Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[deliverable/linux.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
22 #include <asm/page.h>
23 #include <asm/unaligned.h>
24
25 #include "dm.h"
26
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
29
30 /*
31 * per bio private data
32 */
33 struct dm_crypt_io {
34 struct dm_target *target;
35 struct bio *base_bio;
36 struct work_struct work;
37 atomic_t pending;
38 int error;
39 int post_process;
40 };
41
42 /*
43 * context holding the current state of a multi-part conversion
44 */
45 struct convert_context {
46 struct bio *bio_in;
47 struct bio *bio_out;
48 unsigned int offset_in;
49 unsigned int offset_out;
50 unsigned int idx_in;
51 unsigned int idx_out;
52 sector_t sector;
53 int write;
54 };
55
56 struct crypt_config;
57
58 struct crypt_iv_operations {
59 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
60 const char *opts);
61 void (*dtr)(struct crypt_config *cc);
62 const char *(*status)(struct crypt_config *cc);
63 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
64 };
65
66 /*
67 * Crypt: maps a linear range of a block device
68 * and encrypts / decrypts at the same time.
69 */
70 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
71 struct crypt_config {
72 struct dm_dev *dev;
73 sector_t start;
74
75 /*
76 * pool for per bio private data and
77 * for encryption buffer pages
78 */
79 mempool_t *io_pool;
80 mempool_t *page_pool;
81 struct bio_set *bs;
82
83 /*
84 * crypto related data
85 */
86 struct crypt_iv_operations *iv_gen_ops;
87 char *iv_mode;
88 union {
89 struct crypto_cipher *essiv_tfm;
90 int benbi_shift;
91 } iv_gen_private;
92 sector_t iv_offset;
93 unsigned int iv_size;
94
95 char cipher[CRYPTO_MAX_ALG_NAME];
96 char chainmode[CRYPTO_MAX_ALG_NAME];
97 struct crypto_blkcipher *tfm;
98 unsigned long flags;
99 unsigned int key_size;
100 u8 key[0];
101 };
102
103 #define MIN_IOS 16
104 #define MIN_POOL_PAGES 32
105 #define MIN_BIO_PAGES 8
106
107 static struct kmem_cache *_crypt_io_pool;
108
109 static void clone_init(struct dm_crypt_io *, struct bio *);
110
111 /*
112 * Different IV generation algorithms:
113 *
114 * plain: the initial vector is the 32-bit little-endian version of the sector
115 * number, padded with zeros if neccessary.
116 *
117 * essiv: "encrypted sector|salt initial vector", the sector number is
118 * encrypted with the bulk cipher using a salt as key. The salt
119 * should be derived from the bulk cipher's key via hashing.
120 *
121 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
122 * (needed for LRW-32-AES and possible other narrow block modes)
123 *
124 * null: the initial vector is always zero. Provides compatibility with
125 * obsolete loop_fish2 devices. Do not use for new devices.
126 *
127 * plumb: unimplemented, see:
128 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
129 */
130
131 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
132 {
133 memset(iv, 0, cc->iv_size);
134 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
135
136 return 0;
137 }
138
139 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
140 const char *opts)
141 {
142 struct crypto_cipher *essiv_tfm;
143 struct crypto_hash *hash_tfm;
144 struct hash_desc desc;
145 struct scatterlist sg;
146 unsigned int saltsize;
147 u8 *salt;
148 int err;
149
150 if (opts == NULL) {
151 ti->error = "Digest algorithm missing for ESSIV mode";
152 return -EINVAL;
153 }
154
155 /* Hash the cipher key with the given hash algorithm */
156 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
157 if (IS_ERR(hash_tfm)) {
158 ti->error = "Error initializing ESSIV hash";
159 return PTR_ERR(hash_tfm);
160 }
161
162 saltsize = crypto_hash_digestsize(hash_tfm);
163 salt = kmalloc(saltsize, GFP_KERNEL);
164 if (salt == NULL) {
165 ti->error = "Error kmallocing salt storage in ESSIV";
166 crypto_free_hash(hash_tfm);
167 return -ENOMEM;
168 }
169
170 sg_set_buf(&sg, cc->key, cc->key_size);
171 desc.tfm = hash_tfm;
172 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
173 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
174 crypto_free_hash(hash_tfm);
175
176 if (err) {
177 ti->error = "Error calculating hash in ESSIV";
178 return err;
179 }
180
181 /* Setup the essiv_tfm with the given salt */
