 * free the processed pages
1090 */
1091 if (rw == WRITE)
1092 crypt_free_buffer_pages(cc, clone);
1093
1094 bio_put(clone);
1095
1096 if (rw == READ && !error) {
1097 kcryptd_queue_crypt(io);
1098 return;
1099 }
1100
1101 if (unlikely(error))
1102 io->error = error;
1103
1104 crypt_dec_pending(io);
1105 }
1106
1107 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1108 {
1109 struct crypt_config *cc = io->cc;
1110
1111 clone->bi_private = io;
1112 clone->bi_end_io = crypt_endio;
1113 clone->bi_bdev = cc->dev->bdev;
1114 clone->bi_rw = io->base_bio->bi_rw;
1115 }
1116
1117 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1118 {
1119 struct crypt_config *cc = io->cc;
1120 struct bio *base_bio = io->base_bio;
1121 struct bio *clone;
1122
1123 /*
1124 * The block layer might modify the bvec array, so always
1125 * copy the required bvecs because we need the original
1126 * one in order to decrypt the whole bio data *afterwards*.
1127 */
1128 clone = bio_clone_bioset(base_bio, gfp, cc->bs);
1129 if (!clone)
1130 return 1;
1131
1132 crypt_inc_pending(io);
1133
1134 clone_init(io, clone);
1135 clone->bi_iter.bi_sector = cc->start + io->sector;
1136
1137 generic_make_request(clone);
1138 return 0;
1139 }
1140
1141 static void kcryptd_io_write(struct dm_crypt_io *io)
1142 {
1143 struct bio *clone = io->ctx.bio_out;
1144 generic_make_request(clone);
1145 }
1146
1147 static void kcryptd_io(struct work_struct *work)
1148 {
1149 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1150
1151 if (bio_data_dir(io->base_bio) == READ) {
1152 crypt_inc_pending(io);
1153 if (kcryptd_io_read(io, GFP_NOIO))
1154 io->error = -ENOMEM;
1155 crypt_dec_pending(io);
1156 } else
1157 kcryptd_io_write(io);
1158 }
1159
1160 static void kcryptd_queue_io(struct dm_crypt_io *io)
1161 {
1162 struct crypt_config *cc = io->cc;
1163
1164 INIT_WORK(&io->work, kcryptd_io);
1165 queue_work(cc->io_queue, &io->work);
1166 }
1167
1168 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1169 {
1170 struct bio *clone = io->ctx.bio_out;
1171 struct crypt_config *cc = io->cc;
1172
1173 if (unlikely(io->error < 0)) {
1174 crypt_free_buffer_pages(cc, clone);
1175 bio_put(clone);
1176 crypt_dec_pending(io);
1177 return;
1178 }
1179
1180 /* crypt_convert should have filled the clone bio */
1181 BUG_ON(io->ctx.iter_out.bi_size);
1182
1183 clone->bi_iter.bi_sector = cc->start + io->sector;
1184
1185 if (async)
1186 kcryptd_queue_io(io);
1187 else
1188 generic_make_request(clone);
1189 }
1190
1191 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1192 {
1193 struct crypt_config *cc = io->cc;
1194 struct bio *clone;
1195 struct dm_crypt_io *new_io;
1196 int crypt_finished;
1197 unsigned out_of_pages = 0;
1198 unsigned remaining = io->base_bio->bi_iter.bi_size;
1199 sector_t sector = io->sector;
1200 int r;
1201
1202 /*
1203 * Prevent io from disappearing until this function completes.
1204 */
1205 crypt_inc_pending(io);
1206 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1207
1208 /*
1209 * The allocated buffers can be smaller than the whole bio,
1210 * so repeat the whole process until all the data can be handled.