182 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
183 if (IS_ERR(essiv_tfm)) {
184 ti->error = "Error allocating crypto tfm for ESSIV";
185 kfree(salt);
186 return PTR_ERR(essiv_tfm);
187 }
188 if (crypto_cipher_blocksize(essiv_tfm) !=
189 crypto_blkcipher_ivsize(cc->tfm)) {
190 ti->error = "Block size of ESSIV cipher does "
191 "not match IV size of block cipher";
192 crypto_free_cipher(essiv_tfm);
193 kfree(salt);
194 return -EINVAL;
195 }
196 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
197 if (err) {
198 ti->error = "Failed to set key for ESSIV cipher";
199 crypto_free_cipher(essiv_tfm);
200 kfree(salt);
201 return err;
202 }
203 kfree(salt);
204
205 cc->iv_gen_private.essiv_tfm = essiv_tfm;
206 return 0;
207 }
208
209 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
210 {
211 crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
212 cc->iv_gen_private.essiv_tfm = NULL;
213 }
214
215 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
216 {
217 memset(iv, 0, cc->iv_size);
218 *(u64 *)iv = cpu_to_le64(sector);
219 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
220 return 0;
221 }
222
223 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
224 const char *opts)
225 {
226 unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
227 int log = ilog2(bs);
228
229 /* we need to calculate how far we must shift the sector count
230 * to get the cipher block count, we use this shift in _gen */
231
232 if (1 << log != bs) {
233 ti->error = "cypher blocksize is not a power of 2";
234 return -EINVAL;
235 }
236
237 if (log > 9) {
238 ti->error = "cypher blocksize is > 512";
239 return -EINVAL;
240 }
241
242 cc->iv_gen_private.benbi_shift = 9 - log;
243
244 return 0;
245 }
246
247 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
248 {
249 }
250
251 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
252 {
253 __be64 val;
254
255 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
256
257 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
258 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
259
260 return 0;
261 }
262
263 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
264 {
265 memset(iv, 0, cc->iv_size);
266
267 return 0;
268 }
269
270 static struct crypt_iv_operations crypt_iv_plain_ops = {
271 .generator = crypt_iv_plain_gen
272 };
273
274 static struct crypt_iv_operations crypt_iv_essiv_ops = {
275 .ctr = crypt_iv_essiv_ctr,
276 .dtr = crypt_iv_essiv_dtr,
277 .generator = crypt_iv_essiv_gen
278 };
279
280 static struct crypt_iv_operations crypt_iv_benbi_ops = {
281 .ctr = crypt_iv_benbi_ctr,
282 .dtr = crypt_iv_benbi_dtr,
283 .generator = crypt_iv_benbi_gen
284 };
285
286 static struct crypt_iv_operations crypt_iv_null_ops = {
287 .generator = crypt_iv_null_gen
288 };
289
290 static int
291 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
292 struct scatterlist *in, unsigned int length,
293 int write, sector_t sector)
294 {
295 u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
296 struct blkcipher_desc desc = {
297 .tfm = cc->tfm,
298 .info = iv,
299 .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
300 };
301 int r;
302
303 if (cc->iv_gen_ops) {
304 r = cc->iv_gen_ops->generator(cc, iv, sector);
305 if (r < 0)
306 return r;
307
308 if (write)
309 r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
310 else
311 r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
312 } else {
313 if (write)
314 r = crypto_blkcipher_encrypt(&desc, out, in, length);
315 else
316 r = crypto_blkcipher_decrypt(&desc, out, in, length);
317 }
318
319 return r;
320 }
321
322 static void
323 crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
324 struct bio *bio_out, struct bio *bio_in,
325 sector_t sector, int write)
326 {
327 ctx->bio_in = bio_in;
328 ctx->bio_out = bio_out;
329 ctx->offset_in = 0;
330 ctx->offset_out = 0;
331 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
332 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
333 ctx->sector = sector + cc->iv_offset;
334 ctx->write = write;
335 }
336
337 /*
338 * Encrypt / decrypt data from one bio to another one (can be the same one)
339 */
340 static int crypt_convert(struct crypt_config *cc,
341 struct convert_context *ctx)
342 {
343 int r = 0;
344