1211 */
1212 while (remaining) {
1213 clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1214 if (unlikely(!clone)) {
1215 io->error = -ENOMEM;
1216 break;
1217 }
1218
1219 io->ctx.bio_out = clone;
1220 io->ctx.iter_out = clone->bi_iter;
1221
1222 remaining -= clone->bi_iter.bi_size;
1223 sector += bio_sectors(clone);
1224
1225 crypt_inc_pending(io);
1226
1227 r = crypt_convert(cc, &io->ctx);
1228 if (r < 0)
1229 io->error = -EIO;
1230
1231 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1232
1233 /* Encryption was already finished, submit io now */
1234 if (crypt_finished) {
1235 kcryptd_crypt_write_io_submit(io, 0);
1236
1237 /*
1238 * If there was an error, do not try next fragments.
1239 * For async, error is processed in async handler.
1240 */
1241 if (unlikely(r < 0))
1242 break;
1243
1244 io->sector = sector;
1245 }
1246
1247 /*
1248 * Out of memory -> run queues
1249 * But don't wait if split was due to the io size restriction
1250 */
1251 if (unlikely(out_of_pages))
1252 congestion_wait(BLK_RW_ASYNC, HZ/100);
1253
1254 /*
1255 * With async crypto it is unsafe to share the crypto context
1256 * between fragments, so switch to a new dm_crypt_io structure.
1257 */
1258 if (unlikely(!crypt_finished && remaining)) {
1259 new_io = mempool_alloc(cc->io_pool, GFP_NOIO);
1260 crypt_io_init(new_io, io->cc, io->base_bio, sector);
1261 crypt_inc_pending(new_io);
1262 crypt_convert_init(cc, &new_io->ctx, NULL,
1263 io->base_bio, sector);
1264 new_io->ctx.iter_in = io->ctx.iter_in;
1265
1266 /*
1267 * Fragments after the first use the base_io
1268 * pending count.
1269 */
1270 if (!io->base_io)
1271 new_io->base_io = io;
1272 else {
1273 new_io->base_io = io->base_io;
1274 crypt_inc_pending(io->base_io);
1275 crypt_dec_pending(io);
1276 }
1277
1278 io = new_io;
1279 }
1280 }
1281
1282 crypt_dec_pending(io);
1283 }
1284
1285 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1286 {
1287 crypt_dec_pending(io);
1288 }
1289
1290 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1291 {
1292 struct crypt_config *cc = io->cc;
1293 int r = 0;
1294
1295 crypt_inc_pending(io);
1296
1297 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1298 io->sector);
1299
1300 r = crypt_convert(cc, &io->ctx);
1301 if (r < 0)
1302 io->error = -EIO;
1303
1304 if (atomic_dec_and_test(&io->ctx.cc_pending))
1305 kcryptd_crypt_read_done(io);
1306
1307 crypt_dec_pending(io);
1308 }
1309
1310 static void kcryptd_async_done(struct crypto_async_request *async_req,
1311 int error)
1312 {
1313 struct dm_crypt_request *dmreq = async_req->data;
1314 struct convert_context *ctx = dmreq->ctx;
1315 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1316 struct crypt_config *cc = io->cc;
1317
1318 if (error == -EINPROGRESS) {
1319 complete(&ctx->restart);
1320 return;
1321 }
1322
1323 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1324 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1325
1326 if (error < 0)
1327 io->error = -EIO;
1328
1329 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1330
1331 if (!atomic_dec_and_test(&ctx->cc_pending))
1332 return;
1333
1334 if (bio_data_dir(io->base_bio) == READ)
1335 kcryptd_crypt_read_done(io);
1336 else
1337 kcryptd_crypt_write_io_submit(io, 1);
1338 }
1339
1340 static void kcryptd_crypt(struct work_struct *work)
1341 {
1342 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1343
1344 if (bio_data_dir(io->base_bio) == READ)
1345 kcryptd_crypt_read_convert(io);
1346 else
1347 kcryptd_crypt_write_convert(io);
1348 }
1349