345 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
346 ctx->idx_out < ctx->bio_out->bi_vcnt) {
347 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
348 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
349 struct scatterlist sg_in = {
350 .page = bv_in->bv_page,
351 .offset = bv_in->bv_offset + ctx->offset_in,
352 .length = 1 << SECTOR_SHIFT
353 };
354 struct scatterlist sg_out = {
355 .page = bv_out->bv_page,
356 .offset = bv_out->bv_offset + ctx->offset_out,
357 .length = 1 << SECTOR_SHIFT
358 };
359
360 ctx->offset_in += sg_in.length;
361 if (ctx->offset_in >= bv_in->bv_len) {
362 ctx->offset_in = 0;
363 ctx->idx_in++;
364 }
365
366 ctx->offset_out += sg_out.length;
367 if (ctx->offset_out >= bv_out->bv_len) {
368 ctx->offset_out = 0;
369 ctx->idx_out++;
370 }
371
372 r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
373 ctx->write, ctx->sector);
374 if (r < 0)
375 break;
376
377 ctx->sector++;
378 }
379
380 return r;
381 }
382
383 static void dm_crypt_bio_destructor(struct bio *bio)
384 {
385 struct dm_crypt_io *io = bio->bi_private;
386 struct crypt_config *cc = io->target->private;
387
388 bio_free(bio, cc->bs);
389 }
390
391 /*
392 * Generate a new unfragmented bio with the given size
393 * This should never violate the device limitations
394 * May return a smaller bio when running out of pages
395 */
396 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
397 {
398 struct crypt_config *cc = io->target->private;
399 struct bio *clone;
400 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
401 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
402 unsigned int i;
403
404 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
405 if (!clone)
406 return NULL;
407
408 clone_init(io, clone);
409
410 for (i = 0; i < nr_iovecs; i++) {
411 struct bio_vec *bv = bio_iovec_idx(clone, i);
412
413 bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
414 if (!bv->bv_page)
415 break;
416
417 /*
418 * if additional pages cannot be allocated without waiting,
419 * return a partially allocated bio, the caller will then try
420 * to allocate additional bios while submitting this partial bio
421 */
422 if (i == (MIN_BIO_PAGES - 1))
423 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
424
425 bv->bv_offset = 0;
426 if (size > PAGE_SIZE)
427 bv->bv_len = PAGE_SIZE;
428 else
429 bv->bv_len = size;
430
431 clone->bi_size += bv->bv_len;
432 clone->bi_vcnt++;
433 size -= bv->bv_len;
434 }
435
436 if (!clone->bi_size) {
437 bio_put(clone);
438 return NULL;
439 }
440
441 return clone;
442 }
443
444 static void crypt_free_buffer_pages(struct crypt_config *cc,
445 struct bio *clone, unsigned int bytes)
446 {
447 unsigned int i, start, end;
448 struct bio_vec *bv;
449
450 /*
451 * This is ugly, but Jens Axboe thinks that using bi_idx in the
452 * endio function is too dangerous at the moment, so I calculate the
453 * correct position using bi_vcnt and bi_size.
454 * The bv_offset and bv_len fields might already be modified but we
455 * know that we always allocated whole pages.
456 * A fix to the bi_idx issue in the kernel is in the works, so
457 * we will hopefully be able to revert to the cleaner solution soon.
458 */
459 i = clone->bi_vcnt - 1;
460 bv = bio_iovec_idx(clone, i);
461 end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - clone->bi_size;
462 start = end - bytes;
463
464 start >>= PAGE_SHIFT;
465 if (!clone->bi_size)
466 end = clone->bi_vcnt;
467 else
468 end >>= PAGE_SHIFT;
469
470 for (i = start; i < end; i++) {
471 bv = bio_iovec_idx(clone, i);
472 BUG_ON(!bv->bv_page);
473 mempool_free(bv->bv_page, cc->page_pool);
474 bv->bv_page = NULL;
475 }
476 }
477
478 /*
479 * One of the bios was finished. Check for completion of
480 * the whole request and correctly clean up the buffer.
481 */
482 static void dec_pending(struct dm_crypt_io *io, int error)
483 {
484 struct crypt_config *cc = (struct crypt_config *) io->target->private;
485
486 if (error < 0)
487 io->error = error;
488
489 if (!atomic_dec_and_test(&io->pending))
490 return;
491
492 bio_endio(io->base_bio, io->base_bio->bi_size, io->error);
493
494 mempool_free(io, cc->io_pool);
495 }
496
497 /*
498 * kcryptd:
499 *
500 * Needed because it would be very unwise to do decryption in an
501 * interrupt context.