1350 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1351 {
1352 struct crypt_config *cc = io->cc;
1353
1354 INIT_WORK(&io->work, kcryptd_crypt);
1355 queue_work(cc->crypt_queue, &io->work);
1356 }
1357
1358 /*
1359 * Decode key from its hex representation
1360 */
1361 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1362 {
1363 char buffer[3];
1364 unsigned int i;
1365
1366 buffer[2] = '\0';
1367
1368 for (i = 0; i < size; i++) {
1369 buffer[0] = *hex++;
1370 buffer[1] = *hex++;
1371
1372 if (kstrtou8(buffer, 16, &key[i]))
1373 return -EINVAL;
1374 }
1375
1376 if (*hex != '\0')
1377 return -EINVAL;
1378
1379 return 0;
1380 }
1381
1382 static void crypt_free_tfms(struct crypt_config *cc)
1383 {
1384 unsigned i;
1385
1386 if (!cc->tfms)
1387 return;
1388
1389 for (i = 0; i < cc->tfms_count; i++)
1390 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1391 crypto_free_ablkcipher(cc->tfms[i]);
1392 cc->tfms[i] = NULL;
1393 }
1394
1395 kfree(cc->tfms);
1396 cc->tfms = NULL;
1397 }
1398
1399 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1400 {
1401 unsigned i;
1402 int err;
1403
1404 cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1405 GFP_KERNEL);
1406 if (!cc->tfms)
1407 return -ENOMEM;
1408
1409 for (i = 0; i < cc->tfms_count; i++) {
1410 cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1411 if (IS_ERR(cc->tfms[i])) {
1412 err = PTR_ERR(cc->tfms[i]);
1413 crypt_free_tfms(cc);
1414 return err;
1415 }
1416 }
1417
1418 return 0;
1419 }
1420
1421 static int crypt_setkey_allcpus(struct crypt_config *cc)
1422 {
1423 unsigned subkey_size;
1424 int err = 0, i, r;
1425
1426 /* Ignore extra keys (which are used for IV etc) */
1427 subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1428
1429 for (i = 0; i < cc->tfms_count; i++) {
1430 r = crypto_ablkcipher_setkey(cc->tfms[i],
1431 cc->key + (i * subkey_size),
1432 subkey_size);
1433 if (r)
1434 err = r;
1435 }
1436
1437 return err;
1438 }
1439
1440 static int crypt_set_key(struct crypt_config *cc, char *key)
1441 {
1442 int r = -EINVAL;
1443 int key_string_len = strlen(key);
1444
1445 /* The key size may not be changed. */
1446 if (cc->key_size != (key_string_len >> 1))
1447 goto out;
1448
1449 /* Hyphen (which gives a key_size of zero) means there is no key. */
1450 if (!cc->key_size && strcmp(key, "-"))
1451 goto out;
1452
1453 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1454 goto out;
1455
1456 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1457
1458 r = crypt_setkey_allcpus(cc);
1459
1460 out:
1461 /* Hex key string not needed after here, so wipe it. */
1462 memset(key, '0', key_string_len);
1463
1464 return r;
1465 }
1466
1467 static int crypt_wipe_key(struct crypt_config *cc)
1468 {
1469 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1470 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1471
1472 return crypt_setkey_allcpus(cc);
1473 }
1474
1475 static void crypt_dtr(struct dm_target *ti)
1476 {
1477 struct crypt_config *cc = ti->private;
1478
1479 ti->private = NULL;
1480
1481 if (!cc)
1482 return;
1483
1484 if (cc->io_queue)
1485 destroy_workqueue(cc->io_queue);
1486 if (cc->crypt_queue)
1487 destroy_workqueue(cc->crypt_queue);
1488
1489 crypt_free_tfms(cc);
1490
1491 if (cc->bs)
1492 bioset_free(cc->bs);
1493
1494 if (cc->page_pool)
1495 mempool_destroy(cc->page_pool);
1496 if (cc->req_pool)
1497 mempool_destroy(cc->req_pool);
1498 if (cc->io_pool)
1499 mempool_destroy(cc->io_pool);
1500
1501 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1502 cc->iv_gen_ops->dtr(cc);