502 */
503 static struct workqueue_struct *_kcryptd_workqueue;
504 static void kcryptd_do_work(struct work_struct *work);
505
506 static void kcryptd_queue_io(struct dm_crypt_io *io)
507 {
508 INIT_WORK(&io->work, kcryptd_do_work);
509 queue_work(_kcryptd_workqueue, &io->work);
510 }
511
512 static int crypt_endio(struct bio *clone, unsigned int done, int error)
513 {
514 struct dm_crypt_io *io = clone->bi_private;
515 struct crypt_config *cc = io->target->private;
516 unsigned read_io = bio_data_dir(clone) == READ;
517
518 /*
519 * free the processed pages, even if
520 * it's only a partially completed write
521 */
522 if (!read_io)
523 crypt_free_buffer_pages(cc, clone, done);
524
525 /* keep going - not finished yet */
526 if (unlikely(clone->bi_size))
527 return 1;
528
529 if (!read_io)
530 goto out;
531
532 if (unlikely(!bio_flagged(clone, BIO_UPTODATE))) {
533 error = -EIO;
534 goto out;
535 }
536
537 bio_put(clone);
538 io->post_process = 1;
539 kcryptd_queue_io(io);
540 return 0;
541
542 out:
543 bio_put(clone);
544 dec_pending(io, error);
545 return error;
546 }
547
548 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
549 {
550 struct crypt_config *cc = io->target->private;
551
552 clone->bi_private = io;
553 clone->bi_end_io = crypt_endio;
554 clone->bi_bdev = cc->dev->bdev;
555 clone->bi_rw = io->base_bio->bi_rw;
556 clone->bi_destructor = dm_crypt_bio_destructor;
557 }
558
559 static void process_read(struct dm_crypt_io *io)
560 {
561 struct crypt_config *cc = io->target->private;
562 struct bio *base_bio = io->base_bio;
563 struct bio *clone;
564 sector_t sector = base_bio->bi_sector - io->target->begin;
565
566 atomic_inc(&io->pending);
567
568 /*
569 * The block layer might modify the bvec array, so always
570 * copy the required bvecs because we need the original
571 * one in order to decrypt the whole bio data *afterwards*.
572 */
573 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
574 if (unlikely(!clone)) {
575 dec_pending(io, -ENOMEM);
576 return;
577 }
578
579 clone_init(io, clone);
580 clone->bi_idx = 0;
581 clone->bi_vcnt = bio_segments(base_bio);
582 clone->bi_size = base_bio->bi_size;
583 clone->bi_sector = cc->start + sector;
584 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
585 sizeof(struct bio_vec) * clone->bi_vcnt);
586
587 generic_make_request(clone);
588 }
589
590 static void process_write(struct dm_crypt_io *io)
591 {
592 struct crypt_config *cc = io->target->private;
593 struct bio *base_bio = io->base_bio;
594 struct bio *clone;
595 struct convert_context ctx;
596 unsigned remaining = base_bio->bi_size;
597 sector_t sector = base_bio->bi_sector - io->target->begin;
598
599 atomic_inc(&io->pending);
600
601 crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1);
602
603 /*
604 * The allocated buffers can be smaller than the whole bio,
605 * so repeat the whole process until all the data can be handled.
606 */
607 while (remaining) {
608 clone = crypt_alloc_buffer(io, remaining);
609 if (unlikely(!clone)) {
610 dec_pending(io, -ENOMEM);
611 return;
612 }
613
614 ctx.bio_out = clone;
615 ctx.idx_out = 0;
616
617 if (unlikely(crypt_convert(cc, &ctx) < 0)) {
618 crypt_free_buffer_pages(cc, clone, clone->bi_size);
619 bio_put(clone);
620 dec_pending(io, -EIO);
621 return;
622 }
623
624 /* crypt_convert should have filled the clone bio */
625 BUG_ON(ctx.idx_out < clone->bi_vcnt);
626
627 clone->bi_sector = cc->start + sector;
628 remaining -= clone->bi_size;
629 sector += bio_sectors(clone);
630
631 /* Grab another reference to the io struct
632 * before we kick off the request */
633 if (remaining)
634 atomic_inc(&io->pending);
635
636 generic_make_request(clone);
637
638 /* Do not reference clone after this - it
639 * may be gone already. */
640
641 /* out of memory -> run queues */
642 if (remaining)
643 congestion_wait(WRITE, HZ/100);
644 }
645 }
646
647 static void process_read_endio(struct dm_crypt_io *io)
648 {
649 struct crypt_config *cc = io->target->private;
650 struct convert_context ctx;
651
652 crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
653 io->base_bio->bi_sector - io->target->begin, 0);
654
655 dec_pending(io, crypt_convert(cc, &ctx));
656 }
657
658 static void kcryptd_do_work(struct work_struct *work)
659 {
660 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
661
662 if (io->post_process)
663 process_read_endio(io);
664 else if (bio_data_dir(io->base_bio) == READ)
665 process_read(io);
666 else
667 process_write(io);
668 }
669
670 /*
671 * Decode key from its hex representation
672 */
673 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
674 {
675 char buffer[3];
676 char *endp;
677 unsigned int i;
678
679 buffer[2] = '\0';
680
681 for (i = 0; i < size; i++) {
682 buffer[0] = *hex++;
683 buffer[1] = *hex++;
684
685 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
686
687 if (endp != &buffer[2])
688 return -EINVAL;
689 }
690
691 if (*hex != '\0')
692 return -EINVAL;
693
694 return 0;
695 }
696
697 /*
698 * Encode key into its hex representation
699 */
700 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
701 {
702 unsigned int i;
703
704 for (i = 0; i < size; i++) {
705 sprintf(hex, "%02x", *key);
706 hex += 2;
707 key++;
708 }
709 }
710
711 static int crypt_set_key(struct crypt_config *cc, char *key)
712 {
713 unsigned key_size = strlen(key) >> 1;
714
715 if (cc->key_size && cc->key_size != key_size)
716 return -EINVAL;
717
718 cc->key_size = key_size; /* initial settings */
719
720 if ((!key_size && strcmp(key, "-")) ||
721 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
722 return -EINVAL;
723
724 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
725
726 return 0;
727 }
728
729 static int crypt_wipe_key(struct crypt_config *cc)
730 {
731 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
732 memset(&cc->key, 0, cc->key_size * sizeof(u8));
733 return 0;
734 }
735
736 /*
737 * Construct an encryption mapping:
738 * <cipher> <key> <iv_offset> <dev_path> <start>
739 */
740 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
741 {
742 struct crypt_config *cc;
743 struct crypto_blkcipher *tfm;
744 char *tmp;
745 char *cipher;
746 char *chainmode;
747 char *ivmode;
748 char *ivopts;
749 unsigned int key_size;
750 unsigned long long tmpll;
751
752 if (argc != 5) {
753 ti->error = "Not enough arguments";
754 return -EINVAL;
755 }
756
757 tmp = argv[0];
758 cipher = strsep(&tmp, "-");
759 chainmode = strsep(&tmp, "-");
760 ivopts = strsep(&tmp, "-");
761 ivmode = strsep(&ivopts, ":");
762
763 if (tmp)
764 DMWARN("Unexpected additional cipher options");
765
766 key_size = strlen(argv[1]) >> 1;
767
768 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
769 if (cc == NULL) {
770 ti->error =
771 "Cannot allocate transparent encryption context";
772 return -ENOMEM;
773 }
774
775 if (crypt_set_key(cc, argv[1])) {
776 ti->error = "Error decoding key";
777 goto bad1;
778 }
779
780 /* Compatiblity mode for old dm-crypt cipher strings */
781 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
782 chainmode = "cbc";
783 ivmode = "plain";