1503
1504 if (cc->dev)
1505 dm_put_device(ti, cc->dev);
1506
1507 kzfree(cc->cipher);
1508 kzfree(cc->cipher_string);
1509
1510 /* Must zero key material before freeing */
1511 kzfree(cc);
1512 }
1513
1514 static int crypt_ctr_cipher(struct dm_target *ti,
1515 char *cipher_in, char *key)
1516 {
1517 struct crypt_config *cc = ti->private;
1518 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1519 char *cipher_api = NULL;
1520 int ret = -EINVAL;
1521 char dummy;
1522
1523 /* Convert to crypto api definition? */
1524 if (strchr(cipher_in, '(')) {
1525 ti->error = "Bad cipher specification";
1526 return -EINVAL;
1527 }
1528
1529 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1530 if (!cc->cipher_string)
1531 goto bad_mem;
1532
1533 /*
1534 * Legacy dm-crypt cipher specification
1535 * cipher[:keycount]-mode-iv:ivopts
1536 */
1537 tmp = cipher_in;
1538 keycount = strsep(&tmp, "-");
1539 cipher = strsep(&keycount, ":");
1540
1541 if (!keycount)
1542 cc->tfms_count = 1;
1543 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1544 !is_power_of_2(cc->tfms_count)) {
1545 ti->error = "Bad cipher key count specification";
1546 return -EINVAL;
1547 }
1548 cc->key_parts = cc->tfms_count;
1549 cc->key_extra_size = 0;
1550
1551 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1552 if (!cc->cipher)
1553 goto bad_mem;
1554
1555 chainmode = strsep(&tmp, "-");
1556 ivopts = strsep(&tmp, "-");
1557 ivmode = strsep(&ivopts, ":");
1558
1559 if (tmp)
1560 DMWARN("Ignoring unexpected additional cipher options");
1561
1562 /*
1563 * For compatibility with the original dm-crypt mapping format, if
1564 * only the cipher name is supplied, use cbc-plain.
1565 */
1566 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1567 chainmode = "cbc";
1568 ivmode = "plain";
1569 }
1570
1571 if (strcmp(chainmode, "ecb") && !ivmode) {
1572 ti->error = "IV mechanism required";
1573 return -EINVAL;
1574 }
1575
1576 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1577 if (!cipher_api)
1578 goto bad_mem;
1579
1580 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1581 "%s(%s)", chainmode, cipher);
1582 if (ret < 0) {
1583 kfree(cipher_api);
1584 goto bad_mem;
1585 }
1586
1587 /* Allocate cipher */
1588 ret = crypt_alloc_tfms(cc, cipher_api);
1589 if (ret < 0) {
1590 ti->error = "Error allocating crypto tfm";
1591 goto bad;
1592 }
1593
1594 /* Initialize IV */
1595 cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1596 if (cc->iv_size)
1597 /* at least a 64 bit sector number should fit in our buffer */
1598 cc->iv_size = max(cc->iv_size,
1599 (unsigned int)(sizeof(u64) / sizeof(u8)));
1600 else if (ivmode) {
1601 DMWARN("Selected cipher does not support IVs");
1602 ivmode = NULL;
1603 }
1604
1605 /* Choose ivmode, see comments at iv code. */
1606 if (ivmode == NULL)
1607 cc->iv_gen_ops = NULL;
1608 else if (strcmp(ivmode, "plain") == 0)
1609 cc->iv_gen_ops = &crypt_iv_plain_ops;
1610 else if (strcmp(ivmode, "plain64") == 0)
1611 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1612 else if (strcmp(ivmode, "essiv") == 0)
1613 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1614 else if (strcmp(ivmode, "benbi") == 0)
1615 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1616 else if (strcmp(ivmode, "null") == 0)
1617 cc->iv_gen_ops = &crypt_iv_null_ops;
1618 else if (strcmp(ivmode, "lmk") == 0) {
1619 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1620 /*
1621 * Version 2 and 3 is recognised according
1622 * to length of provided multi-key string.