784 }
785
786 if (strcmp(chainmode, "ecb") && !ivmode) {
787 ti->error = "This chaining mode requires an IV mechanism";
788 goto bad1;
789 }
790
791 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)", chainmode,
792 cipher) >= CRYPTO_MAX_ALG_NAME) {
793 ti->error = "Chain mode + cipher name is too long";
794 goto bad1;
795 }
796
797 tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
798 if (IS_ERR(tfm)) {
799 ti->error = "Error allocating crypto tfm";
800 goto bad1;
801 }
802
803 strcpy(cc->cipher, cipher);
804 strcpy(cc->chainmode, chainmode);
805 cc->tfm = tfm;
806
807 /*
808 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
809 * See comments at iv code
810 */
811
812 if (ivmode == NULL)
813 cc->iv_gen_ops = NULL;
814 else if (strcmp(ivmode, "plain") == 0)
815 cc->iv_gen_ops = &crypt_iv_plain_ops;
816 else if (strcmp(ivmode, "essiv") == 0)
817 cc->iv_gen_ops = &crypt_iv_essiv_ops;
818 else if (strcmp(ivmode, "benbi") == 0)
819 cc->iv_gen_ops = &crypt_iv_benbi_ops;
820 else if (strcmp(ivmode, "null") == 0)
821 cc->iv_gen_ops = &crypt_iv_null_ops;
822 else {
823 ti->error = "Invalid IV mode";
824 goto bad2;
825 }
826
827 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
828 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
829 goto bad2;
830
831 cc->iv_size = crypto_blkcipher_ivsize(tfm);
832 if (cc->iv_size)
833 /* at least a 64 bit sector number should fit in our buffer */
834 cc->iv_size = max(cc->iv_size,
835 (unsigned int)(sizeof(u64) / sizeof(u8)));
836 else {
837 if (cc->iv_gen_ops) {
838 DMWARN("Selected cipher does not support IVs");
839 if (cc->iv_gen_ops->dtr)
840 cc->iv_gen_ops->dtr(cc);
841 cc->iv_gen_ops = NULL;
842 }
843 }
844
845 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
846 if (!cc->io_pool) {
847 ti->error = "Cannot allocate crypt io mempool";
848 goto bad3;
849 }
850
851 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
852 if (!cc->page_pool) {
853 ti->error = "Cannot allocate page mempool";
854 goto bad4;
855 }
856
857 cc->bs = bioset_create(MIN_IOS, MIN_IOS);
858 if (!cc->bs) {
859 ti->error = "Cannot allocate crypt bioset";
860 goto bad_bs;
861 }
862
863 if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
864 ti->error = "Error setting key";
865 goto bad5;
866 }
867
868 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
869 ti->error = "Invalid iv_offset sector";
870 goto bad5;
871 }
872 cc->iv_offset = tmpll;
873
874 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
875 ti->error = "Invalid device sector";
876 goto bad5;
877 }
878 cc->start = tmpll;
879
880 if (dm_get_device(ti, argv[3], cc->start, ti->len,
881 dm_table_get_mode(ti->table), &cc->dev)) {
882 ti->error = "Device lookup failed";
883 goto bad5;
884 }
885
886 if (ivmode && cc->iv_gen_ops) {
887 if (ivopts)
888 *(ivopts - 1) = ':';
889 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
890 if (!cc->iv_mode) {
891 ti->error = "Error kmallocing iv_mode string";
892 goto bad5;
893 }
894 strcpy(cc->iv_mode, ivmode);
895 } else
896 cc->iv_mode = NULL;
897
898 ti->private = cc;
899 return 0;
900
901 bad5:
902 bioset_free(cc->bs);
903 bad_bs:
904 mempool_destroy(cc->page_pool);
905 bad4:
906 mempool_destroy(cc->io_pool);
907 bad3:
908 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
909 cc->iv_gen_ops->dtr(cc);
910 bad2:
911 crypto_free_blkcipher(tfm);
912 bad1:
913 /* Must zero key material before freeing */
914 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
915 kfree(cc);
916 return -EINVAL;
917 }
918
919 static void crypt_dtr(struct dm_target *ti)
920 {
921 struct crypt_config *cc = (struct crypt_config *) ti->private;
922
923 flush_workqueue(_kcryptd_workqueue);
924
925 bioset_free(cc->bs);
926 mempool_destroy(cc->page_pool);
927 mempool_destroy(cc->io_pool);
928
929 kfree(cc->iv_mode);
930 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
931 cc->iv_gen_ops->dtr(cc);
932 crypto_free_blkcipher(cc->tfm);
933 dm_put_device(ti, cc->dev);
934
935 /* Must zero key material before freeing */
936 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
937 kfree(cc);
938 }
939
940 static int crypt_map(struct dm_target *ti, struct bio *bio,