1623 * If present (version 3), last key is used as IV seed.
1624 * All keys (including IV seed) are always the same size.
1625 */
1626 if (cc->key_size % cc->key_parts) {
1627 cc->key_parts++;
1628 cc->key_extra_size = cc->key_size / cc->key_parts;
1629 }
1630 } else if (strcmp(ivmode, "tcw") == 0) {
1631 cc->iv_gen_ops = &crypt_iv_tcw_ops;
1632 cc->key_parts += 2; /* IV + whitening */
1633 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1634 } else {
1635 ret = -EINVAL;
1636 ti->error = "Invalid IV mode";
1637 goto bad;
1638 }
1639
1640 /* Initialize and set key */
1641 ret = crypt_set_key(cc, key);
1642 if (ret < 0) {
1643 ti->error = "Error decoding and setting key";
1644 goto bad;
1645 }
1646
1647 /* Allocate IV */
1648 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1649 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1650 if (ret < 0) {
1651 ti->error = "Error creating IV";
1652 goto bad;
1653 }
1654 }
1655
1656 /* Initialize IV (set keys for ESSIV etc) */
1657 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1658 ret = cc->iv_gen_ops->init(cc);
1659 if (ret < 0) {
1660 ti->error = "Error initialising IV";
1661 goto bad;
1662 }
1663 }
1664
1665 ret = 0;
1666 bad:
1667 kfree(cipher_api);
1668 return ret;
1669
1670 bad_mem:
1671 ti->error = "Cannot allocate cipher strings";
1672 return -ENOMEM;
1673 }
1674
1675 /*
1676 * Construct an encryption mapping:
1677 * <cipher> <key> <iv_offset> <dev_path> <start>
1678 */
1679 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1680 {
1681 struct crypt_config *cc;
1682 unsigned int key_size, opt_params;
1683 unsigned long long tmpll;
1684 int ret;
1685 size_t iv_size_padding;
1686 struct dm_arg_set as;
1687 const char *opt_string;
1688 char dummy;
1689
1690 static struct dm_arg _args[] = {
1691 {0, 1, "Invalid number of feature args"},
1692 };
1693
1694 if (argc < 5) {
1695 ti->error = "Not enough arguments";
1696 return -EINVAL;
1697 }
1698
1699 key_size = strlen(argv[1]) >> 1;
1700
1701 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1702 if (!cc) {
1703 ti->error = "Cannot allocate encryption context";
1704 return -ENOMEM;
1705 }
1706 cc->key_size = key_size;
1707
1708 ti->private = cc;
1709 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1710 if (ret < 0)
1711 goto bad;
1712
1713 ret = -ENOMEM;
1714 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1715 if (!cc->io_pool) {
1716 ti->error = "Cannot allocate crypt io mempool";
1717 goto bad;
1718 }
1719
1720 cc->dmreq_start = sizeof(struct ablkcipher_request);
1721 cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1722 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1723
1724 if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1725 /* Allocate the padding exactly */
1726 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1727 & crypto_ablkcipher_alignmask(any_tfm(cc));
1728 } else {
1729 /*
1730 * If the cipher requires greater alignment than kmalloc
1731 * alignment, we don't know the exact position of the
1732 * initialization vector. We must assume worst case.
1733 */
1734 iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc));
1735 }
1736
1737 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1738 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1739 if (!cc->req_pool) {
1740 ti->error = "Cannot allocate crypt request mempool";
1741 goto bad;
1742 }
1743
1744 cc->per_bio_data_size = ti->per_bio_data_size =
1745 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1746 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1747 ARCH_KMALLOC_MINALIGN);
1748
1749 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1750 if (!cc->page_pool) {
1751 ti->error = "Cannot allocate page mempool";
1752 goto bad;
1753 }
1754
1755 cc->bs = bioset_create(MIN_IOS, 0);
1756 if (!cc->bs) {
1757 ti->error = "Cannot allocate crypt bioset";
1758 goto bad;
1759 }
1760
1761 ret = -EINVAL;
1762 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1763 ti->error = "Invalid iv_offset sector";
1764 goto bad;
1765 }
1766 cc->iv_offset = tmpll;
1767
1768 if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1769 ti->error = "Device lookup failed";
1770 goto bad;
1771 }
1772
1773 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1774 ti->error = "Invalid device sector";
1775 goto bad;
1776 }
1777 cc->start = tmpll;
1778
1779 argv += 5;
1780 argc -= 5;
1781
1782 /* Optional parameters */
1783 if (argc) {
1784 as.argc = argc;
1785 as.argv = argv;
1786
1787 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1788 if (ret)
1789 goto bad;
1790
1791 opt_string = dm_shift_arg(&as);
1792
1793 if (opt_params == 1 && opt_string &&
1794 !strcasecmp(opt_string, "allow_discards"))
1795 ti->num_discard_bios = 1;
1796 else if (opt_params) {
1797 ret = -EINVAL;
1798 ti->error = "Invalid feature arguments";
1799 goto bad;
1800 }
1801 }
1802
1803 ret = -ENOMEM;
1804 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1805 if (!cc->io_queue) {
1806 ti->error = "Couldn't create kcryptd io queue";
1807 goto bad;
1808 }
1809
1810 cc->crypt_queue = alloc_workqueue("kcryptd",
1811 WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1812 if (!cc->crypt_queue) {
1813 ti->error = "Couldn't create kcryptd queue";
1814 goto bad;
1815 }
1816
1817 ti->num_flush_bios = 1;
1818 ti->discard_zeroes_data_unsupported = true;
1819
1820 return 0;
1821
1822 bad:
1823 crypt_dtr(ti);
1824 return ret;
1825 }
1826
1827 static int crypt_map(struct dm_target *ti, struct bio *bio)
1828 {
1829 struct dm_crypt_io *io;
1830 struct crypt_config *cc = ti->private;
1831
1832 /*
1833 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1834 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1835 * - for REQ_DISCARD caller must use flush if IO ordering matters
1836 */
1837 if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1838 bio->bi_bdev = cc->dev->bdev;
1839 if (bio_sectors(bio))
1840 bio->bi_iter.bi_sector = cc->start +
1841 dm_target_offset(ti, bio->bi_iter.bi_sector);
1842 return DM_MAPIO_REMAPPED;
1843 }
1844
1845 io = dm_per_bio_data(bio, cc->per_bio_data_size);
1846 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1847 io->ctx.req = (struct ablkcipher_request *)(io + 1);
1848
1849 if (bio_data_dir(io->base_bio) == READ) {
1850 if (kcryptd_io_read(io, GFP_NOWAIT))
1851 kcryptd_queue_io(io);
1852 } else
1853 kcryptd_queue_crypt(io);
1854
1855 return DM_MAPIO_SUBMITTED;
1856 }
1857
1858 static void crypt_status(struct dm_target *ti, status_type_t type,
1859 unsigned status_flags, char *result, unsigned maxlen)
1860 {
1861 struct crypt_config *cc = ti->private;
1862 unsigned i, sz = 0;
1863
1864 switch (type) {
1865 case STATUSTYPE_INFO:
1866 result[0] = '\0';
1867 break;
1868
1869 case STATUSTYPE_TABLE:
1870 DMEMIT("%s ", cc->cipher_string);
1871
1872 if (cc->key_size > 0)
1873 for (i = 0; i < cc->key_size; i++)
1874 DMEMIT("%02x", cc->key[i]);