941 union map_info *map_context)
942 {
943 struct crypt_config *cc = ti->private;
944 struct dm_crypt_io *io;
945
946 io = mempool_alloc(cc->io_pool, GFP_NOIO);
947 io->target = ti;
948 io->base_bio = bio;
949 io->error = io->post_process = 0;
950 atomic_set(&io->pending, 0);
951 kcryptd_queue_io(io);
952
953 return DM_MAPIO_SUBMITTED;
954 }
955
956 static int crypt_status(struct dm_target *ti, status_type_t type,
957 char *result, unsigned int maxlen)
958 {
959 struct crypt_config *cc = (struct crypt_config *) ti->private;
960 unsigned int sz = 0;
961
962 switch (type) {
963 case STATUSTYPE_INFO:
964 result[0] = '\0';
965 break;
966
967 case STATUSTYPE_TABLE:
968 if (cc->iv_mode)
969 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
970 cc->iv_mode);
971 else
972 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
973
974 if (cc->key_size > 0) {
975 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
976 return -ENOMEM;
977
978 crypt_encode_key(result + sz, cc->key, cc->key_size);
979 sz += cc->key_size << 1;
980 } else {
981 if (sz >= maxlen)
982 return -ENOMEM;
983 result[sz++] = '-';
984 }
985
986 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
987 cc->dev->name, (unsigned long long)cc->start);
988 break;
989 }
990 return 0;
991 }
992
993 static void crypt_postsuspend(struct dm_target *ti)
994 {
995 struct crypt_config *cc = ti->private;
996
997 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
998 }
999
1000 static int crypt_preresume(struct dm_target *ti)
1001 {
1002 struct crypt_config *cc = ti->private;
1003
1004 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1005 DMERR("aborting resume - crypt key is not set.");
1006 return -EAGAIN;
1007 }
1008
1009 return 0;
1010 }
1011
1012 static void crypt_resume(struct dm_target *ti)
1013 {
1014 struct crypt_config *cc = ti->private;
1015
1016 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1017 }
1018
1019 /* Message interface
1020 * key set <key>
1021 * key wipe
1022 */
1023 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1024 {
1025 struct crypt_config *cc = ti->private;
1026
1027 if (argc < 2)
1028 goto error;
1029
1030 if (!strnicmp(argv[0], MESG_STR("key"))) {
1031 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1032 DMWARN("not suspended during key manipulation.");
1033 return -EINVAL;
1034 }
1035 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1036 return crypt_set_key(cc, argv[2]);
1037 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1038 return crypt_wipe_key(cc);
1039 }
1040
1041 error:
1042 DMWARN("unrecognised message received.");
1043 return -EINVAL;
1044 }
1045
1046 static struct target_type crypt_target = {
1047 .name = "crypt",
1048 .version= {1, 5, 0},
1049 .module = THIS_MODULE,
1050 .ctr = crypt_ctr,
1051 .dtr = crypt_dtr,
1052 .map = crypt_map,
1053 .status = crypt_status,
1054 .postsuspend = crypt_postsuspend,
1055 .preresume = crypt_preresume,
1056 .resume = crypt_resume,
1057 .message = crypt_message,
1058 };
1059
1060 static int __init dm_crypt_init(void)
1061 {
1062 int r;
1063
1064 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1065 if (!_crypt_io_pool)
1066 return -ENOMEM;
1067
1068 _kcryptd_workqueue = create_workqueue("kcryptd");
1069 if (!_kcryptd_workqueue) {
1070 r = -ENOMEM;
1071 DMERR("couldn't create kcryptd");
1072 goto bad1;
1073 }
1074
1075 r = dm_register_target(&crypt_target);
1076 if (r < 0) {
1077 DMERR("register failed %d", r);
1078 goto bad2;
1079 }
1080
1081 return 0;
1082
1083 bad2:
1084 destroy_workqueue(_kcryptd_workqueue);
1085 bad1:
1086 kmem_cache_destroy(_crypt_io_pool);
1087 return r;
1088 }
1089
1090 static void __exit dm_crypt_exit(void)
1091 {
1092 int r = dm_unregister_target(&crypt_target);
1093
1094 if (r < 0)
1095 DMERR("unregister failed %d", r);
1096
1097 destroy_workqueue(_kcryptd_workqueue);
1098 kmem_cache_destroy(_crypt_io_pool);
1099 }
1100
1101 module_init(dm_crypt_init);
1102 module_exit(dm_crypt_exit);
1103
1104 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1105 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1106 MODULE_LICENSE("GPL");
This page took 0.051932 seconds and 6 git commands to generate.