1875 else
1876 DMEMIT("-");
1877
1878 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1879 cc->dev->name, (unsigned long long)cc->start);
1880
1881 if (ti->num_discard_bios)
1882 DMEMIT(" 1 allow_discards");
1883
1884 break;
1885 }
1886 }
1887
1888 static void crypt_postsuspend(struct dm_target *ti)
1889 {
1890 struct crypt_config *cc = ti->private;
1891
1892 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1893 }
1894
1895 static int crypt_preresume(struct dm_target *ti)
1896 {
1897 struct crypt_config *cc = ti->private;
1898
1899 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1900 DMERR("aborting resume - crypt key is not set.");
1901 return -EAGAIN;
1902 }
1903
1904 return 0;
1905 }
1906
1907 static void crypt_resume(struct dm_target *ti)
1908 {
1909 struct crypt_config *cc = ti->private;
1910
1911 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1912 }
1913
1914 /* Message interface
1915 * key set <key>
1916 * key wipe
1917 */
1918 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1919 {
1920 struct crypt_config *cc = ti->private;
1921 int ret = -EINVAL;
1922
1923 if (argc < 2)
1924 goto error;
1925
1926 if (!strcasecmp(argv[0], "key")) {
1927 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1928 DMWARN("not suspended during key manipulation.");
1929 return -EINVAL;
1930 }
1931 if (argc == 3 && !strcasecmp(argv[1], "set")) {
1932 ret = crypt_set_key(cc, argv[2]);
1933 if (ret)
1934 return ret;
1935 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1936 ret = cc->iv_gen_ops->init(cc);
1937 return ret;
1938 }
1939 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1940 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1941 ret = cc->iv_gen_ops->wipe(cc);
1942 if (ret)
1943 return ret;
1944 }
1945 return crypt_wipe_key(cc);
1946 }
1947 }
1948
1949 error:
1950 DMWARN("unrecognised message received.");
1951 return -EINVAL;
1952 }
1953
1954 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1955 struct bio_vec *biovec, int max_size)
1956 {
1957 struct crypt_config *cc = ti->private;
1958 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1959
1960 if (!q->merge_bvec_fn)
1961 return max_size;
1962
1963 bvm->bi_bdev = cc->dev->bdev;
1964 bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1965
1966 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1967 }
1968
1969 static int crypt_iterate_devices(struct dm_target *ti,
1970 iterate_devices_callout_fn fn, void *data)
1971 {
1972 struct crypt_config *cc = ti->private;
1973
1974 return fn(ti, cc->dev, cc->start, ti->len, data);
1975 }
1976
1977 static struct target_type crypt_target = {
1978 .name = "crypt",
1979 .version = {1, 13, 0},
1980 .module = THIS_MODULE,
1981 .ctr = crypt_ctr,
1982 .dtr = crypt_dtr,
1983 .map = crypt_map,
1984 .status = crypt_status,
1985 .postsuspend = crypt_postsuspend,
1986 .preresume = crypt_preresume,
1987 .resume = crypt_resume,
1988 .message = crypt_message,
1989 .merge = crypt_merge,
1990 .iterate_devices = crypt_iterate_devices,
1991 };
1992
1993 static int __init dm_crypt_init(void)
1994 {
1995 int r;
1996
1997 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1998 if (!_crypt_io_pool)
1999 return -ENOMEM;
2000
2001 r = dm_register_target(&crypt_target);
2002 if (r < 0) {
2003 DMERR("register failed %d", r);
2004 kmem_cache_destroy(_crypt_io_pool);
2005 }
2006
2007 return r;
2008 }
2009
2010 static void __exit dm_crypt_exit(void)
2011 {
2012 dm_unregister_target(&crypt_target);
2013 kmem_cache_destroy(_crypt_io_pool);
2014 }
2015
2016 module_init(dm_crypt_init);
2017 module_exit(dm_crypt_exit);
2018
2019 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2020 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2021 MODULE_LICENSE("GPL");
This page took 0.092427 seconds and 6 git commands to generate.